JPS5963762A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5963762A
JPS5963762A JP17477582A JP17477582A JPS5963762A JP S5963762 A JPS5963762 A JP S5963762A JP 17477582 A JP17477582 A JP 17477582A JP 17477582 A JP17477582 A JP 17477582A JP S5963762 A JPS5963762 A JP S5963762A
Authority
JP
Japan
Prior art keywords
film
emitter
base
sio2
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17477582A
Other languages
Japanese (ja)
Inventor
Yoshinobu Monma
門馬 義信
Osamu Hataishi
畑石 治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17477582A priority Critical patent/JPS5963762A/en
Publication of JPS5963762A publication Critical patent/JPS5963762A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Abstract

PURPOSE:To obtain a small-sized high-speed semiconductor device, a wiring thereof is patterned easily, by adjacently arranging a base and an emitter in a flat region through a self-alignment method by a simple manufacturing process. CONSTITUTION:An n<-> epitaxial layer 10 is superposed on an n<+> collector 2 buried in a p<-> substrate 1, and an As added poly Si island 19 is formed selectively on the surface, which is extracted to the surface from the n<+> layer and insulated and isolated 12, while using SiN 20 as a mask. The whole surface is coated with SiO2 21 (21a-21c) including side surfaces, B is implanted, and the p base 22 and the n emitter 23 are formed through heat treatment. The SiO2 21b is removed selectively through reactive ion etching, Al (or Al silicide) 24, SiO2 25 and a resist mask 26 are superposed, and the mask 26 and the film 25 are removed uniformly through reactive ion etching to expose the SiN 20. The Al 24 is patterned, and coated with an SiO2 27, a resist mask 28 is executed and a window is bored, the mask 28 is removed, the Al electrode is attached, and the device is completed.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は半導体装置の製造方法に係り、特にセルファラ
インによって製造されるトランジスタの製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a transistor manufactured by self-alignment.

(2)技術の背景 近時、バイポーラ型トランジスタ等の半導体装置をIC
(集積回路)やLSI(大規模集積回路)等に形成する
場合に、E E I C(Elevated Ele−
ctrode IG )と呼ばれる構造でトランジスタ
をP S S T(Plane 5uper Self
align Transistor)と呼ばれる構造と
したものが提案されている。
(2) Technology background Recently, semiconductor devices such as bipolar transistors have been
(Integrated circuit), LSI (Large scale integrated circuit), etc.
Transistors are constructed using a structure called PSS T (Plane 5upper Self
A structure called "align transistor" has been proposed.

このようなPSSTによって例えばNTL(Non T
hreshold Logic )回路を形成した場合
にはゲート当りの速度は80psとかなり高速の半導体
素子を得ることができる旨の報告がある。
For example, by such PSST, NTL (Non T
There is a report that when a threshold logic) circuit is formed, it is possible to obtain a fairly high-speed semiconductor device with a per-gate speed of 80 ps.

上述の如きEEICは−の構造方法が極めて難しい問題
を含んでいるた吟高速性は少々低下させても、製造方法
の簡単なセルファラインにより製造される半導体装置の
製造方法が要望されていた。
Since the above-mentioned EEIC has extremely difficult construction methods, there has been a need for a method of manufacturing a semiconductor device using a self-fabricated line, which is a simple manufacturing method even if the speed is slightly lowered.

(3)従来技術と問題点 第1図は従来の上記したEEIC構造の側断面図を示す
ものであり、シリコン等のP型基板1に埋込み層2を形
成して、コレクタ拡散Jff3.ヘース拡散層4.エミ
ッタ拡散層5をエピタキシャル層10に形成すると共に
エミッタ拡散IPi5の上部には逆台形状のポリシリコ
ン層6を有し、該ポリシリコン層はAs(ヒ素)がドー
プされサイド部11は酸化膜(SiO2)が形成され、
上部にエミッタ用のA文(アルミニウム)等の配線電極
7が形成され、ベース拡散層4の表面並びにコレクタ拡
散層表面にもそれぞれベース並びにコレクタ用のA交配
線電極8,8.9を有する。なお、12は酸化膜である
(3) Prior art and problems FIG. 1 shows a side sectional view of the conventional EEIC structure described above, in which a buried layer 2 is formed in a P-type substrate 1 made of silicon or the like, and collector diffusion Jff3. Hess diffusion layer 4. An emitter diffusion layer 5 is formed in the epitaxial layer 10, and an inverted trapezoidal polysilicon layer 6 is formed on the upper part of the emitter diffusion IPi5. SiO2) is formed,
A wiring electrode 7 made of A (aluminum) or the like for the emitter is formed on the upper part, and A crossing line electrodes 8, 8.9 for the base and collector are also provided on the surface of the base diffusion layer 4 and the surface of the collector diffusion layer, respectively. Note that 12 is an oxide film.

このような構造のE、EICはエミッタに対しベース配
線電極8.8が逆台形構造のため極めて近接した位置に
配設することが可能となり、高速化できる反面、逆台形
構造のポリシリコン膜を形成するにはエツチング時にエ
ツチングレートを変化させながら逆台形部を形成しなけ
ればならないために、その製造が極めて複雑となり、表
面が平坦でないためにIC化の際に配線パターニングが
非常に困難である欠点を有していた。
In E and EICs with such a structure, the base wiring electrode 8.8 has an inverted trapezoidal structure and can be placed extremely close to the emitter, allowing for faster speeds. In order to form an inverted trapezoid, it is necessary to change the etching rate during etching to form an inverted trapezoid, which makes manufacturing extremely complicated, and because the surface is not flat, wiring patterning is extremely difficult during IC fabrication. It had drawbacks.

(4)発明の目的 本発明は上記従来の欠点に鑑み、その製造工程が簡単で
配線バターニングも容易なセルファラインによる半導体
装置の製造方法を提供することを目的とするものである
(4) Purpose of the Invention In view of the above-mentioned drawbacks of the prior art, it is an object of the present invention to provide a method for manufacturing a semiconductor device using a self-line, in which the manufacturing process is simple and wiring patterning is easy.

(5)発明の構造 この目的は本発明によれば、基板にコレクタ領域を形成
後、窓開きのなされたベース、エミ・ツク領域上にヒ素
等をト〜−プしたポリシリコン膜を形成し、該ポリシリ
コン膜上に窒化シリコン等の第1の絶縁膜を形成して、
エミッタ領域部分のみに該第1のポリシリコン及び絶縁
膜を残すようにパターニングし、残されたポリシリコン
膜のサイドに酸化膜を形成し、ベース及びエミッタ領域
の拡散後に該バターニング部と基板表面を覆うようにメ
タルまたはメタルシリサイドを更にその上に第2の絶縁
膜を形成し、エミッタ領域の第2の絶縁膜を除去し、該
メタルまたはメタルシリサイドをベース電極としたこと
を特徴とする半導体装置の製造方法によって達成される
(5) Structure of the Invention According to the present invention, after forming the collector region on the substrate, a polysilicon film doped with arsenic or the like is formed on the apertured base and the emitter region. , forming a first insulating film such as silicon nitride on the polysilicon film,
The first polysilicon and insulating film are patterned to remain only in the emitter region, an oxide film is formed on the side of the remaining polysilicon film, and after the base and emitter regions are diffused, the patterned part and the substrate surface are patterned. A semiconductor characterized in that a metal or metal silicide is further formed on the metal or metal silicide, a second insulating film is formed thereon, the second insulating film in the emitter region is removed, and the metal or metal silicide is used as a base electrode. This is achieved by a method of manufacturing the device.

(6)発明の実施例 以下、本発明の実施例を第2図ta+〜(Qlによって
説明する。
(6) Embodiments of the Invention Hereinafter, embodiments of the present invention will be described with reference to FIG. 2 ta+ to (Ql).

第2図+a)〜(q)は本発明の半導体装置の製造方法
を示す製造工程側断面図である。
FIGS. 2(a) to 2(q) are side cross-sectional views showing the manufacturing process of the semiconductor device manufacturing method of the present invention.

第2図Talにおいて、■は例えばP型のシリコン基板
であり、該基板上を酸化して酸化膜(SiO2)13を
形成し埋込み拡散層のための窓開き14を行ってイオン
インプランテーションによってAsを基板1表面に打込
む。例えばドープ量は7 ×xolffi cm−)程
度で打込み電圧は60K eVでよい。
In FIG. 2 Tal, ■ is, for example, a P-type silicon substrate, the substrate is oxidized to form an oxide film (SiO2) 13, a window 14 for a buried diffusion layer is formed, and As is formed by ion implantation. into the surface of the substrate 1. For example, the doping amount may be approximately 7 x xolffi cm-) and the implantation voltage may be 60 K eV.

次に第2図(blに示すようにアニールを施ずことで埋
込み層2が形成される。
Next, as shown in FIG. 2 (bl), a buried layer 2 is formed by performing annealing.

更に第2図TCIのようにエピタキシャル成長を行う。Furthermore, epitaxial growth is performed as shown in FIG. 2 TCI.

これはN−で比抵抗が0.5Ω程度で2μm厚さに成長
させたのち5iN(窒化シリコン)膜15を形成し、該
SiN膜15をフィルド酸化するためにバターニングし
子弟2図(d)の如き構成となお。16部分は表面を平
坦。、す颯ため0.工、7チングした部分を示す。
This is made of N- with a specific resistance of about 0.5Ω and grown to a thickness of 2 μm, then a 5iN (silicon nitride) film 15 is formed, and the SiN film 15 is buttered to perform fill oxidation. ). Part 16 has a flat surface. , Susume 0. 7 shows the part that was cut.

次に第2図(e)に示すようにフィルド酸化膜12を形
成し、コレクタ領域となる部分のSiN膜15aを除去
し、レジスト膜17を塗布した後にコレクタ部分に窓開
きのパターニング18を行ってイオンインプランテーシ
ョンによってP (リン)を打込み、第211(f)の
如くレジスト膜17を除去しアニールを行ってコレクタ
拡散frM域のN+部分3が形成される。
Next, as shown in FIG. 2(e), a filled oxide film 12 is formed, the SiN film 15a in the portion that will become the collector region is removed, and a resist film 17 is applied, after which a window opening pattern 18 is applied to the collector region. Then, P (phosphorus) is implanted by ion implantation, the resist film 17 is removed as in step 211(f), and annealing is performed to form the N+ portion 3 of the collector diffusion frM region.

次に第2図(glの如<SiN膜15を除去してAsド
ープドポリシリコン膜、またはノンドープトポリシリコ
ン膜形成後Asをイオンインプランテーションすること
で約5000成長の第1のポリシリコン膜19が形成さ
れる。
Next, after removing the SiN film 15 and forming an As-doped polysilicon film or a non-doped polysilicon film, as shown in FIG. 19 is formed.

次に第2図thiに示すよう4こポリシリコン膜lb上
にSiN膜20を1000人厚に成長させ、該SiN膜
20をマスクとしてポリシリコン膜19をバターニング
する。
Next, as shown in FIG. 2thi, a SiN film 20 is grown to a thickness of 1000 on the four-layer polysilicon film lb, and the polysilicon film 19 is patterned using the SiN film 20 as a mask.

次に第2図(i)の如<800℃〜1000℃の低温で
酸化することで、ポリシリコン膜19のサイドにはほぼ
4000人厚の酸化膜21aが形成され、エビタタキシ
ャル層の表面には1300人厚程成長酸化膜21bが形
成され、SiN膜2o−ヒにも酸化膜21cが形成され
る。
Next, by oxidizing at a low temperature of <800°C to 1000°C as shown in FIG. An oxide film 21b is grown to a thickness of about 1,300 layers, and an oxide film 21c is also formed on the SiN film 2o-hi.

次に第2図(jlに示すように外部ベースのイオンイン
プランテーションを行う。例えばボ11ン(13)を3
0KeVの打込み電圧でI X 10”cm−’位のト
ープ量で行う。かくすれば、ベース領域22が形成され
る。
Next, perform external-based ion implantation as shown in Figure 2 (jl).For example, move button 11 (13) to
The implantation is performed with an implantation voltage of 0 KeV and a tope amount of about I x 10"cm-'. Thus, the base region 22 is formed.

更に第2図(klに示すようにアニール兼エミッタ拡散
を行うとポリシリコン膜にドープされたAsが拡散され
てエミッタ領域23が形成される。
Further, as shown in FIG. 2 (kl), when annealing and emitter diffusion is performed, As doped into the polysilicon film is diffused to form an emitter region 23.

次に第2図+1)に示すようにリアクティブイオンエツ
チングまたはイオンミーリングによって外部ベース上の
酸化膜(SiO2)21bを除去する。
Next, as shown in FIG. 2+1), the oxide film (SiO2) 21b on the external base is removed by reactive ion etching or ion milling.

次に第2図+mlに示すようにスパッタまたは蒸着によ
ってA文等のメタルまたはメタルシリサイF24を形成
するとエミッタ領域は段差が付いているためメタルまた
はメタルシリサイド24aは酸化M*21cの上にも付
着する。
Next, as shown in Figure 2+ml, when a metal or metal silicide F24 such as A pattern is formed by sputtering or vapor deposition, the emitter region has a step, so the metal or metal silicide 24a also adheres on the oxide M*21c. .

これらのメタルまたはメタルシリサイド24゜248を
カバーリングするように絶縁11ii25をスパック等
で形成したり、低温(400℃以下)の気相成長膜を形
成させてもよい。絶縁膜はSiO2等が選択できる。
Insulating material 11ii25 may be formed by spacing or the like to cover these metals or metal silicides 24.degree. 248, or a low temperature (400.degree. C. or less) vapor phase growth film may be formed. The insulating film can be selected from SiO2 or the like.

メタルシリサイドを選択する場合にはポリシリコン等に
比べて抵抗を下げることができるがメタル稈抵抗を下げ
ることはできないが、絶縁膜25を形成する場合には温
度を上げて膜形成することかできる。
If metal silicide is selected, the resistance can be lowered compared to polysilicon, etc., but the metal culm resistance cannot be lowered. However, when forming the insulating film 25, the film can be formed by increasing the temperature. .

一方、メタルの場合は抵抗を下げることはできるが絶縁
膜形成時に温度が上げられない問題があり、これらを勘
案してメタルを選択するかメタルシリサイドを選択する
かを定めればよい。
On the other hand, in the case of metal, although the resistance can be lowered, there is a problem in that the temperature cannot be raised during the formation of the insulating film, and it is advisable to take these into consideration when deciding whether to select metal or metal silicide.

次に第2図tn+に示すように絶縁膜25上にレジスト
膜26を塗布し、イオンミーリングまたはRIEを行う
ことでレジスト26と酸化膜25を均一にエツチングす
るように除去する。かくすればエミッタ拡散源たるポリ
シリコン膜19上の窒化膜20表面までエツチングさせ
ることができる。
Next, as shown in FIG. 2 tn+, a resist film 26 is applied on the insulating film 25, and ion milling or RIE is performed to remove the resist 26 and the oxide film 25 so as to uniformly etch them. In this way, it is possible to etch up to the surface of the nitride film 20 on the polysilicon film 19 serving as the emitter diffusion source.

RIEでのエッヂングガス組成ばレジスト膜26と酸化
l*25を同時にエツチングできる。例えばCl4F3
+02等を用いることができる。
The composition of the etching gas used in RIE allows the resist film 26 and the oxidized l*25 to be etched at the same time. For example, Cl4F3
+02 etc. can be used.

次に第2図(01に示すようにレジスト26を剥離する
Next, as shown in FIG. 2 (01), the resist 26 is peeled off.

次に第2図(piに示すようにベースのメタル24をパ
ターニングしてプラズマまたはスパックにてSiNまた
はSiO2膜27を成長させる。
Next, as shown in FIG. 2 (pi), the base metal 24 is patterned, and a SiN or SiO2 film 27 is grown using plasma or spuck.

更にレジスト28を塗布してベース部、エミッタ部及び
コレクタ部分の窓開きを行う。
Furthermore, a resist 28 is applied to open windows in the base, emitter, and collector portions.

この場合、ベース部分は酸化膜25と窒化膜27部分よ
りなるとするとこれらはエツチングレートが異なるので
ドライエツチングすることが好ましく、エミッタ部分は
窒化膜または酸化膜27のみであるからエミッタ部とベ
ース部の窓開けは別工程で行うことが好ましい。
In this case, if the base part is made up of the oxide film 25 and the nitride film 27, it is preferable to perform dry etching since these have different etching rates, and since the emitter part is made up of only the nitride film or oxide film 27, the emitter part and the base part are separated. It is preferable to open the window in a separate process.

最後に第2図(q>に示すようにレジスト28を除去し
た後に窓開き部分にA又電極29を形成するようにする
Finally, as shown in FIG. 2 (q), after removing the resist 28, an A or electrode 29 is formed in the window opening portion.

(7)発明の効果 以上、詳細に説明したように本発明の構成の半導体装置
によれば、極めて小型になるだけでなく、ベースをエミ
ッタに近接配置できるので冒頭で説明したN T Lに
集積化したときのゲート当りの速度は100p’s程度
に向上させることができた。これはEEl cに比べて
劣るが退席のバイポーラ型の最高技術を用いて集積化し
たNTLのゲート当りの速度150psに比べてかなり
高速であり、更に第2図(qlに示すようにエミソク、
ヘース領域が平坦に構成されるので配線パターニングが
極めて容易であるたりてなく製造工程もE、E、I C
に比べて簡単である特徴を有するものである。
(7) Effects of the Invention As described above in detail, the semiconductor device having the structure of the present invention not only becomes extremely compact, but also allows the base to be placed close to the emitter, making it possible to integrate it into the NTL described at the beginning. The speed per gate could be improved to about 100 p's. Although this is inferior to EEl c, it is considerably faster than the 150 ps per gate speed of NTL integrated using the highest bipolar type technology.
Since the base area is flat, wiring patterning is extremely easy, and the manufacturing process is also very easy.
It has the feature of being simpler than .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のEEIC構造の側断面図、第2図+al
乃至tq+は本発明の半導体装置の製造工程を示すセル
ファライン型半導体素子の側断面図である。 1・・・一基板、 2・・・埋込み層、 3・・・コレ
クタ拡散層、 4.22・・・ベース拡散層、 5.2
3・・・エミッタ拡散源、 6・・・逆台形状ポリシリ
コン層、 7,8.9・・・配線電極、 11. 12
. 2 ! a、  2 l b。 21c、24・・・酸化膜、 15.20・・・SiN
膜、 19・・・ポリシリコン膜、 22・・・メタル
またはメタルシリザイド、  28・・・レジスト膜、
  27c、29・・・電極。 1i!11部 翼 21図 箪Z図 第2品
Figure 1 is a side sectional view of the conventional EEIC structure, Figure 2 +al
1 to tq+ are side sectional views of a self-aligned semiconductor element showing the manufacturing process of the semiconductor device of the present invention. DESCRIPTION OF SYMBOLS 1... One substrate, 2... Buried layer, 3... Collector diffusion layer, 4.22... Base diffusion layer, 5.2
3... Emitter diffusion source, 6... Inverted trapezoidal polysilicon layer, 7,8.9... Wiring electrode, 11. 12
.. 2! a, 2 l b. 21c, 24... Oxide film, 15.20... SiN
Film, 19... Polysilicon film, 22... Metal or metal silicide, 28... Resist film,
27c, 29...electrodes. 1i! Part 11 Wing Figure 21 Z diagram 2nd item

Claims (1)

【特許請求の範囲】[Claims] 基板にコレクタ領域形成後、窓開きのなされたベース、
エミッタ領域上にヒ素等をドープしたポリシリコン膜を
形成し、該ポリシリコン股上に窒化シリコン等の第1の
絶縁膜を形成して、エミッタ領域部分のみに該ポリシリ
コン及び第1の絶縁物を残すようにパターニングし、残
されたポリシリコン膜のサイドに酸化膜を形成し、ベー
ス及びエミッタ領域の拡散後に該パターニング部と基板
表面を覆うようにメタルまたはメタルシリサイドを形成
し、更にその上に第2の絶縁膜を形成して、エミッタ領
域の12の峻縁膜を除去し、該メタルまたはメタルシリ
サイドをベース電極としたごとを特徴とする半導体装置
の製造方法。
After forming the collector region on the substrate, the base is opened with a window,
A polysilicon film doped with arsenic or the like is formed on the emitter region, a first insulating film such as silicon nitride is formed on the polysilicon, and the polysilicon and the first insulator are formed only in the emitter region. An oxide film is formed on the side of the remaining polysilicon film, and after diffusion of the base and emitter regions, a metal or metal silicide is formed to cover the patterned part and the substrate surface, and then on top of that. 1. A method of manufacturing a semiconductor device, comprising forming a second insulating film, removing twelve sharp edge films in an emitter region, and using the metal or metal silicide as a base electrode.
JP17477582A 1982-10-05 1982-10-05 Manufacture of semiconductor device Pending JPS5963762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17477582A JPS5963762A (en) 1982-10-05 1982-10-05 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17477582A JPS5963762A (en) 1982-10-05 1982-10-05 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5963762A true JPS5963762A (en) 1984-04-11

Family

ID=15984446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17477582A Pending JPS5963762A (en) 1982-10-05 1982-10-05 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5963762A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147572A (en) * 1984-12-20 1986-07-05 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
JPS61290762A (en) * 1985-06-19 1986-12-20 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147572A (en) * 1984-12-20 1986-07-05 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
JPS61290762A (en) * 1985-06-19 1986-12-20 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPH0511417B2 (en) * 1985-06-19 1993-02-15 Matsushita Electric Ind Co Ltd

Similar Documents

Publication Publication Date Title
US4425700A (en) Semiconductor device and method for manufacturing the same
EP0076105B1 (en) Method of producing a bipolar transistor
JPH05206451A (en) Mosfet and its manufacture
JPH0241170B2 (en)
US4885261A (en) Method for isolating a semiconductor element
US4283235A (en) Dielectric isolation using shallow oxide and polycrystalline silicon utilizing selective oxidation
JPS5963762A (en) Manufacture of semiconductor device
JP2565162B2 (en) Bipolar transistor and manufacturing method thereof
US5106769A (en) Process for manufacturing bi-cmos type semiconductor integrated circuit
JP2672596B2 (en) Method for manufacturing semiconductor device
JPS5940571A (en) Semiconductor device
JPH05343413A (en) Bipolar transistor and manufacture thereof
JPS6115372A (en) Semiconductor device and manufacture thereof
JPS6159775A (en) Semiconductor device
JP2890550B2 (en) Method for manufacturing semiconductor device
JP3142303B2 (en) Manufacturing method of high-speed bipolar transistor
JP2745946B2 (en) Method for manufacturing semiconductor integrated circuit
JPH0136709B2 (en)
JPH0475346A (en) Manufacture of semiconductor device
JPH0362947A (en) Semiconductor device and manufacture thereof
JPH06291077A (en) Semiconductor device and manufacture thereof
JPS59231833A (en) Semiconductor device and manufacture thereof
JPS61201465A (en) Manufacture of transistor
JPH01214166A (en) Semiconductor integrated circuit device with bipolar transistor
JPH03201528A (en) Semiconductor device and manufacture thereof