JPS5963699A - Film forming device - Google Patents

Film forming device

Info

Publication number
JPS5963699A
JPS5963699A JP57173271A JP17327182A JPS5963699A JP S5963699 A JPS5963699 A JP S5963699A JP 57173271 A JP57173271 A JP 57173271A JP 17327182 A JP17327182 A JP 17327182A JP S5963699 A JPS5963699 A JP S5963699A
Authority
JP
Japan
Prior art keywords
film forming
plasma
cylinder
sample
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57173271A
Other languages
Japanese (ja)
Inventor
巌 渡辺
秀雄 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57173271A priority Critical patent/JPS5963699A/en
Publication of JPS5963699A publication Critical patent/JPS5963699A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、ガスを導入し、磁界とマイクロ波による電子
サイクロトロシ共鳴を用いてプラズマを発生させるプラ
ズマ生成室および膜形成原料ガスを導入すると共に試料
を配置した試料室を有し、プラズマ生成室と試料室との
隔壁にプラズマ引き出し口を設け、磁界勾配によってプ
ラズマを試料上に引き出して膜を試料上に形成する膜形
成装置に関し、□特にプラズマ引き出°し用の筒を試料
室側に設けた膜形成装置に関するものである。
Detailed Description of the Invention The present invention provides a plasma generation chamber in which a gas is introduced and plasma is generated using electron cyclotrosi resonance using a magnetic field and microwaves, and a sample chamber in which a film forming raw material gas is introduced and a sample is placed. □Specifically for plasma extraction This relates to a film forming apparatus in which a cylinder is provided on the sample chamber side.

磁界とマイクロ波による電子サイクロトロン共鳴を用い
てプラズマを発生させるプラズマ生成室および試料室を
有し、プラズマ生成室と試料室の隔壁にプラズマ引き出
し口を設は磁界勾配によってプラズマを試料上に引き出
し、膜を試料上に形成する従来の膜形成内装置の構成の
一例を第1図に示す。ここで、/はプラズマ生成室、2
は試料室、3は膜形成原料ガスを試料室λへ導入するだ
めの導入管、グは排気系への接続部、Sは試料台、乙は
試料台S上の試料、7はプラズマ生成室lに磁界を発生
、させるだめの磁気コイル、rは、例えば、2−IIA
; GHzのマイクロ波9をプラズマ生成室/に導入す
るための導波管、/θはプラズマ生成室/にガスを導入
するだめのガス導入管、l/はプラズマ生成室lを冷却
。するための冷却水導入管、/2はその冷却水の排出管
、13はプラズマ生成室/にマイクロ波を導入するため
の絶縁性物質の板、例えば石英板である。
It has a plasma generation chamber and a sample chamber that generate plasma using electron cyclotron resonance using a magnetic field and microwaves, and a plasma extraction port is installed in the partition wall between the plasma generation chamber and the sample chamber to draw plasma onto the sample using a magnetic field gradient. An example of the configuration of a conventional film forming apparatus for forming a film on a sample is shown in FIG. Here, / is a plasma generation chamber, 2
3 is the sample chamber, 3 is the introduction pipe for introducing the film forming raw material gas into the sample chamber λ, G is the connection to the exhaust system, S is the sample stage, O is the sample on the sample stage S, 7 is the plasma generation chamber l is a magnetic coil for generating a magnetic field, r is, for example, 2-IIA
; A waveguide for introducing the GHz microwave 9 into the plasma generation chamber/; /θ is a gas introduction pipe for introducing gas into the plasma generation chamber/; l/ is a cooling tube for the plasma generation chamber l; A cooling water inlet pipe /2 is a discharge pipe for the cooling water, and 13 is an insulating material plate, such as a quartz plate, for introducing microwaves into the plasma generation chamber.

かかる装置では、プラズマ生成室/において、マイクロ
波と磁界による電子サイクロトロン共鳴を用いてプラズ
マを生成するので、ガス圧力10−’Torr台で活性
度の高いプラズマを発生できる。
In such an apparatus, since plasma is generated in the plasma generation chamber using electron cyclotron resonance using microwaves and a magnetic field, highly active plasma can be generated at a gas pressure of 10-' Torr.

そのため、例えば、SiH4と02によるSiO2の形
成や、SiH4とOH4によるSi −Cの形成では、
低温で繊密な膜を形成できる。
Therefore, for example, in the formation of SiO2 with SiH4 and 02 or the formation of Si -C with SiH4 and OH4,
Can form a delicate film at low temperatures.

一方、このような従来の装置構成の場合、試料室λ内に
導入管3から導入した膜形成原料がプラズマ生成室/内
にも容易に流入し、プラズマ生成室l内に試料室λ内の
試料6上と同程度の量の膜が形成されてしまう。特に、
導電性物質の膜を形成する場合、真空を保持し、かつマ
イクロ波導入口の役割を果す石英板tj (以後マイク
ロ波導入窓と記す。)に導電性物質が付着してプラズマ
生成室/内へのマイクロ波の導入が妨げられるのみでな
く、導入窓の石英板/3に付着した導電性膜でマイクロ
波の損失が起こってこの部分で発熱が生じるので、1μ
m程度の厚膜形成は困難であるという欠点を有していた
On the other hand, in the case of such a conventional device configuration, the film forming raw material introduced into the sample chamber λ from the introduction tube 3 easily flows into the plasma generation chamber/inside the plasma generation chamber 1. A film of approximately the same amount as that on sample 6 ends up being formed. especially,
When forming a film of conductive material, the conductive material adheres to a quartz plate (hereinafter referred to as microwave introduction window) that maintains a vacuum and serves as a microwave introduction port and enters the plasma generation chamber/inside. Not only does this prevent the introduction of microwaves, but the conductive film attached to the quartz plate/3 of the introduction window causes loss of microwaves and generates heat in this area.
It has a drawback that it is difficult to form a film as thick as 0.3 m.

そこで、本発明の目的は、上述の欠点を解決し、基板加
熱のない低温基板に良質で緻密な厚膜を形成することの
でき・る膜形成装置を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a film forming apparatus that can solve the above-mentioned drawbacks and form a high-quality, dense, thick film on a low-temperature substrate without heating the substrate.

かかる目的を達成するために、本発明は、ガスを導入し
、磁界とマイクロ波による電子サイクロトロン共鳴を用
いてプラズマを発生させるプラズマ生成室および膜形成
原料ガスを導入すると共に試料を配置した試料室を有し
、プラズマ生成室と試料室との隔壁にプラズマ引き出し
口を設け、磁界勾配によってプラズマを試別上に引き出
して膜を試料上に形成する膜形成装置において、プラズ
マ引き出し口に試料室側に向けて延在するプラズマ引き
出し筒を設ける。
In order to achieve such an object, the present invention provides a plasma generation chamber into which a gas is introduced and generates plasma using electron cyclotron resonance using a magnetic field and microwaves, and a sample chamber into which a film forming raw material gas is introduced and a sample is placed. In a film forming apparatus that has a plasma extraction port in the partition wall between the plasma generation chamber and the sample chamber, and forms a film on the sample by drawing the plasma onto the specimen using a magnetic field gradient, the plasma extraction port is located on the sample chamber side. A plasma extraction tube is provided that extends toward the

以下に図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第2図は本発明膜形成装置におけるプラズマ引き出しの
だめの筒の部分を示す概略図である。ここで、lグはプ
ラズマ引き出し口の試料室/側に向Iけて延在させて設
けた筒である。このプラズマ引き出し筒/4tは導電材
料あるいは絶縁体のいずれですることができ、その形状
としては、磁界斡配によってプラズマがプラズマ生成室
/から試料室2へ導き出される膜形成装置においては、
磁力線に沿った構造としてもよいが、説明を簡晰にする
ため、筒lりの形状を円筒とした実施例について説明す
る。本例装置における残余の部分は第1図示の装置と同
様であり、ここでは省略する。
FIG. 2 is a schematic diagram showing the tube portion of the plasma extraction reservoir in the film forming apparatus of the present invention. Here, I is a cylinder extending toward the sample chamber/I side of the plasma extraction port. This plasma extraction tube/4t can be made of either a conductive material or an insulator, and its shape is as follows:
Although a structure along the lines of magnetic force may be used, in order to simplify the explanation, an example will be described in which the shape of the barrel is cylindrical. The remaining parts of the device of this example are the same as the device shown in the first figure, and will be omitted here.

以下、本例装置の作用を説明する。The operation of the device of this example will be explained below.

本例の膜形成製!nでは、試料室λ内の動作圧力は/θ
 Torr台であり、試料室λ内の分子の平均自由行程
は数/θ儂である。そのだめ、膜形成の原料ガスの分子
は、主に、試料室2の側壁と衝突することにより進行方
向を変えてプラズマ生成室l内へ流入していく。従来の
円筒のない第1図示の構造と比較すると、円筒/Fを設
けた場合は、プラズマ生成室/へ進入可能なみこみ角は
円筒/Fの径と長さに応じて減少する。また、膜形成を
行なうプラズマ界囲気では膜形成原料ガスが壁に衝突し
た際に、壁に付着する確率は一定の値を持っている。こ
のため、膜形成原料ガスの分子が円筒内側壁と何回か衝
突してプラズマ生成室l内に進・入する量は衝突回数に
応じて急激に減少する。したがって、円筒/4’を設け
ることによシ、試料室λ内に導入した膜形成原料ガスの
プラズマ生成室l内への逆流を大幅に防止することがで
きる。
Made of membrane formation in this example! n, the operating pressure in the sample chamber λ is /θ
Torr scale, and the mean free path of the molecules in the sample chamber λ is number/θ. Instead, the molecules of the raw material gas for film formation mainly collide with the side wall of the sample chamber 2, thereby changing the direction of travel and flowing into the plasma generation chamber 1. Compared to the conventional structure shown in the first drawing without a cylinder, when the cylinder /F is provided, the penetration angle that allows the plasma generation chamber to enter the plasma generation chamber /F decreases according to the diameter and length of the cylinder /F. Furthermore, in the plasma surrounding atmosphere in which film formation is performed, when the film forming raw material gas collides with the wall, the probability that it will adhere to the wall has a certain value. Therefore, the amount of molecules of the film-forming raw material gas that collide with the inner wall of the cylinder several times and enter into the plasma generation chamber 1 rapidly decreases depending on the number of collisions. Therefore, by providing the cylinder /4', it is possible to significantly prevent the film forming raw material gas introduced into the sample chamber λ from flowing back into the plasma generation chamber l.

なお、円筒/pを液体窒素等により冷却すればこの効果
はさらに増大する。円筒/+の構成物質が、試料乙に形
成した膜中に混入する可能性は、この円筒に膜が付着す
る傾向にあることを考慮すると、非常に小さい。不純物
として円筒構成物質が膜中に認められた場合には、円筒
を目的とする形成膜と同一の物質で形成すれば、不純物
の混入を防止できる。あるいは、円筒の表面またはプラ
ズマ流に接する表面のみを目的とする形成膜と同一の物
質で被覆してもよい。
Note that this effect will be further enhanced if the cylinder/p is cooled with liquid nitrogen or the like. The possibility that the constituent substances of cylinder/+ will be mixed into the film formed on sample B is extremely small, considering that the film tends to adhere to this cylinder. If a cylinder-constituting substance is found as an impurity in the film, if the cylinder is formed of the same material as the intended film, the contamination of the impurity can be prevented. Alternatively, only the surface of the cylinder or the surface in contact with the plasma flow may be coated with the same material as the intended film to be formed.

以上のような構成でSiH4ガスを導入管3より試料室
/に/θs a a bx導入し、プラズマ生成室lに
Arを導入管IOより70500M導入して膜形成を行
ない、マイクロ波窓と試料乙に形成されたSi膜を比較
したところ、マイクロ波窓での付着量が少なく、円筒/
4!の効果を確認できた。
With the above configuration, SiH4 gas is introduced from the introduction tube 3 into the sample chamber /θs a a bx, and Ar 70500M is introduced into the plasma generation chamber 1 from the introduction tube IO to form a film. Comparing the Si film formed on B, it was found that the amount of adhesion on the microwave window was small, and the amount of adhesion on the cylinder/
4! We were able to confirm the effect of

次に、本発明の第2実施例を第3図に示す。本例では、
プラズマ引き出し円筒13を導電材料、例えばステンレ
スで構成し、試料室λと円筒/fとの間に絶縁体リング
、例えばセラミックリングや石英リング/3を介在させ
、この円筒/4’を試料室−に突出するように設置し、
試料室コと円筒/fとの間に配線16により電圧を印加
し得るようにする。さらに、/7および/ざはスイッチ
であり、試料室コに対し正または負電圧を印加する場合
、あるいは試料室コから電気的に浮遊させる場合に応じ
て切り換える。/9は直流電源〃と並列に接続された可
変抵抗器であり、円筒tjに印加する電圧を調整して配
線/6により取り出す。なお、部分17〜〃の代わりに
定電圧電源等を用い、その出力電圧を配線/6を通して
円筒/’lに印加し、以て円筒laの電圧を制御しても
よい。
Next, a second embodiment of the present invention is shown in FIG. In this example,
The plasma extraction cylinder 13 is made of a conductive material, such as stainless steel, and an insulator ring, such as a ceramic ring or a quartz ring /3, is interposed between the sample chamber λ and the cylinder /f, and this cylinder /4' is connected to the sample chamber - installed so that it protrudes from the
A voltage can be applied between the sample chamber ko and the cylinder /f through a wiring 16. Further, /7 and /za are switches, which are switched depending on whether a positive or negative voltage is to be applied to the sample chamber or when the sample chamber is electrically suspended. /9 is a variable resistor connected in parallel with the DC power supply, which adjusts the voltage applied to the cylinder tj and takes it out through wiring /6. Note that a constant voltage power supply or the like may be used in place of the portions 17 to 17, and its output voltage may be applied to the cylinder /'l through the wiring /6, thereby controlling the voltage of the cylinder la.

第q図はプラズマ流出口の中心から試料室λ側へ// 
CInの位置に/龍φ×30簡の電極(以後プローブと
呼ぶ)を配置したときの、試料室λとプローブとの間に
印加した電圧とプローブを流れた精流との関係の測定結
果を示す。ここで、一般に、プローブに負電位をかけて
流れるイオンによる電流の電位に対する変化をとった時
、プローブ電流は一定に近ずく。この時の電流を飽和電
流と呼び、この飽和電流がイオン密度の目安となる。こ
の測定にあたっては、第3図の構成において、プラズマ
引き出し円筒/Fの直径はワa1長さを3cm(グラフ
A)および7cm(グラフB)とした。プラズマ生成室
lの面径は〃−とし、導入管/θよりArを10500
M流し、試料室λ内の真空度を2×/θ−4Torrと
し、マイクロ波電力を′20.OW投入した。
Figure q is from the center of the plasma outlet to the sample chamber λ side //
When an electrode (hereinafter referred to as a probe) of /long φ x 30 electrodes (hereinafter referred to as a probe) is placed at the position of CIn, the measurement results of the relationship between the voltage applied between the sample chamber λ and the probe and the semen flowing through the probe are shown. show. Generally, when a negative potential is applied to the probe and the change in current due to flowing ions with respect to the potential is measured, the probe current approaches a constant value. The current at this time is called a saturation current, and this saturation current is a measure of ion density. In this measurement, in the configuration shown in FIG. 3, the diameter of the plasma extraction cylinder/F was set to 3 cm (graph A) and 7 cm (graph B) in length a1. The surface diameter of the plasma generation chamber l is -, and Ar is 10500 from the introduction pipe /θ.
M flow, the degree of vacuum in the sample chamber λ was set to 2×/θ-4 Torr, and the microwave power was set to '20. I put in OW.

ここで、スイッチ、/7および1gを開にし、円筒/(
+’を試料室2から電気的に浮遊させたみ円筒14Iの
長さを3cmおよび7”anとした場合の両者における
電流を比較すると、7cm(D′場合の電流はわずかに
小さいが、両者間で差はほとんどない。″このことは、
3cmの長さの円筒/Fと比較して、プラズマ内のイオ
ン密度に余シ影響を与えることなく円゛筒/4tの長さ
を7儂にでき、従って膜形成原料ガスのプラズマ生成室
l内への流入を減少させることができることを示してい
る。
Now open the switches /7 and 1g and open the cylinder /(
+' is electrically suspended from the sample chamber 2, and when the length of the cylinder 14I is 3 cm and 7"an, the current in both cases is 7 cm (the current in case D' is slightly smaller, but both There is almost no difference between the two.''This means that
Compared to a cylinder/F with a length of 3cm, the length of the cylinder/4t can be made 7cm without affecting the ion density in the plasma, and therefore the plasma generation chamber l of the film forming raw material gas can be reduced. This shows that it is possible to reduce the inflow into the interior.

第S図は、第ψ図における条件において、円筒lりの長
さを7儂とし、円筒/lIに印加した電圧と、プローブ
電圧を0■(グラフC)および−〃v(グラフD)とし
たときに流れる電、流との関係を示す。
In Figure S, under the conditions shown in Figure ψ, the length of the cylinder is set to 7 degrees, and the voltage applied to the cylinder/I and the probe voltage are set to 0 (graph C) and -〃v (graph D). Shows the relationship between the current and current flowing when

この測定結果によれば、円筒/4’に印加する電圧によ
シプラズマ流中のイオン密度をある程度制御できること
がわかる。         −第6図は、長さ7cm
I)円筒をつけた場合(グラフE)とつけない場合(グ
ラフF)における膜形成時間と形成膜厚との関係を示す
。この測定にあたっては、プラズマ生成室lに導入管l
θよりArおよびH2をそれぞれ70800Mおよび1
00500M導入し、さらに試料室λ内のNbF 5分
圧がjX/θ−2Paになるように設定した。この時マ
イクロ波パワーを300 Wとした。円筒lりを設けた
場合、形成時間に応じて形成される膜厚は増加する。一
方、筒がない場合、マイクロ波導入窓13に導電膜が付
着してマイクロ波の横失が大きくなり、プラズマ生成室
lに入る実効的マイクロ波電力が減少し、時間に対して
形成膜厚はほとんど増加しなくなる。また、マイクロ波
導入窓13においてマイクロ波損失により導電付着膜が
加熱され、窓材の石英板が割れる危険があるため、70
分以上の長時間にわたっての膜形成は困難であった。
The measurement results show that the ion density in the plasma flow can be controlled to some extent by the voltage applied to the cylinder/4'. -Figure 6 shows length 7cm
I) Shows the relationship between the film formation time and the film thickness when a cylinder is attached (graph E) and when it is not attached (graph F). For this measurement, the introduction tube l into the plasma generation chamber l.
From θ, Ar and H2 are 70800M and 1, respectively.
00500M was introduced, and the partial pressure of NbF 5 in the sample chamber λ was set to be jX/θ−2Pa. At this time, the microwave power was set to 300W. When a cylindrical portion is provided, the thickness of the formed film increases depending on the forming time. On the other hand, when there is no cylinder, a conductive film adheres to the microwave introduction window 13, which increases the horizontal loss of microwaves, reduces the effective microwave power entering the plasma generation chamber l, and increases the thickness of the formed film over time. will hardly increase. In addition, there is a risk that the conductive deposited film will be heated due to microwave loss in the microwave introduction window 13 and the quartz plate of the window material will break.
It was difficult to form a film over a long period of time (more than 1 minute).

以上述べたように、試料室2叫に突出して設けた筒/(
/は、試料室λに導入した膜形成原料ガスのプラズマ生
成室/への逆流を大幅に防止する効果があり、しかも、
プラズマの引き出しに対して何等悪影響を与えない。従
って、金属のような導電性物質の厚膜を容易に形成でき
る。
As mentioned above, the cylinder/(
/ has the effect of significantly preventing the backflow of the film-forming raw material gas introduced into the sample chamber λ to the plasma generation chamber /, and furthermore,
It does not have any adverse effect on plasma extraction. Therefore, a thick film of conductive material such as metal can be easily formed.

以上説明したように、本発明によれば、試料室へ導入し
たガスのプラズマ生成室への逆流を減少できるので、プ
ラズマ生成室での膜形成を抑制できる利点がある。その
ため、プラズマ生成室に付着した膜の剥離に起因して試
料上に形成した膜に欠陥が生じることを減少させること
ができるとともに、金属のような導電性物質の厚膜を形
成できる。さらに加えて、本発明によれば、試料室とプ
ラズマ引き出l−口に設けた筒との間に印加する電圧に
より、プラズマ流中のイオン量を制御することができる
As described above, according to the present invention, it is possible to reduce the backflow of the gas introduced into the sample chamber into the plasma generation chamber, so there is an advantage that film formation in the plasma generation chamber can be suppressed. Therefore, it is possible to reduce the occurrence of defects in the film formed on the sample due to peeling of the film attached to the plasma generation chamber, and also to form a thick film of a conductive substance such as metal. Additionally, according to the present invention, the amount of ions in the plasma flow can be controlled by applying a voltage between the sample chamber and the cylinder provided at the plasma extraction port.

【図面の簡単な説明】 第1図は従来の膜形成装置の概略構成を示す線図、第2
図は本発明膜形成装置のプラズマ引き出しのための筒の
部分の構成の一例を示す概略図、第3図は試料室とプラ
ズマ引き出しのための筒の間に電圧を印加し得る構造と
した本発明の他の例における筒の部分を示す概略図、第
1図はプラズマ流中に挿入したプローブに印加した電圧
とプローブを流れる電流との関係を示すグラフ、第S図
は円筒に印加した電圧とプローブ中を流れる電流との関
係を示すグラフ、第6図は本発明の効果を示す膜形成時
間と形成膜厚との関係のグラフである。 /・・・プラズマ生成室、 λ・・・試料室、 3・・・膜形成原料ガス導入口、 ダ・・・排気系への接続部、 S・・・試料台、 6・・・試料台j上の試料、 7・・・プラズマ生成室に磁界を発生させるための磁気
コイル、 l・・・マイクロ波導波管、 9・・・λ、LtGHzのマイクロ波、lθ・・・ガス
導入口、 l/・・・プラズマ生成室冷却用冷却水導入管、12・
・・冷却水排出管、 13・・・マイクロ波導入窓、 lグ・・・筒、 15・・・絶縁体、 16・・・筒に電圧を印加する配線、 17・・・スイッチ、 7g・・・スイッチ、 19・・・可変抵抗、 〃・・・直流電源。 特許出願人 日本電信電話公社 第1図 第5図 円筒部の電反(V) 第6図 0      5     10     15   
  20哩形八へ間(分)
[Brief Description of the Drawings] Fig. 1 is a diagram showing the schematic configuration of a conventional film forming apparatus;
The figure is a schematic diagram showing an example of the structure of the tube for drawing out plasma in the film forming apparatus of the present invention, and FIG. A schematic diagram showing the cylinder part in another example of the invention, Fig. 1 is a graph showing the relationship between the voltage applied to the probe inserted into the plasma flow and the current flowing through the probe, and Fig. S shows the voltage applied to the cylinder FIG. 6 is a graph showing the relationship between the current flowing through the probe and the current flowing through the probe, and FIG. 6 is a graph showing the relationship between the film formation time and the formed film thickness, showing the effects of the present invention. /... Plasma generation chamber, λ... Sample chamber, 3... Film forming raw material gas inlet, D... Connection to exhaust system, S... Sample stand, 6... Sample stand Sample on j, 7... Magnetic coil for generating a magnetic field in the plasma generation chamber, l... Microwave waveguide, 9... λ, LtGHz microwave, lθ... gas inlet, l/... Cooling water introduction pipe for cooling the plasma generation chamber, 12.
...Cooling water discharge pipe, 13...Microwave introduction window, lg...tube, 15...Insulator, 16...Wiring for applying voltage to the tube, 17...switch, 7g... ...Switch, 19...Variable resistor, 〃...DC power supply. Patent Applicant: Nippon Telegraph and Telephone Public Corporation Figure 1 Figure 5 Cylindrical portion of electric wire (V) Figure 6 0 5 10 15
20 meters (minutes)

Claims (1)

【特許請求の範囲】 1)ガスを導入し、磁界とマイクロ波による電子サイク
ロトロン共鳴を用いてプラズマを発生させるプラズマ生
成室および膜形成原料ガスを導入すると共に試料を配置
した試料室を有し、前記プラズマ生成室と前記社料室と
の隔壁にプラズマ引き出し口を設け、磁界勾配によって
プラズマを前記試料上に引き出して膜を前記試料上に形
成する膜形成装置において、前記プラズマ引き出し口に
は前記試料室側に向けて延在するプラズマ引き出しの筒
を設けたことを特徴とする膜形成装置。 2、特許請求の範囲第1項記載の膜形成装置において、
前記筒を導電材料で構成し、当該筒を絶縁物を介して膜
形成装置本体に配設し、該装置本体と前記筒との間に電
圧を印加し得るように構成したーことを特徴とする膜形
成装置。 5)特許請求の範囲第1項記載の膜形成装置において、
前記筒のプラズマ流に接する面を、前記試料上に形成す
る膜と同一の物質で構成するようにしたことを特徴とす
る膜形成装置。 4)特許請求の範囲第1項記載の膜形成装置において、
前記筒を絶縁物で構成したことを特徴とする膜形成装置
[Claims] 1) A plasma generation chamber into which a gas is introduced and generates plasma using electron cyclotron resonance using a magnetic field and microwaves, and a sample chamber into which a film forming raw material gas is introduced and a sample is placed; In a film forming apparatus, a plasma extraction port is provided in a partition wall between the plasma generation chamber and the company materials room, and a film is formed on the sample by drawing plasma onto the sample using a magnetic field gradient. A film forming apparatus characterized by being provided with a plasma drawing tube extending toward the sample chamber side. 2. In the film forming apparatus according to claim 1,
The cylinder is made of a conductive material, and the cylinder is arranged in the main body of the film forming apparatus via an insulator, so that a voltage can be applied between the main body of the apparatus and the cylinder. Film forming equipment. 5) In the film forming apparatus according to claim 1,
A film forming apparatus characterized in that a surface of the tube in contact with the plasma flow is made of the same material as a film to be formed on the sample. 4) In the film forming apparatus according to claim 1,
A film forming apparatus characterized in that the cylinder is made of an insulator.
JP57173271A 1982-10-04 1982-10-04 Film forming device Pending JPS5963699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57173271A JPS5963699A (en) 1982-10-04 1982-10-04 Film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57173271A JPS5963699A (en) 1982-10-04 1982-10-04 Film forming device

Publications (1)

Publication Number Publication Date
JPS5963699A true JPS5963699A (en) 1984-04-11

Family

ID=15957351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57173271A Pending JPS5963699A (en) 1982-10-04 1982-10-04 Film forming device

Country Status (1)

Country Link
JP (1) JPS5963699A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4727307A (en) * 1985-07-19 1988-02-23 Mitsubishi Denki Kabushiki Kaisha Control apparatus for vehicular generator
JPH01276715A (en) * 1988-04-28 1989-11-07 Tel Sagami Ltd Plasma processor
JPH03122996A (en) * 1989-10-04 1991-05-24 Sumitomo Metal Ind Ltd Plasma device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4727307A (en) * 1985-07-19 1988-02-23 Mitsubishi Denki Kabushiki Kaisha Control apparatus for vehicular generator
JPH01276715A (en) * 1988-04-28 1989-11-07 Tel Sagami Ltd Plasma processor
JPH03122996A (en) * 1989-10-04 1991-05-24 Sumitomo Metal Ind Ltd Plasma device

Similar Documents

Publication Publication Date Title
TW589675B (en) Plasma treatment device and plasma treatment method
US5721021A (en) Method of depositing titanium-containing conductive thin film
US5891349A (en) Plasma enhanced CVD apparatus and process, and dry etching apparatus and process
US4173661A (en) Method for depositing thin layers of materials by decomposing a gas to yield a plasma
KR101880702B1 (en) Microwave plasma generating device and method for operating same
JPS6243335B2 (en)
JPH10509557A (en) Method and apparatus for measuring ion flow in plasma
JPH04279044A (en) Sample-retention device
JPH10251849A (en) Sputtering device
JPS5963699A (en) Film forming device
Bradley et al. Measurements of the sheath potential in low density plasmas
KR0166418B1 (en) Plasma processing device
JPH10168565A (en) Production of ionization pvd device and semiconductor device
JPH01243349A (en) Plasma extreme ultraviolet light generator
JPS62189725A (en) Plasma cvd apparatus
JPH0770755A (en) Apparatus for coating or etching substrate
JPH066786B2 (en) Thin film forming equipment
JPH07258844A (en) Film forming device utilizing discharge plasma of magnetic neutral line
JP2646664B2 (en) Microwave plasma film deposition equipment
JPH0834186B2 (en) Microwave plasma film deposition equipment
Shandrikov et al. Deposition of tungsten disilicide films by DC magnetron sputtering at ultra-low operating pressure
JP3077144B2 (en) Sample holding device
JPH051375A (en) Vacuum treating device
JP3683044B2 (en) Electrostatic chuck plate and manufacturing method thereof
JPH0536505B2 (en)