JPS5963363A - Fuel injection nozzle - Google Patents

Fuel injection nozzle

Info

Publication number
JPS5963363A
JPS5963363A JP17344182A JP17344182A JPS5963363A JP S5963363 A JPS5963363 A JP S5963363A JP 17344182 A JP17344182 A JP 17344182A JP 17344182 A JP17344182 A JP 17344182A JP S5963363 A JPS5963363 A JP S5963363A
Authority
JP
Japan
Prior art keywords
needle
piston
oil
screw
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17344182A
Other languages
Japanese (ja)
Other versions
JPH0477149B2 (en
Inventor
Masatoshi Kuroyanagi
正利 黒柳
Masahiko Suzuki
昌彦 鈴木
Yasuhiro Horiuchi
康弘 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP17344182A priority Critical patent/JPS5963363A/en
Publication of JPS5963363A publication Critical patent/JPS5963363A/en
Publication of JPH0477149B2 publication Critical patent/JPH0477149B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/161Means for adjusting injection-valve lift

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To enable the injection of fuel to be accurately controlled throughout a wide range of operational condition, by controlling the maximum needle lift of a nozzle in order to change injection pressure in accordance with the operational condition of an internal-combustion engine. CONSTITUTION:A needle urging spring 10 is adapted to the first piston 20 to urge the top part of a needle 1 through a connecting rod 9 in the closing direction of the needle 1 against the urging force of opening the needle 1 by the pressure of fuel. The first piston 20 is oil-tightly and slidably fitted to the wall of a spring chamber 12c filled with fluid in a holder body 12. The second piston 2 having a helical control face 2a is slidably and turnably fitted in oil-tightness to two cylinder walls 3c, 3d of a cylinder 3. A control hole 3a communicated to an oil tight chamber 5 is drilled in the cylinder 3. The second piston 2, whose lift is restricted at a position where the control face 2a closes the control hole 3a, decreases a lift amount of the first piston 20 corresponding to the maximum lift amount of the second piston 2 at said position.

Description

【発明の詳細な説明】 本発明は、内燃機関の燃t’l噴1・1ノズルの改良に
関するものであり、内燃機関の燃焼に直接影響を及ぼぢ
”噴射圧力の制御方法に凹゛4るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a fuel injection 1.1 nozzle for an internal combustion engine, and it has a direct effect on the combustion of the internal combustion engine. It is something that

従来、噴T’A特性に大きく影響を及はず噴射圧力を内
燃機関の運転状態に応して広範囲にわたって制御する方
法は殆ど提案されていない。噴n ’l’、r性を制御
することは、間接的に燃焼を制御することを息昧するの
で、噴霧状態によって性能が大きく変化4゛るディーゼ
ルエンジン、特に直接噴射式ディーゼルエンジンにおい
ては、噴霧特性つまり噴射圧力の制御に凹して強い要望
があった。
Hitherto, few methods have been proposed for controlling the injection pressure over a wide range according to the operating state of the internal combustion engine without significantly affecting the injection T'A characteristics. Controlling the injection properties involves indirectly controlling combustion, so in diesel engines, especially direct injection diesel engines, where the performance changes greatly depending on the spray condition, There was a strong demand for control of spray characteristics, that is, injection pressure.

本発明は、上記要望により、噴射圧力を変えるためにノ
ズルの最大ニードルリフ1Mを内燃機関の運転条イ!1
に応じて任意に制御する場合に問題となる制御作動に伴
う抵抗の低減と、制御作動範囲の拡大を目的とするもの
である。
In response to the above-mentioned request, the present invention has been developed to increase the nozzle's maximum needle lift of 1M in order to change the injection pressure when operating an internal combustion engine. 1
The purpose of this is to reduce the resistance associated with control operation, which is a problem when performing arbitrary control according to the conditions, and to expand the control operation range.

以T木発明を実施例に基づいて説明する。The T-tree invention will now be described based on examples.

第1図乃至第4図は本発明の第1実施例に凹するもので
第1図は11(断面図(第2図のB −B IIJi面
図)、第2図はff51図の八−A断面図、第3図、第
4図は構成部品のネ1視図を各々示している。
1 to 4 are concave portions of the first embodiment of the present invention, and FIG. 1 is a cross-sectional view (B-B IIJi plane view in FIG. A sectional view, FIGS. 3 and 4 each show a perspective view of the component parts.

第1実施例の構成について説明すると、ノスル本体8内
に“ζ軸線方向にニー1′ル1が往fJf再能に設りら
れる。12はボルダ−ボデー゛こりテーニングナソL 
I Iのねじ部にねし込まれ、ノズル本体8をはさんで
締め上げている。ニー1゛ル付勢スプリング10は第1
ビスlン2oに当接していて、連結棒9を介してニー1
′ル1の頂部を、@月圧カニヨるニー1′ルlの開ブ「
付勢力に抗しζ、ニー1′ル1の閉弁方向にfl勢する
(すJきをしている。
To explain the structure of the first embodiment, a needle 1 is provided in the nozzle main body 8 in the direction of the ζ axis so that the needle 1 can be reciprocated.
It is screwed into the threaded part of II and tightened by sandwiching the nozzle body 8. The knee 1 biasing spring 10 is the first
The knee 1 is in contact with the knee 2o through the connecting rod 9.
``Place the top of ``le 1'' on the lunar pressure knee 1'' with the opening of ``ru.
Resisting the biasing force, the needle 1' exerts a force in the direction of closing the valve.

第1ビス1ン20番、1、;1;ルダー;1!デー12
の流体の充満しζいるスブリンク室12cの壁と油密的
に摺動自在に嵌合されている。ボルダボデー12には、
噴射11ks 11を1バ給するための燻材孔12aと
漏洩燃料の通過をL′[容する簡洩孔12 ))が穿設
されζいる。
1st screw 1n 20, 1; 1; Ruder; 1! day 12
The sublink chamber 12c is slidably fitted in an oil-tight manner to the wall of the sublink chamber 12c filled with fluid. Boulder body 12 has
A smoking material hole 12a for supplying the injection 11ks 11 and a simple leak hole 12a for allowing leakage fuel to pass through are bored.

シリンダ3はボルダ−ポデー12とキ、トップ4にはさ
まれ、ポル117に、!−って締め上げられ一部いる。
Cylinder 3 is sandwiched between Boulder Pode 12 and Ki, Top 4, and Pol 117! -There are some people who are tightened up.

第2ピストン2は螺旋状の制御面2a各有し、シリ′ン
ダ3の2一つのシリンダ壁3c、3dと油密的に71,
1動おにび回動自在に嵌合され、シリンダ壁3cの溝に
はめこまれたストッパ22により、最下☆114位置を
規制されている。また第2ビス]ン2の上部にに12面
の平行な平坦n1−がlaJってあり、ギヤ24を圧入
しノミギヤ21;ルタ23と、第2ピストン2は上下方
向には慴動自在であるが、回動は相互に規定する機構と
なっている。
The second piston 2 has a helical control surface 2a, which is oil-tightly connected to the two cylinder walls 3c, 3d of the cylinder 3.
The lowermost position 114 is regulated by a stopper 22 fitted in a groove in the cylinder wall 3c, which is rotatably fitted during one movement. In addition, there is a parallel flat n1- with 12 sides on the upper part of the second piston 2, into which a gear 24 is press-fitted, a chisel gear 21; However, the rotation is a mutually defined mechanism.

シリンダ3には、油密室5に通じる制御孔3aが穿設さ
れ、ボルダ;」゛デー12に設けられた環状溝12cを
Aして、漏洩孔12bと連なっζいる。
A control hole 3a communicating with the oil-tight chamber 5 is bored in the cylinder 3, and the annular groove 12c provided in the boulder 12 is connected to the leak hole 12b.

)I′た、シリンダ3には径路の一部に逆止弁7を有′
」る吸入孔3bが穿設され、この吸入孔3b内では流体
は油密室5へ流入する方向の流れだれ力福′「されてい
る。また、この吸入孔313の油密室5側と異なるー・
端は環状溝12cを介して漏洩孔121〕と連通してい
る。
) In addition, the cylinder 3 has a check valve 7 in a part of its path.
A suction hole 3b is bored, and inside this suction hole 3b, the fluid flows in the direction of flowing into the oil-tight chamber 5. Also, this suction hole 313 is different from the oil-tight chamber 5 side.・
The end communicates with the leak hole 121 via the annular groove 12c.

・ト、トップ4には、油圧ビス1−ン15が油密的に摺
動自在に嵌合してあり、油圧ビス1ン15はスプリング
16によって図の左方向に付勢される。
- A hydraulic screw 15 is slidably fitted into the top 4 in an oil-tight manner, and the hydraulic screw 15 is urged leftward in the figure by a spring 16.

また、油−圧ピストン15はラックギヤ15aを有し、
油圧ビス1ン15が左右に作動ずれば、ギート24を介
してギヤツブ4の突起部4aと回動自在に嵌合されたギ
トホルダ23が回動し、m2ビス1ン2が回動Jる。
Further, the hydraulic piston 15 has a rack gear 15a,
When the hydraulic screw 15 moves left and right, the gear holder 23 rotatably fitted to the protrusion 4a of the gear 4 via the gear 24 rotates, and the m2 screw 12 rotates.

第2ピストン2aの」二&1J ’4;j: %プレノ
シ? フレー125を介し−Cスプリング6に、にすF
方にニーじル付勢スプリング10に比べ極めて弱い力で
イ」勢されζいる。
"2 & 1J '4;j of the second piston 2a: % prenoci? through the frame 125 to the -C spring 6;
The needle is urged toward the needle with an extremely weak force compared to the needle urging spring 10.

第1実施例の作動を説IJIIするに先立つ゛Cノスル
ニードル1のリフl量を制御する理由を述べる。
Before explaining the operation of the first embodiment, the reason for controlling the amount of reflux of the C nostle needle 1 will be described.

一般のスo ソトルノズル、ビス1ンノズル笠は第5図
に示」よ・)にニー1!ルリフト量1、を増大ずればす
るはど流甲i11数pとノズル断面積Fとの積で表わさ
れる有効ノズル面積μFけ増大し、ニーI′ルのストッ
パ位置Lmaxにて上限が決められる。
The general sootl nozzle and screw 1 nozzle cap are shown in Figure 5. If the lift amount 1 is increased, the effective nozzle area μF, which is expressed as the product of the number p of the flow instep i11 and the cross-sectional area F of the nozzle, increases, and the upper limit is determined by the stopper position Lmax of the knee I'.

周知のごとくポンプが11(速回転の時にはポンプから
ノズルへの送i1+¥−がイ【(い為にロー力」−昇は
おさえられ、ノズルの噴1・1圧1) 0は(I(りな
る。ノズル噴角1圧力が11(いと噴霧粒径は大きくな
り、貝1故力が弱くなる為、燃焼には悪影響を及tit
ず。低速回転11!fにノスルニードルリフI−量の最
大値L m a xを小さく」るごとにより、犬5図か
られかる杯に有効ノズル面積の最大値1IFIIlax
もまた小さくなる。
As is well known, the pump is 11 (when rotating at high speed, the feed from the pump to the nozzle i1 + ¥ - is low, so the increase is suppressed, and the nozzle jet 1 1 pressure 1) 0 is (I ( If the nozzle spray angle 1 pressure is 11 (11), the spray particle size will become large and the shell 1 force will be weakened, which will have a negative effect on combustion.
figure. Low speed rotation 11! By decreasing the maximum value Lmax of the nostle needle lift I-amount to f, the maximum value of the effective nozzle area 1IFIIlax can be obtained from the dog 5 figure.
also becomes smaller.

μFを小さくすることは流出11をしcすることに相当
する。ポンプ回転数が一定であれば、ポンプの送油率は
変化しない。配管内に流入′づる燃オ゛1が一定で流出
し1をしぼることにJ、す、管内圧力は上昇するため噴
JIJ圧力J’oは」二竹する。
Reducing μF corresponds to reducing the outflow 11. If the pump rotation speed is constant, the oil delivery rate of the pump does not change. Since the fuel 1 that flows into the pipe flows out at a constant rate and reduces the amount of fuel 1, the pressure inside the pipe increases, so the injection pressure J'o increases.

poが人となる為、rli!管内の浦の1¥積チ1)1
性率等の影響で配管内への燃料流入量の一部が、配管の
11・15張、燃f1の密度1屓にとられ、その為噴射
IQし1多少’eK少する。Qの減少分を図示しないポ
ンプのアクセルし・バーで補充することにより、同一噴
射量で噴射期間を延ばすことができる。
In order for po to become a person, rli! Ura's 1 yen load in the jurisdiction 1) 1
Due to the influence of the fuel efficiency, a part of the amount of fuel flowing into the pipe is taken by the 11.15 tension of the pipe and the density of the fuel f1, which causes the injection IQ to be slightly less by 1'eK. By replenishing the decrease in Q using an accelerator bar (not shown) of the pump, the injection period can be extended with the same injection amount.

低速1川転域で噴射期間を延ばすことは燃費の向上、騒
音(It減の効果をもたらJ0従って、ノズルニー1′
ルリフト量をit制御することに、1−リ、噴霧粒径、
貫徹力、噴射期間の影響にJる燃焼改善、また!界音低
減等の機関性能の向」−を達)戊できることとなる。
Extending the injection period in the low speed one-way transition region improves fuel efficiency and reduces noise (It).
In order to control the lift amount, 1-li, spray particle size,
Improved combustion due to the influence of penetration power and injection period! It will be possible to achieve improvements in engine performance such as field noise reduction.

次に第1実施例の作動を第1図乃至第4図により説明す
る。
Next, the operation of the first embodiment will be explained with reference to FIGS. 1 to 4.

図示しない燃t1噴射、1!ンブより圧送された高圧燃
1゛1は、図示し7ない噴射パ、イブを通過し、燃!1
孔12、+を通過した後ノズルニードル1を図の上刃に
イスj勢4−る。
Fuel t1 injection (not shown), 1! The high-pressure fuel 1'1 that is pressure-fed from the tube passes through an injection pipe and an eve (not shown in the figure), and becomes a fuel! 1
After passing through the holes 12, +, the nozzle needle 1 is placed in the chair 4- on the upper blade in the figure.

燃料圧P oがF方に(=1勢し°ζいるニードル(=
J勢ススプリング10レノ1荷重に対応する七ノド圧に
達4ると、ニー1ニル1、連結枠9、第1ピストン20
は上方・\持ら1.げられ、ノズル本体8の先端に設り
られた噴孔より燃1′1け燃焼室に噴射される。第1ビ
ス1ン2()が」二胃′すると、スプリング室21に充
満し、た流体4J、第1ビス1−ン20と油圧的に連結
した第2ビス1ン2を上昇さ−Uる。第2ビス1ン2が
−1一方に持し上げられると油密室5内に充満している
ハ料は制御孔3a、環状溝12(7、漏洩孔L2bを通
過し、図示しないポンプもしくはタンクに戻される。燃
料圧が開弁圧に比べさほど大きクツ、「い時には、ニー
ドル1のリフト(よ燃オ」圧に、1、る上方・・の(−
J 9力とニー1′ル(′−J勢スジスプリング10る
下方・\の付勢力が釣り合った位置で停止するが、さら
に燃料圧が−L昇し、ニー1′ルlが1↓し上げられ第
1ビス1ン20が持ち」−げられた’R合、第2ピスト
ン2はさらに」ニガし、制御面2aがついには制fll
jl TL 3 aを塞ぐ位置に到達し、油密室5内の
流体は逃げ路を失って油圧しレノク状態となり、第2ビ
ス1ン2の上方移動はこの地点て規制され、スプリング
室21内もまた油圧11ツク状態となり第1ビス1ン2
0は停止し、ここまでのニー1!ル1のリフト量が最大
リフ1量となる。
Needle (=
When the pressure reaches seven strokes corresponding to the load of the spring 10, the knee 1, the connecting frame 9, and the first piston 20
1. The fuel 1'1 is injected into the combustion chamber from a nozzle hole provided at the tip of the nozzle body 8. When the first screw 1-2 () collapses, the spring chamber 21 is filled with fluid 4J, which causes the second screw 1-2 (2), which is hydraulically connected to the first screw 1-20, to rise. Ru. When the second screw 1 (2) is lifted to one side, the material filling the oil-tight chamber 5 passes through the control hole 3a, the annular groove 12 (7), and the leakage hole L2b, and passes through the pump or tank (not shown). When the fuel pressure is not much larger than the valve opening pressure, the lift pressure of needle 1 will be increased by 1.
The engine stops at the position where the J9 force and the downward biasing force of the knee 1'le ('-J force spring 10) are balanced, but the fuel pressure further increases by -L and the knee 1'le l becomes 1↓. When the first screw 1 is raised and the first screw 20 is raised, the second piston 2 becomes even more difficult, and the control surface 2a is finally stopped.
The fluid in the oil-tight chamber 5 loses its escape route and becomes hydraulically closed, and the upward movement of the second screw 1 and 2 is restricted at this point, and the fluid in the spring chamber 21 also closes. Also, the oil pressure becomes 11 and the 1st screw 1st screw 2nd
0 stops, knee 1 so far! The lift amount of Le 1 becomes the maximum rif 1 amount.

次に燃1′+1圧Poが降Fし、燃オ゛1圧によるニー
ドルlの上方への付勢力が41−T′」ると、連結枠9
、ニードル1と共に第1ビス1ン20及び第1ピストン
と油圧3!l!枯し、ている第2ビス1ン2は降下しは
しめ、油密室5内の体積増加分だりの楚冒゛1が漏洩孔
12b、環状溝12C1逆IL弁7、吸入孔3bの経路
をへ′C1あるいは漏洩孔12b、環状溝12C2制御
孔3aをへて油田室5・\1市充される。
Next, the fuel 1'+1 pressure Po decreases F, and the upward biasing force of the needle l due to the fuel 1 pressure becomes 41-T'.
, the needle 1 together with the first screw 1 20 and the first piston and the hydraulic pressure 3! l! The dry second screw 12 continues to fall, and the increased volume inside the oil-tight chamber 5 causes the leakage hole 12b, the annular groove 12C1, the reverse IL valve 7, and the suction hole 3b. 'C1 or the leak hole 12b, the annular groove 12C2 and the control hole 3a, the oil field chamber 5.\1 is charged.

さらに燃111E P oが低下してゆくと、ついには
、ノズルニードル1が最下Oi:^まで降下し、ノズル
本体8の先端の噴孔を塞ぐことにより噴n1が終了゛4
る。
As the fuel 111E Po further decreases, the nozzle needle 1 finally descends to the lowest position Oi:^, and the injection hole at the tip of the nozzle body 8 is closed, thereby ending the injection n1.
Ru.

以上の噴射行程が繰り返されるなかで、キトノブ4の左
端・\供給される制御油圧を上昇さ−υた場合、圧力室
14内の流体圧による浦ビス1ン15・\の右方向への
付勢力が増大し油圧ビスlン15は圧力室14内の流体
圧による右方付勢と、スプリング16による左方r=J
 ff1L力の釣り合・)位置まで右方にスラ、イドす
る。この時、ラソクギ1″15aは、ギヤ24、ギャポ
ルク23、を介して第2ピストン2を上から見て時81
回転方向に回動さ−Uる。
While the above injection stroke is repeated, if the control oil pressure supplied to the left end of the kit knob 4 is increased -υ, the fluid pressure in the pressure chamber 14 causes the screw 1 15 to move in the right direction. As the force increases, the hydraulic screw 15 is biased to the right by the fluid pressure in the pressure chamber 14 and to the left by the spring 16.
ff1L Balance of force・) Slide to the right. At this time, the rasokugi 1'' 15a is inserted into the second piston 2 through the gear 24 and gear 23 at a time of 81 when viewed from above.
Rotate in the direction of rotation.

第2ピストン2が回動Jると、制御面2aが岬旋形状で
あるため、制御孔3aと制御面2aとのt[]対的距ト
j11は減少する。
When the second piston 2 rotates J, the relative distance t[] between the control hole 3a and the control surface 2a decreases because the control surface 2a has a cape-shaped spiral shape.

第2ビス1ン2は、制御面2aが制御孔3aを塞ぐ位置
に′Cリソ1が規制される為、この時の第2ビス1ン2
の最大リフト量に対応する第1ピストン20の最大リフ
1量つまりニードルlの最大リフl−m l、1101
×はjす前より小さくなる。第5図よりLmaxが小さ
くなると尼人有効ノスル面積1t Fmaxも小さくな
り、その絞り9.IJ果で燃1′′1人口の燃料If 
P o、つまりは噴射圧力は増大する。
The second screw 1-2 at this time is regulated because the 'C litho 1 is restricted to the position where the control surface 2a closes the control hole 3a.
The maximum lift amount of the first piston 20 corresponding to the maximum lift amount of the needle l, that is, the maximum lift l-m l, 1101
× becomes smaller than before j. From FIG. 5, when Lmax becomes smaller, the effective nostle area 1t Fmax also becomes smaller, and the aperture 9. If fuel for 1''1 population is burned in IJ fruit
P o, that is, the injection pressure increases.

制御圧力P1を小さくすると、バルブリング3が上昇し
、ニー1′ル1の最大リフI・il l 1.maには
人となり、最大有効ノズル面積μPmaxも人となる。
When the control pressure P1 is reduced, the valve ring 3 rises, and the maximum lift of the needle 1'Iil l1. ma is a person, and the maximum effective nozzle area μPmax is also a person.

この油圧連結機構の利点は、以下の1)および2)の点
である。
The advantages of this hydraulic coupling mechanism are the following points 1) and 2).

■)、一般にニー1′ルリフl■+J: ii’、?少
であり、その微少量を精度よ< #nlかく制御゛する
こと4−L IT]¥11であるが、第1ピストン20
め断面積よりも第2ピストン2の断面積を小さくするこ
とにより、第2ピストン2のリフト量を増幅することが
できる。
■), generally knee 1' riff l ■ + J: ii', ? The minute amount is controlled in this way with precision.It costs ¥11, but the first piston 20
By making the cross-sectional area of the second piston 2 smaller than the cross-sectional area of the second piston 2, the amount of lift of the second piston 2 can be amplified.

つまり、スプリング室21内の流体の体積弾性率に、す
る体積変化は微少であるため、(第1ビスlン20の断
面積)×(第1ビス1ン20の移動W)−(第2ビス1
ン2の断面f1′()X(第2ビス1ン2の移動量)と
みな−Uる。υ(って第1ビス1ン20の移動量を第2
ビスlン2の移動子11に増幅し、第2ビス1ン2を細
カベ制御することにより第1ピストン20を細かく精度
良< ;11制御することができる。
In other words, since the volumetric change in the bulk modulus of the fluid in the spring chamber 21 is minute, (cross-sectional area of the first screw 20) x (movement W of the first screw 20) - (second Screw 1
It is assumed that the cross section of the pin 2 is f1'()X (the amount of movement of the second screw 1 and the pin 2). υ (means the amount of movement of the first screw
By amplifying the moving element 11 of the screw 1 and controlling the second screw 1 2 in a fine area, the first piston 20 can be controlled finely and accurately.

2)、第6図に示」様なmlピストン20と第2ピスト
ン2とがt!++ u 20により機械的に連結しζい
ろ構造のものに比ベビス1ン2の回動抵抗を極め′C小
さくす゛ることができる。つまり、第6図では浦V+i
室5がill 1.E l:+ツク状懇の時、第2ビス
1ン2の下醪、1面にI!viめて大きな荷重がかかり
、その面の摩擦抵抗で回動抵抗が極めて大きくなるのに
比べ、r(L 1図の1・nな油圧連結構造゛Cは、こ
の様な状態を回避することができる。
2) The ml piston 20 and the second piston 2 as shown in FIG. ++ U 20 allows the rotational resistance of Bevis 1 and 2 to be extremely small compared to those of the ζ-color structure which are mechanically connected. In other words, in Figure 6, Ura V+i
Room 5 is ill 1. E l: + When the tsuku-like combination is used, the lower mash of the 2nd biscuit 1 and 2, I! When a large load is applied, the rotational resistance becomes extremely large due to the frictional resistance of that surface.The 1-n hydraulic connection structure C in Figure 1 avoids this situation. I can do it.

第1実施例でc:1制御孔3aζJ固定で制御面2aを
有する第2ピストン2を回動制御したが、rll 2ピ
ストン2(J上下運動をマjな・)だりで回動がt、r
L制されていて11+制御孔3aを持つ制御シリンダ3
0を回動制御する本発明の!’l’l 2実施例を第7
図に示す。
In the first embodiment, the rotation of the second piston 2 having the control surface 2a was controlled by fixing the c:1 control hole 3aζJ, but the rotation was t, r
Control cylinder 3 that is L-controlled and has 11+ control holes 3a
The present invention that controls the rotation of 0! 'l'l 2 examples 7th
As shown in the figure.

第7図において(nl +;l第2ビス1ン2の下端部
に番、t、回動を親制御°るための平行な対向面21)
が設置Jられていζ、シリンダ3F端の突起部に上り回
動が規制されている。
In Fig. 7, (nl +; l numbered at the lower end of the second screw 1, t, parallel opposing surfaces 21 for controlling the rotation)
is installed on the protrusion at the end of the cylinder 3F, and its rotation is restricted.

第8し1に回動制御ではなく油圧1) +を:11す御
してばね6”のばね力とつり合わlることにより制御7
L3aをスライド制御′橿る本発明の第3実施例を示す
8th, instead of controlling the rotation, the hydraulic pressure 1) is controlled by 11 to balance it with the spring force of the spring 6".
A third embodiment of the present invention is shown in which L3a is controlled by sliding.

要目、制御孔3aと制御面2aの相対距ff1ljを変
えることのできる機構であればどの様なものでもかまわ
ない。
In short, any mechanism may be used as long as it can change the relative distance ff1lj between the control hole 3a and the control surface 2a.

また、第1実施例、第2実施例では油圧でラックギヤを
移動さ・Uる方式をとったが、例えばDCで−ク、ある
いはステップモータ等でウメーノ、ギアを回動さ・Uて
もよい。
In addition, in the first and second embodiments, the rack gear was moved/rotated by hydraulic pressure, but the gear may also be rotated/rotated by, for example, a DC or a step motor. .

要は、第2ビスI・ン2あるいは、制御シリンダ30を
回動制御できるものであれば何でもよい。
In short, any device that can control the rotation of the second screw I/N 2 or the control cylinder 30 may be used.

また第8図に示す第3実施例の打な構造では第9図に示
すill 4実施例の要部It(断面図の、1.・)に
L・バー41を用い°Cスリーブを制御してもよい。
Furthermore, in the vertical structure of the third embodiment shown in Fig. 8, an L-bar 41 is used in the main part It (1.. in the cross-sectional view) of the ill 4 embodiment shown in Fig. 9 to control the °C sleeve. It's okay.

また、第1実施(タリ、第2実施例の制御面2aは11
0図(blに示すよ・)に螺旋形1ノ:、′Cあるが、
第10図のta+の#:nに中に顛″i′1をっ+)だ
面でもよいし、圧力バランスを考慮して第10図(cl
、(dlの様に軸対称のものとし°ζもよい。
In addition, the control surface 2a of the first embodiment (Tari, second embodiment) is 11
There is a spiral shape 1:,'C in figure 0 (shown in BL),
#:n of ta+ in FIG.
, (°ζ may also be axially symmetrical like dl.

以J−n’を細に説明したように本発明は、ニー1′ル
lをled tl噴n1几821が閉じる方向に(=J
勢するニー1′ルイ=1勢スプリング10と、ニー1′
ルlとi11械的に連結された第1ビス1ン20と、該
第1ビスI・ン20に油圧的に連結され制御面2aを有
した第2ピストン2と、前記制御面2aに隣接する油密
室5と、該油密室5に開11する制御孔3aと、前記油
密室5への流入のみをW「゛4逆止弁7とを備え、前記
制御面2aと制御孔3aとの間の相対的な距Fillを
@整することにより前記ニー1′ル1の最大リフ1量を
制御するよ・)にしたので、制御に要する力を軽減′す
ることができると共に広い運転条f′1範聞にわたって
1ri密に制御できるとい・)効果がある。
As described in detail below, the present invention is directed to the direction in which the LED tl injection n1 821 closes (=J
Knee 1' Louis = 1 force spring 10 and knee 1'
a first screw 1 20 mechanically connected to the first screw 1 and 11; a second piston 2 hydraulically connected to the first screw 1 and having a control surface 2a; and a second piston 2 adjacent to the control surface 2a. An oil-tight chamber 5, a control hole 3a opening 11 into the oil-tight chamber 5, and a check valve 7 that prevents only the inflow into the oil-tight chamber 5, and a control surface 2a and a control hole 3a. By adjusting the relative distance Fill between the needles, the maximum lift amount of the needle 1 is controlled.The force required for control can be reduced and the operating conditions can be widened. It is effective to be able to precisely control 1ri over 1 range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図1J本発明の第1実施例に凹するもの
で第11閃(−1績断面し1(第2図の13−B断面1
ツI)、ff!2図番、■第1図のΔ−八へ面図、第3
図、第4図は構成部品の第1視IU+を各々示し′(い
る。 第5図は−・般のスマl y lルノズル、ピン1ルノ
スル等の特性口、第6図は本発明と比較のために用いた
燃料噴射ノズルのit(断面図である。 第7図(al乃至(di 4;1本発明の第2実施例に
凹するもので、(a) If tic断面図(ill1
図の13L3断面図)、fll) +;j fll1図
のA−A 11面図、(C1および(C1)は構成部品
の斜視図を各り示している。 第8図は本発明のi’ls 3実施例の1((断面図、
第9図は本発明の第4実施例の要部断面図、第1O図0
11乃至(C1)は本発明の第2ピストン2の制御面2
aの種々の変形例に関し、その正面図と側面図とを各々
について示したものである。 ■・・・ニードル、20・・・第1ビス1ン、2・・・
第2ビス1ン、2a・・・制御面、3a・・・制御孔、
5・・・油密室、7・・・逆1L弁、8・・・ノスル本
体、8a・・・燃オ゛1噴躬孔、10・・・ニードル付
勢スプリング、12a・・・燃1゛1孔、12b・・・
漏洩孔、21・・・スプリング室。 代理人ブr理土 岡 部   降 第 1  [’に+ 1〜2図 第3”         iり4 I、1・jへ 5[
4 ニードルリフト−t L 第6E4 山 7 図 (2L) 第 7 図 (C) 第 8121
Fig. 1 to Fig. 4 1J The first embodiment of the present invention has a concave section 11 (-1 cross section 1 (13-B section 1 in Fig. 2)
Tsu I), ff! 2 drawing number, ■ Δ-8 side view of Fig. 1, No. 3
Figure 4 shows the first view IU+ of the component parts. It is a cross-sectional view of the fuel injection nozzle used for the second embodiment of the present invention.
13L3 sectional view of the figure), fll) +; ls 3 Example 1 ((cross section,
FIG. 9 is a sectional view of the main part of the fourth embodiment of the present invention, FIG.
11 to (C1) are control surfaces 2 of the second piston 2 of the present invention
Fig. 3 shows a front view and a side view of various modifications of Fig. a. ■...Needle, 20...1st screw 1, 2...
2nd screw 1, 2a... control surface, 3a... control hole,
5... Oil tight chamber, 7... Reverse 1L valve, 8... Nozzle body, 8a... Fuel oil 1 injection hole, 10... Needle biasing spring, 12a... Fuel oil 1 1 hole, 12b...
Leak hole, 21...spring chamber. Agent Burido Okabe No. 1 [' + 1-2 Figures 3''i 4 I, 1 and j 5 [
4 Needle lift-t L No. 6E4 Mountain 7 Fig. (2L) Fig. 7 (C) No. 8121

Claims (1)

【特許請求の範囲】[Claims] 燃料噴射孔を有するノズル本体の中心軸方向にニー1′
ルを往復慴動さU“ζ前記燃料噴射孔を開閉して燃料噴
射を行な・)りr\判噴射ノズルにおいて、前記ニード
ルを燃1゛1噴1・1孔が閉しる方向に付勢するニー1
″ル(=J勢ススプリング、前記ニードルと機械的に連
結されたm1ビス1ンと、該ffl 1ビス1ンに油)
F的に連結され制御面を有した第2ビス1ンと、前記制
御面にF/!?接]る油密室と、該油密室に開1目゛る
制御孔と、前記油密室・\の流入ののを許′4逆止弁と
を備え、前記制御面と制御孔との間の相対的な距Pi1
1を調整することにより前記ニー1′ルの最大リフl量
を制御することを特徴とする燃1″1噴射ノズル。
Knee 1' in the direction of the central axis of the nozzle body having the fuel injection hole
Move the needle back and forth to open and close the fuel injection hole to perform fuel injection.In the \ size injection nozzle, move the needle in the direction that closes the fuel injection hole. Biasing knee 1
(= J force spring, m1 screw 1 which is mechanically connected to the needle, and oil on the ffl 1 screw 1)
A second screw 1 is connected in an F manner and has a control surface, and an F/! ? an oil-tight chamber in contact with the oil-tight chamber, a control hole opening into the oil-tight chamber, and a check valve for allowing the inflow of the oil-tight chamber; Relative distance Pi1
1. A fuel 1''1 injection nozzle, characterized in that the maximum reflux amount of the needle 1' is controlled by adjusting the needle 1'.
JP17344182A 1982-10-01 1982-10-01 Fuel injection nozzle Granted JPS5963363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17344182A JPS5963363A (en) 1982-10-01 1982-10-01 Fuel injection nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17344182A JPS5963363A (en) 1982-10-01 1982-10-01 Fuel injection nozzle

Publications (2)

Publication Number Publication Date
JPS5963363A true JPS5963363A (en) 1984-04-11
JPH0477149B2 JPH0477149B2 (en) 1992-12-07

Family

ID=15960524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17344182A Granted JPS5963363A (en) 1982-10-01 1982-10-01 Fuel injection nozzle

Country Status (1)

Country Link
JP (1) JPS5963363A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4857018A (en) * 1971-11-17 1973-08-10
JPS53131324A (en) * 1977-03-09 1978-11-16 Bosch Gmbh Robert Fuel injection nozzle for internal combustion engine with adjustable opening stroke of valve needle
JPS57110772A (en) * 1980-12-27 1982-07-09 Nissan Motor Co Ltd Fuel injection supplying device for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4857018A (en) * 1971-11-17 1973-08-10
JPS53131324A (en) * 1977-03-09 1978-11-16 Bosch Gmbh Robert Fuel injection nozzle for internal combustion engine with adjustable opening stroke of valve needle
JPS57110772A (en) * 1980-12-27 1982-07-09 Nissan Motor Co Ltd Fuel injection supplying device for internal combustion engine

Also Published As

Publication number Publication date
JPH0477149B2 (en) 1992-12-07

Similar Documents

Publication Publication Date Title
CN1076790C (en) Mixing type hydraulic electric controlled fuel injector
DE602005000278T2 (en) Common rail injector
JPH07189849A (en) Fuel injector for internal combustion engine
JPS6073047A (en) Electromagnetic unit fuel injector
DE102008045741A1 (en) Low noise fuel injection pump
US9228550B2 (en) Common rail injector with regulated pressure chamber
JP5180959B2 (en) Fuel injection system
DE102012012512A1 (en) Fuel injector with reduced pressure in the armature cavity
US10107247B2 (en) Method of suppressing cavitation in a fuel injector
US4317541A (en) Fuel injector-pump unit with hydraulic needle fuel injector
JP2005531715A (en) Device for needle stroke damping in a pressure-controlled fuel injector.
JP4952737B2 (en) Common rail injector
JPS5963363A (en) Fuel injection nozzle
DE102006000148A1 (en) Fuel injection valve for common-rail injection system of vehicle`s diesel internal combustion engine, has pressure transmission fluid passage whose cross sectional surface is gradually reduced in direction to rear surface of nozzle needle
US2397136A (en) Fuel injection apparatus
US1860865A (en) Combination fuel pump and fuel injector for diesel engines
JPS5963364A (en) Fuel injection nozzle
JPH05149210A (en) Fuel injection valve of internal combustion engine
JP3994893B2 (en) Fuel injection valve
DE598094C (en) Multi-piston fuel pump for multi-cylinder internal combustion engines
DE102004012183A1 (en) Fuel feed pump for internal combustion engines
US20030178001A1 (en) Noise-optimized device for injecting fuel
JPS5960065A (en) Fuel injection nozzle
CH214339A (en) Fuel injection device in internal combustion engines.
DE688971C (en) Step valve piston for pressure generator