JPS5963257A - Deceleration sensitive type hydraulic pressure control valve - Google Patents

Deceleration sensitive type hydraulic pressure control valve

Info

Publication number
JPS5963257A
JPS5963257A JP17390682A JP17390682A JPS5963257A JP S5963257 A JPS5963257 A JP S5963257A JP 17390682 A JP17390682 A JP 17390682A JP 17390682 A JP17390682 A JP 17390682A JP S5963257 A JPS5963257 A JP S5963257A
Authority
JP
Japan
Prior art keywords
pressure
hydraulic pressure
valve
deceleration
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17390682A
Other languages
Japanese (ja)
Inventor
Hitoshi Kubota
仁 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP17390682A priority Critical patent/JPS5963257A/en
Publication of JPS5963257A publication Critical patent/JPS5963257A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/26Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Hydraulic Control Valves For Brake Systems (AREA)

Abstract

PURPOSE:To enable to correspond sealed-in pressure to vehicle weight at all times without employing orifice or dammy stroke by a structure wherein a differential pressure valve is provided between a hydraulic pressure confining chamber and a deceleration sensitive valve so as to lower the confined pressure by a certain fixed value. CONSTITUTION:The brake pressure of a rear wheel 37 is controlled by a control valve CV, the operating point of which is determined by a control spring 22 and the pressure in the confining chamber 19 to push the control spring 22. The brake pressure of a rear wheel 38 interlocks with that of the rear wheel 37 by means of an interlocking valve JV. The differential pressure valve 27 is provided between the sealed-in chamber 19 and the deceleration sensitive valve GV and serves to lower the confining pressure than the pressure at the inlet 7 by the certain fixed value at all times. Accordingly, the confined pressure rises correspondent to the deceleration of a vehicle and precise hydraulically controlling is resulted. The controlling is more precise than the controlling employing orifice or dammy stroke, however heavy the vehicle weighs.

Description

【発明の詳細な説明】 本発明は自動車の液圧ブレーキ装置等に用いられる減速
度感知型液圧制御弁に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a deceleration sensing type hydraulic pressure control valve used in a hydraulic brake system of an automobile or the like.

自動車の液圧ブレーキ装量は、ブレーキペダルの踏込み
により発生するマスクシリンダ液圧で前後輪を同時に制
動するが、この際後輪が前輪より先、にロックすると自
動車はスキッドと称せらnる危険な挙動を行なう。そこ
で、制動時は車体荷重が前方に片寄り後輪が前輪よりロ
ックし易くなる事実も考慮し、後輪ブレーキ系にはマス
クシリンダ液圧の上昇を制限しつつ後輪に供給する液圧
制御弁を挿入する。
Hydraulic brakes in automobiles simultaneously brake the front and rear wheels using the mask cylinder hydraulic pressure generated when the brake pedal is depressed, but if the rear wheels lock up before the front wheels, there is a danger that the car will skid. behavior. Therefore, in consideration of the fact that during braking, the vehicle load is biased toward the front and the rear wheels are more likely to lock than the front wheels, the rear wheel brake system controls the hydraulic pressure supplied to the rear wheels while limiting the increase in mask cylinder hydraulic pressure. Insert the valve.

この種液圧制御弁としては、ばねに抗してマスタシリン
ダ液圧(人口液圧)に応動し、該静圧が一定値以上にな
る時、これの上昇を制限しつつ後輪ブレーキ液圧(出口
液圧)となすプロボーショニングバルブとか、リミッテ
ィングバルブ等のコントロールバルブが知られている。
This type of hydraulic pressure control valve responds to the master cylinder hydraulic pressure (artificial hydraulic pressure) against a spring, and when the static pressure exceeds a certain value, it increases the rear wheel brake hydraulic pressure while limiting the increase in static pressure. Control valves such as provocation valves and limiting valves that control (outlet fluid pressure) are known.

しかし、いずれのコントロールバルブも、後輪ブレーキ
液圧の上昇を制限し始める上記一定のマスクシリンダ液
圧値(臨界液圧)が不変であり、前後輪ブレーキ力配分
特性は一定である。しかるに、071後輪が同時にロッ
クするような理想の677 tk輪ブレーキカ配分特性
は、車両重量の増加につれ後輪ブレーキ力が増大するよ
う変化し、従って上記臨界液圧は車面重量の増加につれ
上昇させる必要がある。
However, in both control valves, the constant mask cylinder hydraulic pressure value (critical hydraulic pressure) that starts to limit the increase in rear wheel brake hydraulic pressure remains unchanged, and the front and rear wheel brake force distribution characteristics are constant. However, the ideal 677TK wheel brake force distribution characteristic, in which the 071 rear wheels lock simultaneously, changes so that the rear wheel brake force increases as the vehicle weight increases, and therefore the critical hydraulic pressure increases as the vehicle weight increases. It is necessary to do so.

このため、−室以上の車両減速度で閉じてこの一定減速
度を発生した時のマスクシリンダIIVEE(車両重量
の増加につれ高くなる)を封じ込め室に封じ込めること
により、この封じ込め圧(車両重量)に応じた量だけ前
記コントロールバルブのばねを圧縮して、このばねのば
ね力で決まる前記臨界液圧を車両重量の増加につれ高め
る減速間感知パルプをフントロールバルブに寸加した減
速度感知型液圧制出1弁が実用されている。
Therefore, by sealing the mask cylinder IIVEE (which increases as the vehicle weight increases) in a containment chamber when it closes at a vehicle deceleration greater than or equal to the - chamber and generates this constant deceleration, this containment pressure (vehicle weight) can be reduced. Deceleration sensing type hydraulic control in which deceleration sensing pulp is added to the hunt roll valve to compress the spring of the control valve by a corresponding amount and increase the critical hydraulic pressure determined by the spring force of the spring as the weight of the vehicle increases. One valve is in practical use.

この減速度感知型液圧制御弁は、前後輪ブレーキ力(前
後輪ブレーキ液圧)の配分特性が空車時において第2図
にa−b−c(臨界液圧”81 )で示す如くになり、
積車状態で同図中a−b’−c’(臨界液圧P8.)に
より示す如くになって、いかなる車両重量のもとでも前
後輪ブレーキ力配分特性が理想の特性に近似するよう後
輪ブレーキ液圧を上昇制限することを狙ったものである
This deceleration sensing type hydraulic pressure control valve has a distribution characteristic of front and rear wheel brake force (front and rear wheel brake fluid pressure) as shown by a-b-c (critical hydraulic pressure "81") in Fig. 2 when the vehicle is empty. ,
When the vehicle is loaded, the brake force distribution characteristics between the front and rear wheels approximate the ideal characteristics under any vehicle weight, as shown by a-b'-c' (critical hydraulic pressure P8.) in the figure. The aim is to limit the increase in wheel brake fluid pressure.

しかしマスクシリンダ液圧の上昇に対し車両減速度の発
生は、第8図にαで示すマスクシリンダ液圧の昇圧速度
の場合について示すと、同図中βで示すように連れる。
However, the occurrence of vehicle deceleration with respect to the increase in mask cylinder hydraulic pressure is shown in FIG. 8 for the case where the mask cylinder hydraulic pressure increases at a rate indicated by α, as indicated by β in the figure.

これがため、減速度感知バルブがマスクシリンダ液圧を
そのままコントロールバルブの封じ込め室に供給するも
のである場合、車両滅連瞳が前記一定値に達して減速度
感知バルブが閉じることで封じ込め室に封じ込められる
封じ込め圧が車両重量に対応せず高くなり過ぎる。
Therefore, if the deceleration sensing valve supplies the mask cylinder hydraulic pressure as it is to the containment chamber of the control valve, the deceleration sensing valve closes when the vehicle's deceleration pupil reaches the above-mentioned constant value and is contained in the containment chamber. The confinement pressure applied becomes too high and does not correspond to the weight of the vehicle.

この伸向け、車両重量は軽い空車状態での急制動時、マ
スクシリンダ液圧の上昇に対する車両減速度の発生遅れ
が一層大きくなることから、特に顕著となり、この時本
来第2図に示す如く臨界液圧がP8□となってa−b−
cの特性とならなければならない処、スプリットポイン
トがbからdへと上昇し、a−d−eの特性へとずれる
Due to this expansion, the vehicle weight becomes particularly noticeable when braking suddenly with a light empty vehicle, as the delay in the onset of vehicle deceleration in response to the increase in mask cylinder hydraulic pressure becomes even greater, and at this time the criticality is reached as shown in Figure 2. The fluid pressure becomes P8□ and a-b-
When the characteristic should be c, the split point increases from b to d, shifting to the characteristic ad.

これを防止するため、封じ込め室へのマスクシリンダ液
圧通路中にオリフィスを設けると共に、コントロールバ
ルブのばねを圧縮するピストンの有効ス)ローフ手前側
にダミーストロークを設定して、封じ込め室への供給圧
を第8図にγで示す如くマスタシリンダ液圧αに対し時
間遅れを持つて上昇させ、第2図中a−b−cの特性が
得られるようにする工夫がされている。
To prevent this, an orifice is installed in the mask cylinder hydraulic passage to the containment chamber, and a dummy stroke is set on the front side of the loaf of the piston that compresses the spring of the control valve to prevent the supply to the containment chamber. The pressure is increased with a time delay relative to the master cylinder hydraulic pressure α, as shown by γ in FIG. 8, so that the characteristics a-b-c in FIG. 2 can be obtained.

しかし、車両重量が重い積車状態での制動時は、急制動
時でもマスタシリンダ液圧の上昇に対する車両減速度の
発生遅れが、空車状態での制動時程大きくないため、前
記オリフィス及びダミーストロークが災いして封じ込め
圧が低くなり週ぎ、これ又車両重量に対応し得なくなる
。この場合、本来第2図に示す如く臨界液圧がPs2と
なってa−bl −C/の特性とならなければならない
処、スプリットポイントb′がfへと低下し、a−f−
gの特性へとずnてしまう。
However, when braking with a heavy vehicle loaded, the delay in the onset of vehicle deceleration relative to the rise in master cylinder hydraulic pressure is not as great as when braking with an empty vehicle, even during sudden braking, so the orifice and dummy stroke Unfortunately, the containment pressure became low and could no longer cope with the weight of the vehicle. In this case, as shown in FIG. 2, the critical fluid pressure should be Ps2 and the characteristic should be a-bl-C/, but the split point b' drops to f and a-f-
This leads to the characteristics of g.

本発明は封じ込め室に向う入口液圧(マスクシリンダ液
圧)通路中に、入口液圧より常に一定値だけ低くなるよ
う開開した液圧を封じ込め室に供給する差圧弁を挿入し
て従来のオリアイス及びダミーストロークに代えれば、
該差圧弁が入口液圧より車両減速度発生遅れ相当の時間
だけ遅れて生ずる液圧を封じ込め室に向かわせることが
できるため、封じ込め圧を常に車両重量に対応させ得て
、上述の問題を解決できるとの観点から、この着想を具
体化した減速度感知型液圧制御弁をここに提案するもの
である。
In the present invention, a differential pressure valve is inserted into the inlet hydraulic pressure (mask cylinder hydraulic pressure) passage toward the containment chamber to supply the containment chamber with a hydraulic pressure that opens and opens so that it is always lower than the inlet hydraulic pressure by a certain value. If you replace it with Oriais and dummy stroke,
Since the differential pressure valve can direct the hydraulic pressure generated after the inlet hydraulic pressure by a time equivalent to the delay in vehicle deceleration to the containment chamber, the containment pressure can always be made to correspond to the vehicle weight, which solves the above problem. From the viewpoint that it is possible, we hereby propose a deceleration sensing type hydraulic pressure control valve that embodies this idea.

以下、図示の実施例により本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to illustrated embodiments.

第1図は2系統配管用にflllff、した本発明減速
度感知型液圧制御弁の一実施例で、弁本体1内にコント
ロールバルブOvと、連動バルブJVと、減速度感知バ
ルブGVとを設けてII#成する。
Fig. 1 shows an embodiment of the deceleration sensing type hydraulic control valve of the present invention, which is designed for two-system piping. Establish II#.

弁本体lは2@の部分を合体させて構成し、その内部に
上記バルブを収納するために小径の孔iaと、その左側
における大径孔1b、10と、右側における大径孔1d
と、これら孔に平行な孔1eと、この孔に連なる孔1f
とを形成する。孔la内にリテーナ2による案内下でプ
ランジャ8を摺動自在に嵌合し、孔ld内にバルブホル
ダー4を摺動自在に嵌合して室5,6を画成する。室5
゜Bに夫々開口する液圧入ロボートフ及び液圧出口ボー
ト8を弁本体lに形成し、この弁本体には更に室5を孔
1eに通じさせる連絡ポート9を形成する。プランジャ
8の図中右端面に開口する盲孔8aを横孔8bにより室
5に通じさせ、盲孔3a内にポペット弁体lOをばね1
1により閉弁方向へ付勢して設け、このポペット弁体に
対する弁座12を盲孔3aの開口端に固設し、ポペット
弁体10の弁ステムは弁座12に着座した閉弁時盲孔8
aの開口端より若干突出する長さとする。
The valve body l is constructed by combining parts 2@, and has a small diameter hole ia, large diameter holes 1b and 10 on the left side, and a large diameter hole 1d on the right side to house the valve inside.
, a hole 1e parallel to these holes, and a hole 1f connected to this hole.
to form. The plunger 8 is slidably fitted into the hole la under the guidance of the retainer 2, and the valve holder 4 is slidably fitted into the hole ld to define chambers 5 and 6. Room 5
A hydraulic inlet boat and a hydraulic outlet boat 8, each opening at .degree. A blind hole 8a opened on the right end surface of the plunger 8 in the figure is communicated with the chamber 5 through a horizontal hole 8b, and a poppet valve body lO is inserted into the blind hole 3a by a spring 1.
1, the valve seat 12 for this poppet valve body is fixedly installed at the open end of the blind hole 3a, and the valve stem of the poppet valve body 10 is biased toward the valve closing direction when the poppet valve body 10 is seated on the valve seat 12. Hole 8
The length should be such that it slightly protrudes from the opening end of a.

バルブホルダー4内にフリーピストン18を摺動自在に
嵌合して室14を画成し、このフリーピストン13によ
りポペット弁体10を開弁位置となす。バルブホルダー
1内には更にポペット弁体IO1ばね11及び弁座12
と全く同様のポペット弁体10′、はね11′及び弁座
12′を逆向きに設け、ボペツ゛)弁体1o’をフリー
ピストン13により開弁位置となす。パルプホルダー4
の図中右端小径部をプラグ15に摺動自在に貫入して室
16を画成し、この室16をポペット弁体10’の開弁
位置で室14に通じさせる。プラグ15は孔1dの開口
端を塞ぎ、このプラグに室16に通ずる液圧入口ボート
16を形成し、弁本体1に室14と通ずる液圧出口ポー
ト17を形成する。
A free piston 18 is slidably fitted into the valve holder 4 to define a chamber 14, and the free piston 13 moves the poppet valve body 10 to the open position. Further inside the valve holder 1 are a poppet valve element IO1 spring 11 and a valve seat 12.
A poppet valve body 10', a spring 11', and a valve seat 12', which are exactly the same as those shown in FIG. Pulp holder 4
The small diameter portion at the right end in the figure is slidably inserted into the plug 15 to define a chamber 16, and this chamber 16 is communicated with the chamber 14 at the open position of the poppet valve body 10'. A plug 15 closes the open end of the bore 1d, forming a hydraulic inlet port 16 in the plug that communicates with the chamber 16, and a hydraulic outlet port 17 in the valve body 1 that communicates with the chamber 14.

孔IC内にピストン18を摺動自在に嵌合して封じ込め
室19を画成し、ピストン18及びプランジャ8間のは
ね座20.21を介してばね22を縮設し、ばね座20
を別のばね23によっても図示の限界位置に弾支する。
The piston 18 is slidably fitted into the hole IC to define a containment chamber 19, and the spring 22 is compressed via the spring seat 20.21 between the piston 18 and the plunger 8.
is also elastically supported in the illustrated limit position by another spring 23.

なお、ばね座20の図示する限界位置でもこのばね座と
ピストン18との間にはダミーストロークを提供する隙
間が存在しないようピストン18のしさを孔ICの長さ
に同じとする。
The length of the piston 18 is made equal to the length of the hole IC so that even at the illustrated limit position of the spring seat 20, there is no gap between the spring seat and the piston 18 to provide a dummy stroke.

孔18内にはボールホルダー24を嵌着し、その内部を
斜孔B4aにより連絡ボート9に通じさせる。ボールホ
ルダー24内にGボール25を図中左右方向へ移動可能
に収納すると共に、このGポールに対するボール弁座2
6を固設する。
A ball holder 24 is fitted into the hole 18, and the inside thereof is communicated with the communication boat 9 through an oblique hole B4a. A G ball 25 is housed in the ball holder 24 so as to be movable in the left and right directions in the figure, and the ball valve seat 2 is attached to the G ball.
6 is fixed.

孔if内には本発明で設けるべき差圧弁27を収納し、
この差圧弁は孔if内に摺動自在に嵌合したバルブホル
ダー28と、こnをボールホルダー24に向は付勢する
ばね29とを具え、バルブホルダー中心孔28aの図中
左端開口部にポペット弁体30と、このポペット弁体を
閉弁方向に付勢するばね81と、ポペット弁体8oに対
する弁座32とを設ける。なお、ポペット弁体8oの弁
ステムは弁座82に着座した図示の閉弁位置でパルプホ
ルダー28の対応端面より若干突出する長さとし、この
端面が孔1fの底面に衝接する時ポペット弁体30が開
弁位置にされるものとする。
A differential pressure valve 27 to be provided in the present invention is housed in the hole if,
This differential pressure valve includes a valve holder 28 that is slidably fitted into a hole if, and a spring 29 that biases the valve holder n toward the ball holder 24, and is attached to an opening at the left end in the figure of a center hole 28a of the valve holder. A poppet valve body 30, a spring 81 that biases the poppet valve body in the valve closing direction, and a valve seat 32 for the poppet valve body 8o are provided. The valve stem of the poppet valve body 8o has a length such that it slightly protrudes from the corresponding end surface of the pulp holder 28 in the illustrated valve closing position seated on the valve seat 82, and when this end surface collides with the bottom surface of the hole 1f, the poppet valve body 30 shall be in the open position.

孔ifの底面に開口し、封じ込め室19に至る液路83
を弁本体1に形成し、バルブホルダー中心孔28a及び
ボール弁座26の弁孔28a間を連絡する液路24bを
ボールホルダー241に形成する。
A liquid path 83 opens at the bottom of the hole if and reaches the containment chamber 19
is formed in the valve body 1, and a liquid path 24b communicating between the valve holder center hole 28a and the valve hole 28a of the ball valve seat 26 is formed in the ball holder 241.

上述の構成になる本発明減速度感知型液圧制御弁は、通
常Gボール25が重力で図示の如く弁座26から離れた
位置に保たれるよう水平面Hに対しθだけ傾斜させ、又
Gボール25が制動時の車両減速度により弁座26に向
う方向の力を受けるよう指向させて車体に取付ける。そ
して、X配管式液圧ブレーキ装置に実用する場合、入口
ボート7を右前輪のホイールシリンダ84と共にタンデ
ムマスタシリンダ85の一方の液圧出口ポーFに、入口
ボー)18を左前輪のホイールシリンダ86と共にタン
デムマスタシリンダ85の他方の液圧出口ボートに、又
出口ポー)8.17を夫々左右後輪のホイールシリンダ
87.88に接続する。
In the deceleration sensing type hydraulic control valve of the present invention having the above-described structure, the G ball 25 is normally inclined by θ with respect to the horizontal plane H so that the G ball 25 is kept at a position separated from the valve seat 26 by gravity as shown in the figure. The ball 25 is attached to the vehicle body so as to be oriented so as to receive a force directed toward the valve seat 26 due to vehicle deceleration during braking. When used in an X-piped hydraulic brake system, the inlet boat 7 is connected to the wheel cylinder 84 of the right front wheel and one hydraulic outlet port F of the tandem master cylinder 85, and the inlet boat 18 is connected to the wheel cylinder 86 of the left front wheel. At the same time, the other hydraulic outlet boat of the tandem master cylinder 85 is connected, and the outlet port (8.17) is connected to the left and right rear wheel cylinders 87.88, respectively.

図面は非作動状態を示し、ここでブレーキペダル89の
踏込みによりマスターシリンダ85を作動させると、該
マスターシリンダの両液圧出口から同時に同じ値のマス
ターシリンダ液圧Pmが出方される。これらマスターシ
リンダ液圧Pmは前輪ホイールシリンダ84.86には
常時そのまま、又後輪ホイールシリンダ38にはポー)
1Bより室16、パルプホルダー4の中心孔、弁体10
’及び弁座12’間の隙間、室14及びボート17を経
て当初そのまま、更に後輪ホイールシリンダ87にはボ
ー)?より室6、孔ab、盲孔8a、弁体lO及び弁座
12間の隙間、室6及びボート8を経て当初そのまま供
給される。従って、後輪ホイ−ルシリンダ87.88に
向う後輪ブレーキ液圧Prは当初マスターシリンダ液圧
(前輪ブレーキ液圧)Pmに等しく、第2図にa−bで
示す特性を持って上昇する。
The figure shows a non-operating state, and when the master cylinder 85 is operated by depressing the brake pedal 89, the same value of master cylinder hydraulic pressure Pm is simultaneously output from both hydraulic pressure outlets of the master cylinder. These master cylinder hydraulic pressures Pm are always maintained as they are in the front wheel cylinders 84 and 86, and remain unchanged in the rear wheel cylinders 38).
From 1B, chamber 16, center hole of pulp holder 4, valve body 10
' and the gap between the valve seat 12', the chamber 14 and the boat 17, and then the rear wheel cylinder 87. Initially, it is supplied as is through the chamber 6, the hole ab, the blind hole 8a, the gap between the valve body lO and the valve seat 12, the chamber 6, and the boat 8. Therefore, the rear wheel brake fluid pressure Pr toward the rear wheel cylinders 87, 88 is initially equal to the master cylinder fluid pressure (front wheel brake fluid pressure) Pm, and increases with the characteristics shown by a-b in FIG.

この時のプランジャ3に作用する力の釣合式はリテーナ
2に嵌合するプランジャ3の端部断面積をA2、ばね2
2のばね力をFとすると、次式で表わさnる。
The equation for balancing the force acting on the plunger 3 at this time is that the cross-sectional area of the end of the plunger 3 that fits into the retainer 2 is A2, and the spring 2 is
If the spring force of 2 is F, it is expressed by the following equation.

Pm−A2≦F プレー午ペダル89の一層の踏込みでマスターシリンダ
液圧Pmが上昇すると、上式方墳の値が大きくなってゆ
き、プランジャ8はばね22に抗し図中左方に移動し、
弁体lOがはね11により弁座12に向は移動して、遂
には弁体10が弁座12に着座することにより自閉する
。この時点よりホイールシリンダ87に向う後輪ブレー
キ液圧Prは以下の如くに上昇を制限されるが、この時
の液圧、即ち臨界液圧Ps□(第2図参照)は、上式中
pmに”81を代入して P   = −−−−−−(i) 81   人。
Pm-A2≦F When the master cylinder hydraulic pressure Pm increases due to further depression of the play pedal 89, the value of the upper-type square becomes larger, and the plunger 8 moves to the left in the figure against the spring 22.
The valve body 1O is moved toward the valve seat 12 by the spring 11, and finally the valve body 10 is seated on the valve seat 12, thereby self-closing. From this point on, the rear wheel brake fluid pressure Pr toward the wheel cylinder 87 is restricted from increasing as shown below, but the fluid pressure at this time, that is, the critical fluid pressure Ps□ (see Figure 2), is pm in the above equation. Substituting “81” into P = −−−−−−(i) 81 people.

で表わされる。It is expressed as

かかるポペット弁体10の自閉時、マスターシリンダ液
圧Pmは、孔1aに対するプランジャ3の摺動部断面樗
をA□(但しA1)A2)とすると、室5内においてP
m・(A、−A、)の力でプランジャ8を逆向き、つま
り図中右向きに押すようになり、室6内の後輪ブレーキ
液圧Prがプランジャ8に及ばず図中左向きの力Pr−
A、と対抗する。ここで、Pm>Ps□となるようブレ
ーキペダル31)を更に踏込むと、マスクシリンダ液圧
Pmによる力がはね22のばね力Fと共にプランジャ8
を図中左行英せ、弁体10を再び開く。これによりホイ
ールシリンダ37に向う後輪ブレーキ液圧Prはマスタ
ーシリンダ液圧Pmの補充を受けて増加するが、弁体l
Oが開くことでマスターシリンダ液圧Pmが再度プラン
ジャ3を図中左向きに押すようになる結果、弁体lOは
直ちに自閉する。かかる作用の繰返しにより当該後輪ブ
レーキ液圧Prはマスターシリンダ液圧の上昇に対し制
限されつつ上昇する。
When the poppet valve body 10 self-closes, the master cylinder hydraulic pressure Pm is equal to
The force of m・(A, -A,) pushes the plunger 8 in the opposite direction, that is, to the right in the figure, and the rear wheel brake fluid pressure Pr in the chamber 6 does not reach the plunger 8, causing a force Pr in the left direction in the figure. −
Compete with A. Here, when the brake pedal 31) is further depressed so that Pm>Ps□, the force due to the mask cylinder hydraulic pressure Pm is applied to the plunger 8 along with the spring force F of the spring 22.
Move to the left in the figure and open the valve body 10 again. As a result, the rear wheel brake fluid pressure Pr toward the wheel cylinder 37 increases as the master cylinder fluid pressure Pm is replenished, but the valve body l
By opening O, the master cylinder hydraulic pressure Pm again pushes the plunger 3 to the left in the figure, and as a result, the valve body lO immediately closes itself. By repeating this action, the rear wheel brake fluid pressure Pr increases while being limited with respect to the increase in master cylinder fluid pressure.

この間、即ち”m>”81の間、プランジャ2に作用す
る力の釣合式を求めると、上述した処から明らかなよう
に PrA、 = Pm(A□−A、 )+ F   −−
−−−(2)となり、この式からホイールシリンダ87
に向う後輪ブレーキ液圧Prは次式で表わされる。
During this period, that is, during "m>" 81, when finding the balance equation of the force acting on the plunger 2, as is clear from the above, PrA, = Pm(A□-A, )+F--
---(2), and from this formula, the wheel cylinder 87
The rear wheel brake fluid pressure Pr toward the rear wheel is expressed by the following equation.

この式から明らかなようにPm>Pslで当該マスター
シリンダ液圧Prは第2図にb−cで示す如く、スター
シリンダ液圧の上昇に対し制限することができる。
As is clear from this equation, when Pm>Psl, the master cylinder hydraulic pressure Pr can be limited against an increase in the star cylinder hydraulic pressure, as shown by b-c in FIG.

一方、プランジャ8の上記作動による弁体10の開閉は
フリーピストン13を介し弁体10′にそのまま伝達さ
れ、この弁体10′も弁体10と同時且つ同様に開閉す
る。従って、ホイールシリンダ88に向うIt&幅ブシ
ブレーキ液圧Prイールシリンダ87に向う後輪ブレー
キ液圧と同様に制御される。
On the other hand, the opening and closing of the valve body 10 due to the above-mentioned operation of the plunger 8 is directly transmitted to the valve body 10' via the free piston 13, and this valve body 10' also opens and closes simultaneously and in the same manner as the valve body 10. Therefore, it is controlled in the same manner as the rear wheel brake fluid pressure toward the wheel cylinder 88 and the rear wheel brake fluid pressure toward the wheel cylinder 87.

ところで、ボート7からのマスターシリンダ液圧Pmは
室6、連絡ボート9、弁孔24aを経てパルプホルダー
中心孔28aにも達している。しかし、ポペット弁体8
0が図示の如く閉じているため、当該マスターシリンダ
液圧Pmはバルブホルダー28の図中右端面に作用し、
こnをばね29に抗し図中左行させる。この時バルブホ
ルダー28は孔ifの底面に衝接してポペット弁体80
をはね81に抗し開位置となし、マスターシリンダ液圧
Pm′&:液路88を経て封じ込め室19に供給する。
By the way, the master cylinder hydraulic pressure Pm from the boat 7 also reaches the pulp holder center hole 28a via the chamber 6, the communication boat 9, and the valve hole 24a. However, the poppet valve body 8
0 is closed as shown in the figure, the master cylinder hydraulic pressure Pm acts on the right end surface of the valve holder 28 in the figure,
This is moved to the left in the figure against the force of the spring 29. At this time, the valve holder 28 collides with the bottom of the hole if, and the poppet valve body 80
is brought to the open position against the spring 81, and the master cylinder hydraulic pressure Pm'&: is supplied to the containment chamber 19 via the liquid path 88.

しかし、この時マスターシリンダIII(圧Pmカバル
ブホルダー28の両端面に作用するようになる結果、バ
ルブホルダー28はばね29により直ちに押戻され、ポ
ペット弁体80を自閉させる。
However, at this time, the master cylinder III (pressure Pm) comes to act on both end surfaces of the valve holder 28, and as a result, the valve holder 28 is immediately pushed back by the spring 29, causing the poppet valve body 80 to self-close.

かかる作用の繰返しにより差圧弁27は、バルブホルダ
ー28の両端受圧同種をA8、ばね29のばね力をF′
とすると、次式で表わされる液圧Pfを封じ込め室19
に供給している。
By repeating this action, the differential pressure valve 27 receives the same pressure at both ends of the valve holder 28 as A8, and the spring force of the spring 29 as F'.
Then, the hydraulic pressure Pf expressed by the following equation is the pressure in the containment chamber 19
is supplied to.

F′ Pf = Pm−石 この式から明らかなように、封じ込め室19にばばね2
9のばね力F′及びパルプホルダー28の両端受圧同梱
A8により決まる一定値F ’ /A 8だけマスター
シリンダ液圧Pmより低い液圧が供給されており、第8
図にαで示すマスターシリンダ液圧Pmの経時変化の場
合、封じ込め室19への供給圧Pfは同図中δで示す如
くになり、従来の液圧変化γより一層車両減速度の発生
遅れに近寸けることができる。
F' Pf = Pm - Stone As is clear from this equation, the spring 2 in the containment chamber 19
A constant value F'/A determined by the spring force F' of No. 9 and the pressure received at both ends of the pulp holder A8 is supplied.
When the master cylinder hydraulic pressure Pm changes over time as indicated by α in the figure, the supply pressure Pf to the containment chamber 19 becomes as indicated by δ in the figure, which delays the occurrence of vehicle deceleration even more than the conventional hydraulic pressure change γ. You can get close to it.

そして\上記制動により車両減速間が一定値に達すると
、この減速度によりGポール25が弁座2Bに着座して
減速度感知バルブGVは閉じ、当該−電域速度を発生し
た時のマスターシリンダ液圧Pmから上記一定値F’/
A8を減じた液圧Pfを室19内に封じ込める。しかし
て、同じ一定減速度を発生するにも、そのためのブレー
キペダル踏力(15) (マスターシリンダ液圧Pm)は車両重量が重い程大き
く、従って封じ込め圧Pfは車両重量に対応する。しか
し、空m時のように車両重量が軽い状態では、封じ込め
圧がピストン18をはね22゜2Bに抗し図中右行させ
る程高くなく、ピストン18は図示の位置にとどまる。
When the vehicle deceleration period reaches a certain value due to the above-mentioned braking, the G pole 25 is seated on the valve seat 2B due to this deceleration, the deceleration sensing valve GV is closed, and the master cylinder when the relevant - electric range speed is generated is From the hydraulic pressure Pm to the above constant value F'/
The hydraulic pressure Pf reduced by A8 is confined within the chamber 19. Therefore, to generate the same constant deceleration, the brake pedal depression force (15) (master cylinder hydraulic pressure Pm) required for this purpose increases as the weight of the vehicle increases, and therefore the containment pressure Pf corresponds to the weight of the vehicle. However, when the vehicle is light, such as when the vehicle is empty, the confinement pressure is not high enough to move the piston 18 to the right in the drawing against the spring 22° 2B, and the piston 18 remains in the position shown.

従って、両饅輪ブレーキ液圧Prはばね22のばね力が
大きくならず、前記作用により前後輪ブレーキ力配分特
性が空車時の理想特性に近似して第2図中a−b−0と
なるよう制i11され、後輪が先にロックする危険を防
止することができる。
Therefore, the spring force of the spring 22 does not increase the brake fluid pressure Pr of both wheels, and due to the above action, the front and rear wheel brake force distribution characteristics approximate the ideal characteristics when the vehicle is empty, and become a-b-0 in FIG. This prevents the rear wheels from locking first.

ところで本発明Gこおいては、封じ込め室19に向う液
圧をマスターシリンダ液圧Pmそのものとせず、これを
差圧弁z7により一定値たけ減圧したものとするから、
空車状態での制動時重両減速度の大きな発生遅nによっ
ても、封じ込め圧P。
By the way, in the present invention G, the hydraulic pressure toward the containment chamber 19 is not the master cylinder hydraulic pressure Pm itself, but is reduced by a certain value by the differential pressure valve z7.
The containment pressure P also increases due to the large delay in the onset of heavy vehicle deceleration during braking in an empty vehicle state.

が高くなり過ぎてピストン18を介しはね22を圧縮す
ることがなく、上述した通り正確な液圧制御を得ること
ができる。
does not become too high and compress the spring 22 via the piston 18, and as described above, accurate hydraulic pressure control can be obtained.

一方、積車により車両重量が重くなり、そnに(16) つn室19内の封じ込め圧Pfが高くなると、この封じ
込め圧はピストン18を車両重量の増加につれ大きく図
中右行させ、ばね22を徐々に大きく圧縮する。こnに
よりばね22のばね力Fは大きくなり、前記(1)式の
如くに求まる臨界液圧を第2図中Ps□へと上昇させる
と共に、同じくばね力Fで前記(2)式の如くに求まる
後輪ブレーキ液圧Prを第2図中b1−07で示すよう
に制御することができる。従って、当該積車状態で前後
輪ブレーキ力配分特性を理想の特性に近い第2図中a−
b’−c’で示すものとなし得て、後輪が先にロックす
る危険を防止できる。
On the other hand, when the weight of the vehicle increases due to the loading of the vehicle, and the confinement pressure Pf in the chamber 19 increases (16), this confinement pressure causes the piston 18 to move further to the right in the figure as the vehicle weight increases, and the spring 22 is gradually compressed. Due to this, the spring force F of the spring 22 increases, and the critical fluid pressure determined as in equation (1) above increases to Ps□ in FIG. It is possible to control the rear wheel brake fluid pressure Pr determined by b1-07 in FIG. Therefore, in the loaded state, the front and rear wheel brake force distribution characteristics are close to ideal characteristics a-
b'-c' can be used to prevent the rear wheels from locking first.

この液圧制御中も本発明においては、封じ込め室19に
向う液圧をマスターシリンダ液圧Pmそのものとせず、
これを差圧弁27により一定値だけ減圧したものとする
から、封じ込め圧P、が積車状態での制動時における車
両減速度の発生遅れに対応したものとなり、車両重量に
正確に対応したものとなって、上述した通りの正確な液
圧制御を得ることができ、これが従来のように要求特性
からずれるのを防止することができる。
Also during this hydraulic pressure control, in the present invention, the hydraulic pressure toward the containment chamber 19 is not the master cylinder hydraulic pressure Pm itself,
Assuming that this pressure is reduced by a certain value by the differential pressure valve 27, the containment pressure P corresponds to the delay in the onset of vehicle deceleration during braking in a loaded state, and corresponds accurately to the vehicle weight. Therefore, it is possible to obtain accurate hydraulic pressure control as described above, and it is possible to prevent the hydraulic pressure from deviating from the required characteristics as in the conventional case.

かくして本発明減速度感知型液圧制御弁は上述の如く封
じ込め至19への入口液圧(マスターシリンダ液圧)通
路中に、差圧弁27を挿入し、これにより入口液圧より
常に一定値だけ低くなるように制御した液圧Pfを封じ
込め室19に供給するように構成したから、入口液圧の
上昇に対する車両減速度の発ta’rtに対応して封じ
込め圧Pfが発生することとなり、前記作用説明通り空
車時は勿論のこと積車時も目的とする液圧制御を正確に
実行することができる。従って、オリフィス及びダミー
ストロークを設けて空車時の液圧制御を正確なものとす
る従来の減速度感知型静圧制御弁が積車時の液圧制御に
正確さを欠いていたのと較べ、本発明減速度感知型液圧
制御弁はいかなる車両重量の銃でも正確に目的とする液
圧制御を達成でき、安全1益する処大なるものである。
Thus, in the deceleration sensing type hydraulic pressure control valve of the present invention, the differential pressure valve 27 is inserted into the inlet hydraulic pressure (master cylinder hydraulic pressure) passage to the containment port 19 as described above, and thereby the inlet hydraulic pressure is always kept by a constant value. Since the hydraulic pressure Pf controlled to be low is supplied to the containment chamber 19, the containment pressure Pf is generated in response to the onset of vehicle deceleration ta'rt in response to an increase in the inlet hydraulic pressure. As explained in the explanation, the desired hydraulic pressure control can be accurately executed not only when the vehicle is empty but also when the vehicle is loaded. Therefore, compared to the conventional deceleration-sensing static pressure control valve that provides an orifice and a dummy stroke to accurately control the hydraulic pressure when the vehicle is empty, it lacks accuracy in controlling the hydraulic pressure when the vehicle is loaded. The deceleration-sensing hydraulic pressure control valve of the present invention can accurately control the desired hydraulic pressure for guns of any vehicle weight, and has great safety benefits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明減速度感知型液圧制御弁の縦断側面図、 第2図は同液圧制圓弁の作用特性図、 第8図はマスターシリンダ液圧の上昇に対する車両減速
度の発生迎れ1合を、本発明液圧制御弁における封じ込
め圧及び従来型液圧開開1弁における封じ込め圧の経時
変化と共に示す線図である。 1・・・弁本体cv・・・コントロールバルブJV・・
・連動バルブ    GV・・・減速度感知バルブ19
・・・封じ込め室   22・・・コントロールバルブ
の液圧1!IJ御ばね 27・・・差圧弁      28・・・バルブホルダ
ー29・・・バルブホルダー戻しはね 80・・・ポペット弁体  81・・・ポペット弁体自
閉ばね82・・弁座 if 、9.24a’、26a、38−・・封じ込め室
への入口液圧通路0
Fig. 1 is a longitudinal cross-sectional side view of the deceleration sensing type hydraulic pressure control valve of the present invention, Fig. 2 is an operational characteristic diagram of the same hydraulic pressure control valve, and Fig. 8 is a diagram showing the occurrence and development of vehicle deceleration in response to an increase in master cylinder hydraulic pressure. FIG. 1 is a diagram showing changes over time in the confinement pressure in the hydraulic control valve of the present invention and in the confinement pressure in the conventional hydraulic opening/opening valve. 1... Valve body CV... Control valve JV...
・Interlocking valve GV...Deceleration sensing valve 19
...Containment room 22...Control valve hydraulic pressure 1! IJ control spring 27...Differential pressure valve 28...Valve holder 29...Valve holder return spring 80...Poppet valve body 81...Poppet valve body self-closing spring 82...Valve seat if, 9. 24a', 26a, 38-... Inlet hydraulic passage to the containment chamber 0

Claims (1)

【特許請求の範囲】[Claims] t ばねに抗して人口液圧に応動し、この入口液圧を制
限しつつ出口液圧となす液圧制御を行ナウコントロール
バルブと、一定以上の減速度で閉じてこの一定減速度を
発生した時の前記入口液圧を封じ込め室に封じ込めるこ
とにより、この封じ込め圧に応じた量だけ前記ばねを圧
縮する減速度感知バルブとを具えた減速度感知型液圧制
御弁において、前記封じ込め室に向う入口液圧通路中に
、入口液圧より常に一定値だけ低くなるよう制御した液
圧を封じ込め室に供給する差圧弁を挿入したことを特徴
とする減速度感知型液圧制御弁。
t The now control valve responds to the artificial hydraulic pressure against the spring, limits this inlet hydraulic pressure and controls the outlet hydraulic pressure, and closes at a deceleration above a certain level to generate this constant deceleration. and a deceleration sensing valve that compresses the spring by an amount corresponding to the containment pressure by confining the inlet fluid pressure in the containment chamber when A deceleration sensing type hydraulic pressure control valve characterized in that a differential pressure valve is inserted into the opposite inlet hydraulic pressure passage to supply a hydraulic pressure controlled to be always lower than the inlet hydraulic pressure by a constant value to the containment chamber.
JP17390682A 1982-10-05 1982-10-05 Deceleration sensitive type hydraulic pressure control valve Pending JPS5963257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17390682A JPS5963257A (en) 1982-10-05 1982-10-05 Deceleration sensitive type hydraulic pressure control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17390682A JPS5963257A (en) 1982-10-05 1982-10-05 Deceleration sensitive type hydraulic pressure control valve

Publications (1)

Publication Number Publication Date
JPS5963257A true JPS5963257A (en) 1984-04-10

Family

ID=15969266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17390682A Pending JPS5963257A (en) 1982-10-05 1982-10-05 Deceleration sensitive type hydraulic pressure control valve

Country Status (1)

Country Link
JP (1) JPS5963257A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106791A (en) * 1977-02-28 1978-09-18 Union Carbide Corp Manufacture of polyester

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106791A (en) * 1977-02-28 1978-09-18 Union Carbide Corp Manufacture of polyester

Similar Documents

Publication Publication Date Title
JPH0544626Y2 (en)
JPH0134814B2 (en)
JPH01218950A (en) Brake device having automatic fluid pressure control function
US4768841A (en) Brake control device
US4205883A (en) Inertia sensing brake proportioning valve
JPH04504547A (en) Fluid pressure operated braking device for vehicles
JPS5963257A (en) Deceleration sensitive type hydraulic pressure control valve
JPS5838341B2 (en) Deceleration responsive hydraulic control valve
JPS6344585B2 (en)
JPS60236861A (en) Hydraulic brake system
JPS582860B2 (en) Hydraulic control valve for two-line piping
JPS5850906B2 (en) Brake hydraulically controlled tandem master cylinder
US4385786A (en) Hydraulic pressure control valve for a double piping braking system
JPS5989256A (en) Non-leakage type load-sensing valve
FI62642B (en) KONTROLLANORDNING FOER BROMSNINGSVAETSKETRYCK
JPH0329624B2 (en)
US5725286A (en) Antilock liquid-pressure control apparatus
JPS59156851A (en) Deceleration sensing type liquid pressure control valve
US3291264A (en) Brake system
US4254996A (en) Fluid pressure control device for vehicle braking systems
US5083432A (en) Tandem master cylinder with a third piston and chamber
JPS59106354A (en) Brake compensator
US4279447A (en) Brake oil pressure controlling valve device for vehicle use
JPS63211410A (en) Pressure control valve
JPH0616848Y2 (en) Deceleration sensing type braking hydraulic pressure control device