JPH0329624B2 - - Google Patents

Info

Publication number
JPH0329624B2
JPH0329624B2 JP13084382A JP13084382A JPH0329624B2 JP H0329624 B2 JPH0329624 B2 JP H0329624B2 JP 13084382 A JP13084382 A JP 13084382A JP 13084382 A JP13084382 A JP 13084382A JP H0329624 B2 JPH0329624 B2 JP H0329624B2
Authority
JP
Japan
Prior art keywords
pressure
hydraulic pressure
valve
master cylinder
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13084382A
Other languages
Japanese (ja)
Other versions
JPS5920757A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13084382A priority Critical patent/JPS5920757A/en
Priority to EP83107345A priority patent/EP0100096B1/en
Priority to US06/517,410 priority patent/US4560208A/en
Priority to DE8383107345T priority patent/DE3366880D1/en
Publication of JPS5920757A publication Critical patent/JPS5920757A/en
Publication of JPH0329624B2 publication Critical patent/JPH0329624B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/26Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1766Proportioning of brake forces according to vehicle axle loads, e.g. front to rear of vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Hydraulic Control Valves For Brake Systems (AREA)

Description

【発明の詳細な説明】 本発明は自動車の液圧ブレーキ装置等に用いら
れる減速度感知型液圧制御弁に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a deceleration sensing type hydraulic pressure control valve used in a hydraulic brake system of an automobile or the like.

自動車の液圧ブレーキ装置は、ブレーキペダル
の踏込みにより発生するマスタシリンダ液圧で前
後輪を同時に制動するが、この際後輪が前輪より
先にロツクすると自動車はスキツドと称せられる
危険な挙動を行なう。そこで、制動時は車体荷重
が前方に片寄り後輪が前輪よりロツクし易くなる
事実も考慮し、後輪ブレーキ系にはマスタシリン
ダ液圧を上昇制限しつつ後輪に供給する液圧制御
弁を挿入する。
A car's hydraulic brake system brakes the front and rear wheels simultaneously using the master cylinder hydraulic pressure generated by pressing the brake pedal, but if the rear wheels lock before the front wheels, the car will perform a dangerous behavior called skid. . Therefore, in consideration of the fact that the weight of the vehicle is biased toward the front during braking, and the rear wheels are more likely to lock up than the front wheels, the rear brake system is equipped with a hydraulic pressure control valve that limits the increase in master cylinder hydraulic pressure while supplying it to the rear wheels. Insert.

この種液圧制御弁としては、ばねに抗してマス
タシリンダ液圧(入口液圧)に応動し、該液圧が
一定値以上になる時、これを上昇制限しつつ後輪
ブレーキ液圧(出口液圧)となすプロポーシヨニ
ングバルブとか、リミツテイングバルブ等のコン
トロールバルブが知られている。しかし、いずれ
のコントロールバルブも、後輪ブレーキ液圧を上
昇制限し始める上記一定のマスタシリンダ液圧値
(臨界液圧)が不変であり、前後輪ブレーキ力配
分特性は一定である。しかるに、前後輪が同時に
ロツクするような理想の前後輪ブレーキ力配分特
性は、車両重量の増加につれ後輪ブレーキ力が増
大するよう変化し、従つて上記臨界液圧は車両重
量の増加につれ上昇させる必要がある。
This type of hydraulic pressure control valve responds to the master cylinder hydraulic pressure (inlet hydraulic pressure) against a spring, and when the hydraulic pressure exceeds a certain value, it limits the increase in rear wheel brake hydraulic pressure ( Control valves such as proportioning valves and limiting valves are known. However, in all control valves, the constant master cylinder hydraulic pressure value (critical hydraulic pressure) at which the rear wheel brake hydraulic pressure starts to increase and limit remains unchanged, and the front and rear wheel brake force distribution characteristics are constant. However, the ideal front and rear brake force distribution characteristics, in which the front and rear wheels lock simultaneously, change as the vehicle weight increases so that the rear wheel brake force increases, and therefore the critical hydraulic pressure increases as the vehicle weight increases. There is a need.

このため、一定以上の車両減速度で閉じてこの
一定減速度を発生した時のマスタシリンダ液圧
(車両重量の増加につれ高くなる)を封じ込め室
に封じ込めることにより、この封じ込め圧(車両
重量)に応じた力で前記コントロールバルブのば
ねを助勢して、このばねのばね力及びその助勢力
で決まる前記臨界液圧を車両重量の増加につれ高
める減速度感知バルブをコントロールバルブに付
加した減速度感知型液圧制御弁が実用されてい
る。
Therefore, by sealing the master cylinder hydraulic pressure (which increases as the vehicle weight increases) when it closes when the vehicle decelerates above a certain level and generates this constant deceleration in a containment chamber, this containment pressure (vehicle weight) can be reduced. A deceleration sensing type in which a deceleration sensing valve is added to the control valve, which assists the spring of the control valve with a corresponding force to increase the critical fluid pressure determined by the spring force of the spring and its assisting force as the weight of the vehicle increases. Hydraulic pressure control valves are in practical use.

この減速度感知型液圧制御弁は、前後輪ブレー
キ力(前後輪ブレーキ液圧)の配分特性が空車時
において第3図にa−b−c(臨界液圧Ps1)で示
す如くになり、或る積車状態で同図中a−b′−
c′(臨界液圧Ps2)により示す如くになつて、いか
なる車両重量のもとでも前後輪ブレーキ力配分特
性が理想の特性に近似するよう後輪ブレーキ液圧
を上昇制限することを狙つたものである。
This deceleration sensing type hydraulic pressure control valve has a distribution characteristic of front and rear wheel brake force (front and rear wheel brake fluid pressure) as shown by a-b-c (critical hydraulic pressure Ps 1 ) in Fig. 3 when the vehicle is empty. , a-b'- in the same figure in a certain loading state
The aim is to limit the increase in rear wheel brake fluid pressure so that the front and rear brake force distribution characteristics approximate the ideal characteristics under any vehicle weight, as shown by c′ (critical hydraulic pressure Ps 2 ). It is something.

しかしてマスタシリンダ液圧の上昇に対し車両
減速度の発生は、マスタシリンダ液圧の昇圧速度
が第4図にαで示す如きものである場合について
示すと、このマスタシリンダ液圧の昇圧に対し同
図中βで示すように遅れる。これがため、減速度
感知バルブがマスタシリンダ液圧をそのままコン
トロールバルブの封じ込め室に供給するものであ
る場合、車両減速度が前記一定値に達して減速度
感知バルブが閉じることで封じ込め室に封じ込め
られる封じ込め圧が車両重量に対応せず、高くな
り過ぎる。従つて、この場合減速度感知型液圧制
御弁は臨界液圧を第3図中Ps1,Ps2で示すような
狙つた値より高められ、本来スプリツトポイント
がb点、b′点であるべき処、これらをd点、e点
へと上昇させてしまい、狙い通りの液圧制御を行
ない得ない。
Therefore, the occurrence of vehicle deceleration in response to an increase in master cylinder hydraulic pressure is caused by the occurrence of vehicle deceleration in response to an increase in master cylinder hydraulic pressure. There is a delay as shown by β in the figure. Therefore, if the deceleration sensing valve supplies the master cylinder hydraulic pressure as it is to the containment chamber of the control valve, when the vehicle deceleration reaches the above-mentioned certain value and the deceleration sensing valve closes, it will be contained in the containment chamber. The containment pressure does not correspond to the weight of the vehicle and becomes too high. Therefore, in this case, the deceleration sensing type hydraulic pressure control valve raises the critical hydraulic pressure higher than the target value as shown by Ps 1 and Ps 2 in Fig. 3, and the split points are originally at points b and b'. This causes these points to rise to points d and e, where they should be, and it is impossible to control the hydraulic pressure as intended.

この問題解決のため、前記封じ込め室に向う入
口液圧通路中に、減圧弁を挿入し、これにより入
口液圧をそのまま封じ込め室に供給せず、これよ
り第4図の如く一定値(減圧弁の作動圧により決
まる)γだけ低い液圧δを封じ込め室に供給し、
この液圧をマスタシリンダ液圧αに対し車両減速
度の発生遅れtと同じように遅らせて上昇させる
対策が従来行なわれていた。
In order to solve this problem, a pressure reducing valve is inserted into the inlet hydraulic pressure passage toward the containment chamber, so that the inlet hydraulic pressure is not supplied to the containment chamber as it is, but is maintained at a constant value (pressure reducing valve Supplying a hydraulic pressure δ lower by γ (determined by the operating pressure of ) to the containment chamber,
Conventionally, a measure has been taken to increase this hydraulic pressure with a delay relative to the master cylinder hydraulic pressure α, similar to the delay t in the occurrence of vehicle deceleration.

しかし、この対策では第4図にαで示すマスタ
シリンダ液圧の昇圧速度に限つて目的が達せら
れ、マスタシリンダ液圧の昇圧速度がこれより第
5図中α′で示す如く遅い場合とか、第6図中α″で
示す如く速い場合には目的を達し得ない。即ち、
車両減速度はこれらの場合も第5図及び第6図に
β′,β″で示すようにマスタシリンダ液圧α′,α″

対し一定の時間遅れtをもつて発生し、又上記減
圧弁が第5図及び第6図にδ′,δ″で示すようにマ
スタシリンダ液圧α′,α″より同じ一定値γだけ低
い液圧を封じ込め室に供給し続けることから、こ
の液圧δ′,δ″の上昇遅れが車両減速度β′,β″の

生遅れtに合致しなくなる。従つて、従来の減圧
弁では、いかなるマスタシリンダ液圧の昇圧速度
においても、封じ込め圧を正確に車両重量に対応
させ得ると言う訳にはゆかず、当該減圧弁を設け
ない場合程ではないにしても、狙い通りの液圧制
御特性を得られないのが実情であつた。
However, with this measure, the purpose is achieved only when the rate of increase in master cylinder hydraulic pressure is as indicated by α in FIG. If it is fast as shown by α'' in Figure 6, the objective cannot be achieved. That is,
In these cases, the vehicle deceleration also depends on the master cylinder hydraulic pressure α', α'' as shown by β', β'' in Figures 5 and 6.
This occurs with a certain time delay t, and the pressure reducing valve lowers the master cylinder hydraulic pressure α', α'' by the same constant value γ, as shown by δ', δ'' in Figures 5 and 6. Since low hydraulic pressure continues to be supplied to the containment chamber, the delay in the rise of the hydraulic pressures δ', δ'' does not match the delay t in the occurrence of the vehicle decelerations β', β''. Therefore, with a conventional pressure reducing valve, it is not possible to accurately match the containment pressure to the vehicle weight at any rate of increase in master cylinder fluid pressure, and it is not possible to make the confinement pressure correspond to the vehicle weight accurately, although it is not as good as when the pressure reducing valve is not provided. However, the reality was that it was not possible to obtain the desired hydraulic pressure control characteristics.

本発明は封じ込め室に向う入口液圧通路中へ、
セツト荷重に抗し入口液圧に応動して開く差圧弁
を従来の減圧弁に代え挿入し、入口液圧の昇圧速
度に応じた力を発生して上記セツト荷重に付加す
るアクチユエータを設ければ、封じ込め室に向う
液圧をマスタシリンダ液圧の昇圧速度に応じて入
口液圧に対し減圧することができ、従つて封じ込
め室に向う液圧をいかなる入口液圧の昇圧速度の
もとでも減速度発生遅れ相当の時間だけ入口液圧
より遅らせて上昇させることが可能となり、上述
の問題を解決し得るとの観点から、この構成に特
徴づけられる減速度感知型液圧制御弁をここに提
案するものである。
Into the inlet hydraulic passageway towards the containment chamber, the present invention provides:
By inserting a differential pressure valve that opens in response to the inlet fluid pressure against the set load in place of the conventional pressure reducing valve, and providing an actuator that generates a force according to the rate of increase in the inlet fluid pressure and adds it to the set load. , the hydraulic pressure toward the containment chamber can be reduced relative to the inlet hydraulic pressure according to the rate of increase in master cylinder hydraulic pressure, and therefore the hydraulic pressure toward the containment chamber can be reduced under any rate of increase in inlet hydraulic pressure. We propose here a deceleration sensing type hydraulic pressure control valve characterized by this configuration, from the viewpoint that it is possible to increase the inlet hydraulic pressure with a delay corresponding to the delay in speed generation, and solve the above-mentioned problems. It is something to do.

以下、図示の実施例により本発明を詳細に説明
する。
Hereinafter, the present invention will be explained in detail with reference to illustrated embodiments.

第1図は本発明減速度感知型液圧制御弁の一実
施例で、弁本体1内にコントロールバルブCV(図
示例ではプロポーシヨニングバルブ)と、減速度
感知バルブGVと、差圧弁DVとを収納して構成
する。
Fig. 1 shows an embodiment of the deceleration sensing type hydraulic control valve of the present invention, in which a control valve CV (proportioning valve in the illustrated example), a deceleration sensing valve GV, and a differential pressure valve DV are installed in the valve body 1. Contain and configure.

コントロールバルブCVはプランジヤ2を具え、
これをリテーナ3により案内しつつ弁本体1及び
プラグ4に摺動自在に嵌合して室5,6を画成す
る。室6に臨むプランジヤ2の端面に盲孔2aを
形成し、この盲孔を横孔2bにより室5に通じさ
せる。盲孔2a内にポペツト弁体7をばね8によ
り閉弁方向へ付勢して収納し、このポペツト弁体
7に対する弁座9を盲孔2aの開口端に嵌着す
る。なお、ポペツト弁体7の弁ステムはプランジ
ヤ2の図示する限界位置でプラグ4により押込ま
れ、ポペツト弁体7が弁座9から離れた開弁位置
にされるような長さとする。
The control valve CV has a plunger 2,
This is slidably fitted into the valve body 1 and the plug 4 while being guided by the retainer 3 to define chambers 5 and 6. A blind hole 2a is formed in the end face of the plunger 2 facing the chamber 6, and this blind hole is communicated with the chamber 5 through a horizontal hole 2b. The poppet valve body 7 is stored in the blind hole 2a while being biased toward the valve closing direction by the spring 8, and the valve seat 9 for the poppet valve body 7 is fitted into the open end of the blind hole 2a. The valve stem of the poppet valve body 7 has a length such that the plunger 2 is pushed in by the plug 4 at the illustrated limit position, and the poppet valve body 7 is placed in the open position away from the valve seat 9.

弁本体1には更に、そのプラグ10に摺動自在
に嵌合したピストン11を設けて封じ込め室12
を画成し、ピストン11及びプランジヤ2間にば
ね座13,14を介してばね15を縮設すると共
に、ばね座13は別のばね16によつてもピスト
ン11に押付ける。
The valve body 1 is further provided with a piston 11 that is slidably fitted into the plug 10 to form a containment chamber 12.
A spring 15 is compressed between the piston 11 and the plunger 2 via spring seats 13 and 14, and the spring seat 13 is also pressed against the piston 11 by another spring 16.

減速度感知バルブGVはGボール17及びボー
ル弁体18を具え、これらをロツド19により一
体的に結合すると共に、ボールホルダー20内に
摺動自在に嵌合して弁本体1内に設ける。ボール
ホルダー20にはボール弁体18に対する弁座2
0aを形成すると共に、その弁孔を室21に通じ
させる通路20bを形成し、弁座20aの弁孔は
更にプラグ22に形成した液圧入口ポート23に
通じさせる。
The deceleration sensing valve GV includes a G ball 17 and a ball valve body 18, which are integrally connected by a rod 19 and slidably fitted into a ball holder 20, which is installed in the valve body 1. The ball holder 20 has a valve seat 2 for the ball valve body 18.
0a and a passage 20b that communicates the valve hole with the chamber 21, and the valve hole of the valve seat 20a further communicates with a hydraulic inlet port 23 formed in the plug 22.

差圧弁DVは差圧弁体24及びアクチユエータ
25を具え、差圧弁体24を弁本体1に摺動自在
に嵌合すると共に、アクチユエータ25を両端小
径のピストンとしてこれら小径両端部を夫々弁本
体1及びプラグ26に摺動自在に嵌合する。そし
て、弁体24及びアクチユエータ25間にこれら
を最も離間した図示の位置に弾支するばね27を
縮設し、この位置で弁体24は室21に開口する
孔28を塞ぐ閉弁状態にあり、弁体24がばね2
7によるセツト荷重に打勝つ力を受けて左行する
時孔28が弁体24の外周縦溝24aを経て弁体
24及びアクチユエータ25間の室29に通じる
ものとする。
The differential pressure valve DV includes a differential pressure valve body 24 and an actuator 25. The differential pressure valve body 24 is slidably fitted into the valve body 1, and the actuator 25 is a piston having a small diameter at both ends, and these small diameter ends are connected to the valve body 1 and the actuator 25, respectively. It is slidably fitted into the plug 26. A spring 27 is provided between the valve body 24 and the actuator 25 to elastically support the valve body 24 and the actuator 25 at the position shown in the figure, which is the farthest distance between them. , the valve body 24 is the spring 2
It is assumed that when the hole 28 moves to the left under the force that overcomes the set load caused by the actuator 7, the hole 28 communicates with the chamber 29 between the valve body 24 and the actuator 25 through the outer circumferential longitudinal groove 24a of the valve body 24.

室29は弁本体1に形成した通路30及びプラ
グ10の横孔10aにより封じ込め室12に通じ
させ、アクチユエータ25の図中右側の室31は
弁本体1に形成した通路32により室5に通じさ
せる。又、アクチユエータ25の図中左側の室3
3は弁本体1に形成した通路34により液圧入口
ポート23に通じさせると共に、アクチユエータ
25に形成した連通オリフイス25aにより室3
1に通じさせ、この連通オリフイス25aの室3
1に近い開口端にバイメタル35を対設する。な
お、バイメタル35は温度の上昇につれ連通オリ
フイス25aの開度を減少し、温度変化による作
動液の粘度変化によつてもオリフイス25aの絞
り効果が変化しないようなものとする。
The chamber 29 communicates with the containment chamber 12 through a passage 30 formed in the valve body 1 and the horizontal hole 10a of the plug 10, and the chamber 31 on the right side of the actuator 25 in the figure communicates with the chamber 5 through a passage 32 formed in the valve body 1. . Also, the chamber 3 on the left side of the actuator 25 in the figure
3 communicates with the hydraulic inlet port 23 through a passage 34 formed in the valve body 1, and communicates with the chamber 3 through a communication orifice 25a formed in the actuator 25.
1, and chamber 3 of this communication orifice 25a.
A bimetal 35 is provided oppositely to the open end close to 1. The bimetal 35 reduces the opening degree of the communicating orifice 25a as the temperature rises, so that the throttling effect of the orifice 25a does not change even if the viscosity of the working fluid changes due to temperature changes.

上述の構成になる本発明液圧制御弁は車両の液
圧ブレーキ装置に用いる場合、液圧入口ポート2
3をタンデムマスタシリンダ36の一方の液圧出
口に接続すると共に、室6に通ずるようプラグ4
に形成した液圧出口ポート37を両後輪ホイール
シリンダ38に接続して実用する。なお、タンデ
ムマスタシリンダ36の他方の液圧出口は両前輪
ホイールシリンダ39に接続する。そして、本発
明液圧制御弁は、常態でGボール17が重力によ
り図示の右限位置にされボール弁体18が弁座2
0aから離れた開位置になつているよう水平面H
に対しθだけ傾斜させ、又Gボール17が制動時
の車両減速度により図中左方への力を受けるよう
指向させて車体に取付ける。
When the hydraulic pressure control valve of the present invention having the above-mentioned structure is used in a hydraulic brake system of a vehicle, the hydraulic pressure control valve of the present invention has a hydraulic pressure inlet port 2.
3 to one hydraulic outlet of the tandem master cylinder 36, and connect the plug 4 to communicate with the chamber 6.
The hydraulic outlet port 37 formed in the rear wheel cylinder 38 is connected to both rear wheel cylinders 38 for practical use. Note that the other hydraulic pressure outlet of the tandem master cylinder 36 is connected to both front wheel cylinders 39 . In the hydraulic control valve of the present invention, under normal conditions, the G ball 17 is brought to the rightmost position as shown in the figure due to gravity, and the ball valve body 18 is moved to the valve seat 2.
Horizontal surface H so that it is in the open position away from 0a
The G-ball 17 is attached to the vehicle body so that it is inclined by θ relative to the vehicle body, and is oriented so that the G-ball 17 receives a force to the left in the figure due to vehicle deceleration during braking.

以下、本発明液圧制御弁の作用を説明するに、
図面はその非作動状態を示す。ここでブレーキペ
ダル40の踏込みによりマスタシリンダ36を作
動させると、その両液圧出口から同時に同じ値の
マスタシリンダ液圧Pmが出力される。一方のマ
スタシリンダ液圧Pmは前輪ホイールシリンダ3
9に常時そのまま供給され、他方のマスタシリン
ダ液圧Pmはポート23から通路34、室33、
連通オリフイス25a、通路32、室5、横孔2
b、盲孔2a、弁体7及び弁座9間の隙間、ポー
ト37を経て当初そのまま後輪ホイールシリンダ
38に供給される。従つて、後輪ホイールシリン
ダ38に向う後輪ブレーキ液圧Prは当初マスタ
シリンダ液圧(前輪ブレーキ液圧)Pmに等し
く、第3図にa−bで示す特性を持つて上昇す
る。
The operation of the hydraulic pressure control valve of the present invention will be explained below.
The drawing shows its inactive state. When the master cylinder 36 is actuated by depressing the brake pedal 40, the same master cylinder hydraulic pressure Pm is simultaneously output from both hydraulic pressure outlets. One master cylinder hydraulic pressure Pm is front wheel cylinder 3
9, and the other master cylinder hydraulic pressure Pm is supplied from port 23 to passage 34, chamber 33,
Communication orifice 25a, passage 32, chamber 5, horizontal hole 2
b, the blind hole 2a, the gap between the valve body 7 and the valve seat 9, and the port 37, and are initially supplied to the rear wheel cylinder 38 as they are. Therefore, the rear wheel brake fluid pressure Pr toward the rear wheel cylinder 38 is initially equal to the master cylinder fluid pressure (front wheel brake fluid pressure) Pm, and increases with the characteristics shown by a-b in FIG. 3.

この間のプランジヤ2に作用する力の釣合式
は、リテーナ3に嵌合するプランジヤ2の断面積
をA2、ばね15のばね力をFとすると、次式で
表わされる。
The balance equation of the force acting on the plunger 2 during this time is expressed by the following equation, where A 2 is the cross-sectional area of the plunger 2 that fits into the retainer 3, and F is the spring force of the spring 15.

Pm・A2≦F その後ブレーキペダル40の一層の踏込みで、
マスタシリンダ液圧Pmがさらに上昇すると、上
式左項の値が右項の値より大きくなり、プランジ
ヤ2はばね15に抗し図中左行し、弁体7がばね
8により弁座9に向け移動され、遂にはこの弁座
に着座して自閉する。この時点より後輪ブレーキ
液圧Prはマスタシリンダ液圧Pmに対し以下の如
く上昇を制限されるが、この時の液圧、即ち臨界
液圧Ps1(第3図参照)は、上式から次式の如くに
求まる。
Pm・A 2 ≦F After that, by further depressing the brake pedal 40,
When the master cylinder hydraulic pressure Pm further increases, the value of the left term in the above equation becomes larger than the value of the right term, the plunger 2 moves to the left in the figure against the spring 15, and the valve body 7 is pressed against the valve seat 9 by the spring 8. The valve is moved toward the valve seat, and finally seats itself on this valve seat and closes itself. From this point on, the rear wheel brake fluid pressure Pr is limited from increasing with respect to the master cylinder fluid pressure Pm as shown below, but the fluid pressure at this time, that is, the critical fluid pressure Ps 1 (see Figure 3), is calculated from the above equation. It can be found as shown in the following formula.

Ps1=F/A2・・・・・(1) 上述の如くポペツト弁体7が自閉すると、マス
タシリンダ液圧Pmはプラグ4に対するプランジ
ヤ2の摺動部断面積をA1(但しA1>A2)とする
と、Pm(A1−A2)の力でプランジヤ2を今迄と
逆向き、つまり図中右向きに押すようになり、室
6内の後輪ブレーキ液圧Prがプランジヤ2に及
ぼす図中左向きの力Pr・A1と対向する。ここで
Pm>Ps1となるようブレーキペダル40を更に
踏込むと、マスタシリンダ液圧による上記力がば
ね15のばね力Fと共にプランジヤ2を図中右行
させ、ポペツト弁体7を再び開く。これにより後
輪ブレーキ液圧Prは上昇するが、ポペツト弁体
7が開くことでマスタシリンダ液圧Pmが再度プ
ランジヤ2を図中左向きに押すようになる結果、
ポペツト弁体77は直ちに自閉する。かかる作用
の繰返しにより後輪ブレーキ液圧Prはマスタシ
リンダ液圧Pmの上昇に対し制限されつつ上昇す
る。
Ps 1 = F/A 2 ... (1) When the poppet valve body 7 closes itself as described above, the master cylinder hydraulic pressure Pm changes the cross-sectional area of the sliding part of the plunger 2 with respect to the plug 4 to A 1 (however, A 1 > A 2 ), the force of Pm (A 1 − A 2 ) will push the plunger 2 in the opposite direction, that is, to the right in the figure, and the rear wheel brake fluid pressure Pr in the chamber 6 will be pushed against the plunger 2. 2 is opposed to the force Pr・A 1 directed to the left in the figure. here
When the brake pedal 40 is further depressed so that Pm>Ps 1 , the above-mentioned force due to the master cylinder hydraulic pressure, together with the spring force F of the spring 15, moves the plunger 2 to the right in the figure, and the poppet valve body 7 is opened again. As a result, the rear wheel brake fluid pressure Pr increases, but as the poppet valve body 7 opens, the master cylinder fluid pressure Pm again pushes the plunger 2 to the left in the figure.
The poppet valve body 77 immediately closes itself. By repeating this action, the rear wheel brake fluid pressure Pr increases while being limited by the increase in the master cylinder fluid pressure Pm.

この間、即ちPm>Ps1の間、プランジヤ2に
作用する力の釣合式は上述した処から明らかなよ
うに Pr・A1=Pm(A1−A2)+F・・・・・(2) となり、この式から後輪ブレーキ液圧Prは次式
で表わされる。
During this period, that is, when Pm>Ps 1 , the balance equation of the force acting on the plunger 2 is as clear from the above, Pr・A 1 =Pm(A 1 −A 2 )+F (2) From this equation, the rear wheel brake fluid pressure Pr is expressed by the following equation.

Pr=A1−A2/A1Pm+F/A1・・・・・(3) この式から明らかなように後輪ブレーキ液圧Pr
はPm>Ps1で第3図にb−cで示す如く、これ
まで(第3図中a−b)の勾配1より小さな勾配
A1−A2/A1を持つて上昇し、空車時のように車両重 量が軽い場合における前後輪ブレーキ力配分特性
を狙い通りとなすことができる。
Pr=A 1 −A 2 /A 1 Pm+F/A 1 ...(3) As is clear from this equation, rear wheel brake fluid pressure Pr
is Pm>Ps 1, and as shown by b-c in Fig. 3, the slope is smaller than the slope 1 so far (a-b in Fig. 3).
A 1 −A 2 /A 1 is maintained, and the front and rear wheel brake force distribution characteristics can be set as desired when the vehicle weight is light, such as when the vehicle is empty.

ところで、ポート23に達したマスタシリンダ
液圧Pmは弁座20aの弁孔、通路20b及び室
21を経て孔28に達している。しかし、弁体2
4が孔28を塞いでいるため、当該マスタシリン
ダ液圧Pmが弁体24の右端面に作用する。マス
タシリンダ液圧Pmがばね27からのセツト荷重
で決まる差圧弁DVの作動圧迄上昇すると、弁体
24はマスタシリンダ液圧Pmにより、ばね27
によるセツト荷重に抗して図中左行され、孔28
を開く。この時マスタシリンダ液圧Pmは縦溝2
4a、室29、通路30を経て封じ込め室12に
達する。しかし、この時マスタシリンダ液圧Pm
が弁体24の両端面に作用するようになる結果、
弁体24は直ちにばね27で閉位置に押戻され
る。かかる作用の繰返しにより差弁圧DVは、弁
体24の受圧面積をA3、ばね27のばね力(セ
ツト荷重)をF′とすると、次式で表わされる液圧
Pfを封じ込め室12に供給している。
By the way, the master cylinder hydraulic pressure Pm that has reached the port 23 reaches the hole 28 via the valve hole of the valve seat 20a, the passage 20b and the chamber 21. However, valve body 2
4 closes the hole 28, the master cylinder hydraulic pressure Pm acts on the right end surface of the valve body 24. When the master cylinder hydraulic pressure Pm rises to the operating pressure of the differential pressure valve DV determined by the set load from the spring 27, the valve body 24 is activated by the spring 27 due to the master cylinder hydraulic pressure Pm.
The hole 28 is moved to the left in the figure against the set load caused by the
open. At this time, the master cylinder hydraulic pressure Pm is vertical groove 2
4a, chamber 29, and passage 30 to reach containment chamber 12. However, at this time, the master cylinder hydraulic pressure Pm
acts on both end surfaces of the valve body 24,
The valve body 24 is immediately pushed back to the closed position by the spring 27. By repeating this action, the differential valve pressure DV becomes the hydraulic pressure expressed by the following formula, where A 3 is the pressure receiving area of the valve body 24, and F' is the spring force (set load) of the spring 27.
Pf is being supplied to containment room 12.

Pf=Pm−F′/A3・・・・・(4) この式から明らかなように封じ込め室12に供給
される液圧Pfはばね27のばね力F′で決まる値
F′/A3だけマスタシリンダ液圧Pmより低い値と
なる。
Pf=Pm−F′/A 3 (4) As is clear from this equation, the hydraulic pressure Pf supplied to the containment chamber 12 is determined by the spring force F′ of the spring 27.
The value is lower than the master cylinder hydraulic pressure Pm by F'/A 3 .

そして、前記制動により車両減速度が一定値以
上に達すると、この減速度によりGボール17が
ロツド19及びボール弁体18と共に図中左行さ
れ、ボール弁体18が弁座20aに着座してその
弁孔を塞ぐ。従つて、上記一定減速度を発生した
時のマスタシリンダ液圧Pmから上記の値F′/A3
を減じた液圧Pfを減速度感知バルブGV及び差圧
弁DVは室12に封じ込めることとなる。しかし
て、同じ上記一定減速度を発生させるにも、その
ためのブレーキペダル踏力(マスタシリンダ液圧
Pm)は車両重量が重い程大きく、従つて封じ込
め圧Pfは車両重量が重くなるにつれ上昇する。
そして、空車時のように車両重量が軽い状態で
は、封じ込め圧Pfがピストン11をばね15,
16に抗し図中右行させる程高くなく、ピストン
11は図示の位置にとどまつてばね15のばね力
Fをセツト荷重のままに保つ。従つて、空車時は
前記作用により前後輪ブレーキ力配分特性が第3
図中a−b−cで示す狙い通りの特性となるよう
な後輪ブレーキ液圧Prの制御が得られる。
When the vehicle deceleration reaches a certain value or more due to the braking, the G ball 17 is moved to the left in the figure along with the rod 19 and the ball valve body 18 due to the deceleration, and the ball valve body 18 is seated on the valve seat 20a. Close that valve hole. Therefore, from the master cylinder hydraulic pressure Pm when the above constant deceleration occurs, the above value F′/A 3
The deceleration sensing valve GV and the differential pressure valve DV confine the reduced hydraulic pressure Pf in the chamber 12. However, in order to generate the same constant deceleration mentioned above, the brake pedal depression force (master cylinder hydraulic pressure
Pm) increases as the vehicle weight increases, and therefore the containment pressure Pf increases as the vehicle weight increases.
When the vehicle weight is light, such as when the vehicle is empty, the containment pressure Pf moves the piston 11 through the spring 15,
16, the piston 11 remains in the position shown and maintains the spring force F of the spring 15 at the set load. Therefore, when the car is empty, the front and rear wheel brake force distribution characteristics become the third due to the above action.
It is possible to control the rear wheel brake fluid pressure Pr such that the desired characteristics shown by a-b-c in the figure are achieved.

一方、積車により車両重量が重くなり、それに
つれ室12内の封じ込め圧Pfが上昇すると、こ
の封じ込め圧はピストン11を車両重量の増加に
つれ大きくばね15,16に抗して、図中右行さ
せ、ばね15のばね力Fを増大させる。これによ
り、前記(1)式の如くに求まる臨界液圧を或る積車
状態で第3図中Ps1からPs2へと上昇させ、前記(3)
式の如くに求まる後輪ブレーキ液圧Prを第3図
中a−b′−c′で示す狙い通りに制御することがで
きる。
On the other hand, as the weight of the vehicle increases due to the weight of the loaded vehicle, the confinement pressure Pf within the chamber 12 rises.As the weight of the vehicle increases, this confinement pressure causes the piston 11 to move against the springs 15 and 16 to the right in the figure. to increase the spring force F of the spring 15. As a result, the critical hydraulic pressure determined as in equation (1) above is increased from Ps 1 to Ps 2 in Fig. 3 in a certain loading state, and
The rear wheel brake fluid pressure Pr determined as shown in the equation can be controlled as intended as indicated by a-b'-c' in FIG.

ところで、コントロールバルブCVに向うマス
タシリンダ液圧Pmはその途中で連通オリフイス
25aを通るため、該連通オリフイスがその絞り
効果により作動液に流通抵抗を与え、連通オリフ
イス25aの前後に、即ち室31,33間に圧力
差(室33内の圧力の方が室31内の圧力より高
い)が発生する。この差圧はマスタシリンダ液圧
Pmの昇圧速度(作動液流速度)が速くなるにつ
れ大きくなり、アクチユエータ25はマスタシリ
ンダ液圧の昇圧速度に応じた図中右向きの力を発
生する。しかし、マスタシリンダ液圧Pmの昇圧
速度が第5図にα′で示す如く遅い場合、アクチユ
エータ25の上記右向きの力はばね27に打勝つ
程大きくならず、アクチユエータ25は図示の位
置にとどまつてばね27をセツト荷重に保つ。か
くて、ばね27のばね力で決まる差圧弁DVの作
動圧は低く、前記(4)式の如くに求まる封じ込め室
12への液圧Pfはこの場合第5図にεで示すよ
うに変化し、マスタシリンダ液圧との差γ′を従来
のそれγより小さくすることができる。
By the way, since the master cylinder hydraulic pressure Pm directed to the control valve CV passes through the communication orifice 25a on the way, the communication orifice provides a flow resistance to the hydraulic fluid due to its throttling effect, and the flow is caused to flow between the chambers 31 and 31 before and after the communication orifice 25a. 33 (the pressure in chamber 33 is higher than the pressure in chamber 31). This differential pressure is the master cylinder fluid pressure
As the pressure increase rate of Pm (working fluid flow rate) increases, the actuator 25 generates a force directed to the right in the figure in accordance with the pressure increase rate of the master cylinder liquid pressure. However, if the pressure increase rate of the master cylinder hydraulic pressure Pm is slow as shown by α' in FIG. Keep spring 27 at set load. Therefore, the operating pressure of the differential pressure valve DV determined by the spring force of the spring 27 is low, and the fluid pressure Pf to the containment chamber 12, which is determined by equation (4) above, changes as shown by ε in FIG. 5 in this case. , the difference γ' from the master cylinder hydraulic pressure can be made smaller than the conventional one.

マスタシリンダ液圧Pmの昇圧速度が第4図に
αで示すように速い場合、連通オリフイス25a
の前後差圧がその分大きくなつてアクチユエータ
25はこの差圧により図示の位置からマスタシリ
ンダ液圧の昇圧速度に見合つた量だけばね27に
抗して図中右行される。かくて、ばね27のばね
力F′が増し、このばね力で決まる差圧弁DVの作
動圧は上昇し、前記(4)式の如くに求まる封じ込め
室12への液圧Pfはこの場合第4図にδで示す
ように従来通りに変化する。
When the rate of increase in master cylinder hydraulic pressure Pm is fast as shown by α in Fig. 4, the communication orifice 25a
The differential pressure between the front and rear increases accordingly, and the actuator 25 is moved from the illustrated position to the right in the figure against the spring 27 by an amount commensurate with the rate of increase in the master cylinder hydraulic pressure. Thus, the spring force F' of the spring 27 increases, the operating pressure of the differential pressure valve DV determined by this spring force increases, and the hydraulic pressure Pf to the containment chamber 12, which is determined by the above equation (4), becomes As shown by δ in the figure, the change occurs as before.

マスタシリンダ液圧Pmの昇圧速度が第6図に
α″で示すように更に速い場合、連通オリフイス
25aの前後差圧が一層大きくなつてアクチユエ
ータ25はこの差圧により上記右行位置から一層
右動される。かくて、ばね27のばね力F′が更に
大きくなり、このばね力で決まる差圧弁DVの作
動圧は一層上昇し、前記(4)式の如くに求まる封じ
込め室12への液圧Pfはこの場合第6図にε′で示
すように変化し、マスタシリンダ液圧との差γ″を
従来のそれγより大きくすることができる。
If the pressure increase rate of the master cylinder hydraulic pressure Pm is faster as shown by α'' in FIG. As a result, the spring force F' of the spring 27 becomes even larger, and the operating pressure of the differential pressure valve DV determined by this spring force further increases, and the hydraulic pressure to the containment chamber 12, which is determined as in equation (4) above, increases. In this case, Pf changes as shown by ε' in FIG. 6, and the difference γ'' from the master cylinder hydraulic pressure can be made larger than the conventional value γ.

以上により、封じ込め室12に向う液圧Pfは
第4図乃至第6図に示す如くマスタシリンダ液圧
Pmのいかなる昇圧速度α,α′,α″のもとでも、
車両減速度発生遅れtに相当する時間だけマスタ
シリンダ液圧より遅れて発生することとなり、減
速度感知バルブGVが前述のように閉じた時室1
2内に封じ込められる封じ込め圧をいかなるマス
タシリンダ液圧の昇圧速度のもとでも車両重量に
正確に対応させることができ、前記液圧制御を狙
い通り実行可能である。
As a result of the above, the hydraulic pressure Pf toward the containment chamber 12 is the master cylinder hydraulic pressure as shown in FIGS. 4 to 6.
Under any pressure increase rate α, α′, α″ of Pm,
Vehicle deceleration occurs later than the master cylinder hydraulic pressure by a time corresponding to the vehicle deceleration onset delay t, and when the deceleration sensing valve GV is closed as described above, chamber 1
The confinement pressure contained within the cylinder 2 can be made to correspond accurately to the weight of the vehicle under any pressure increase rate of the master cylinder hydraulic pressure, and the hydraulic pressure control can be executed as desired.

かくして本発明減速度感知型液圧制御弁は上述
の如く封じ込め室12に向う入口液圧通路中へ、
弾性材27,27′のセツト荷重に抗し入口液圧
マスタシリンダ液圧)に応動して開く差圧弁DV
を挿入し、コントロールバルブCVに向かう入口
液圧通路の一部を成す連通オリフイス25a,2
5′aを有し、この連通オリフイスを通る入口液
圧の昇圧速度に応じた力を発生するアクチユエー
タ25,25′を設け、このアクチユエータによ
り弾性材27,27′を介し差圧弁DVを付勢す
るよう構成配置したから、上記作用説明通り封じ
込め室12に向う液圧Pfを入口液圧のいかなる
昇圧速度のもとでも減速度発生遅れtに相当する
時間だけ入口液圧より遅らせて上昇させることが
でき、従つて減速度感知バルブGVが閉じた時の
室12内の封じ込め圧を常に正確に車両重量に対
応させ得て、いかなる入口液圧の昇圧速度のもと
でも各車両重量毎に狙い通りの液圧制御が達成さ
れるという優れた機能上の特長を持つ。
Thus, the deceleration-sensing hydraulic control valve of the present invention is configured to provide an inlet hydraulic passageway to the containment chamber 12 as described above.
Differential pressure valve DV that opens in response to the inlet hydraulic pressure (master cylinder hydraulic pressure) against the set load of the elastic members 27, 27'
is inserted into the communication orifice 25a, 2 which forms part of the inlet hydraulic passage toward the control valve CV.
Actuators 25 and 25' are provided which generate a force according to the rate of increase in inlet fluid pressure passing through this communication orifice, and this actuator biases the differential pressure valve DV via elastic members 27 and 27'. Therefore, as explained above, the hydraulic pressure Pf toward the containment chamber 12 can be increased with a delay from the inlet hydraulic pressure by a time corresponding to the deceleration generation delay t under any pressure increase rate of the inlet hydraulic pressure. Therefore, the confinement pressure in the chamber 12 when the deceleration sensing valve GV is closed can always accurately correspond to the vehicle weight, and the pressure can be adjusted to a target value for each vehicle weight under any rate of increase in inlet fluid pressure. It has an excellent functional feature that the hydraulic pressure control is achieved.

なお、図示例の如く連通オリフイス25aにバ
イメタル35を対設すれば、これが作動液の温度
変化による粘度変化によつても連通オリフイス2
5aの絞り効果を一定に保つことから、いかなる
温度条件のもとでも前記作用効果が確実に達成さ
れて、好都合である。
In addition, if the bimetal 35 is provided opposite to the communication orifice 25a as shown in the illustrated example, the communication orifice 2
Since the throttling effect of 5a is kept constant, the above effects can be reliably achieved under any temperature conditions, which is advantageous.

第2図は本発明減速感知型液圧制御弁の他の例
を示し、本例はコントロールバルブCVを前記と
同じプロポーシヨニングバルブながら別の構成に
すると共に、該コントロールバルブの構成上別の
液圧封じ込め部PFを設ける以外、前述した例と
部品の配置は異なるもののほぼ同様に構成したも
のである。従つて、前述した例と同様に機能する
部分については、形状及び配置が違つても同一符
号にダツシユを附して図示するにとどめ、その詳
細な重復説明をここでは省略する。
FIG. 2 shows another example of the deceleration sensing type hydraulic control valve of the present invention, in which the control valve CV is the same proportioning valve as described above but has a different configuration, and the control valve has a different configuration. Except for the provision of the hydraulic containment part PF, the arrangement of parts is different from the example described above, but the structure is almost the same. Therefore, parts that function in the same manner as in the above-mentioned example are simply illustrated using the same reference numerals with a dash even if the shape and arrangement are different, and detailed explanation thereof will be omitted here.

コントロールバルブCVはプランジヤ41を具
え、これをリテーナ42によつても案内しつつ弁
本体1′に摺動自在に嵌合して、リテーナ42の
両側に室43,44を画成する。室44をプラグ
45により塞ぐと共に、このプラグとプランジヤ
41に固設したばね座46との間にばね47を縮
設して、プランジヤ41をプラグ48に突当て、
このプラグ48及びプランジヤ41間に室49を
画成する。又、室44は通路32′に通じさせ、
室49は液圧出口ポート37′に通じさせ、室4
4,49間を連通するようプランジヤ41に中空
孔41aを形成する。
The control valve CV includes a plunger 41 which is slidably fitted into the valve body 1' while also being guided by a retainer 42, defining chambers 43, 44 on both sides of the retainer 42. The chamber 44 is closed by a plug 45, a spring 47 is compressed between the plug and a spring seat 46 fixed to the plunger 41, and the plunger 41 is brought into contact with the plug 48,
A chamber 49 is defined between the plug 48 and the plunger 41. The chamber 44 also communicates with the passageway 32';
Chamber 49 communicates with hydraulic outlet port 37';
A hollow hole 41a is formed in the plunger 41 so as to communicate between the plunger 4 and the plunger 41.

中空孔41aの図中右側開口端を弁座として作
用させ、これにポペツト弁体50を対設する。ポ
ペツト弁体50はプラグ45に固設したケージ5
1内に収納すると共に、ばね52によりプランジ
ヤ41に向け付勢し、ケージ51から一部突出し
た位置に弾支する。
The opening end of the hollow hole 41a on the right side in the figure acts as a valve seat, and a poppet valve body 50 is disposed opposite thereto. The poppet valve body 50 is a cage 5 fixed to the plug 45.
At the same time, it is biased toward the plunger 41 by a spring 52 and elastically supported at a position partially protruding from the cage 51.

液圧封じ込め部PFは封じ込め圧応動ピストン
53を具え、これを弁本体1′内に摺動自在に嵌
合して封じ込め室54を画成し、この室54を通
路30′に通じさせると共に、通路55を経て室
43に通じさせる。そして、ピストン53にばね
座56,57を介しばね58,59を作用させ、
これらばねをプラグ60に着座させる。
The hydraulic containment section PF includes a containment pressure responsive piston 53 that is slidably fitted within the valve body 1' to define a containment chamber 54 communicating with the passageway 30'; It communicates with the chamber 43 via a passage 55. Then, the springs 58 and 59 are applied to the piston 53 via the spring seats 56 and 57,
These springs are seated in plug 60.

かかる本例の液圧制御弁においては、図示の非
作動状態でブレーキペダル40の踏込みにより発
生したマスタシリンダ液圧Pmは前述した例と同
様の経路、即ちポート23′より通路34′室3
3′連通オリフイス25′a、室31′、通路3
2′を経てコントロールバルブCVの室44に達
し、このコントロールバルブは以下の如くに機能
する。即ち、室44に達したマスタシリンダ液圧
Pmはポペツト弁体50及びプランジヤ41間の
隙間、プランジヤ中空孔41a、室49及びポー
ト37′を経て当初そのまま後輪ブレーキ液圧Pr
として出力される。
In the hydraulic pressure control valve of this example, the master cylinder hydraulic pressure Pm generated by depressing the brake pedal 40 in the non-operating state shown in the figure is routed through the same route as in the previous example, that is, from the port 23' to the passage 34' and the chamber 3.
3' communication orifice 25'a, chamber 31', passage 3
2' leads to the chamber 44 of the control valve CV, which functions as follows. That is, the master cylinder hydraulic pressure reaching chamber 44
Pm passes through the gap between the poppet valve body 50 and the plunger 41, the plunger hollow hole 41a, the chamber 49 and the port 37', and then the rear wheel brake fluid pressure Pr remains unchanged.
is output as

そして、この間マスタシリンダ液圧Pmはプラ
ンジヤ41の両端に作用し、その受圧面積は左側
の方が大きいため、プランジヤ41は図中右向き
の力を受ける。この力がマスタシリンダ液圧Pm
の上昇につれ増大し、ばね47のばね力及び後述
する如く室43に及ぶ封じ込め圧による力に打勝
つと、プランジヤ41は図中右行され、中空孔4
1aの右側開口端をポペツト弁体50により塞が
れて上記の液圧通路を断つ。この時、マスタシリ
ンダ液圧Pmはプランジヤ41に対しその右側面
のみに作用して上記と逆向きの力を及ぼすように
なる結果、マスタシリンダ液圧Pmの上昇時プラ
ンジヤ41は左方に戻され、再び上記液圧通路を
開く。かかる作用の繰返しによりコントロールバ
ルブCVは前記した例と同様に後輪ブレーキ液圧
を制御することができる。
During this time, the master cylinder hydraulic pressure Pm acts on both ends of the plunger 41, and since the pressure receiving area is larger on the left side, the plunger 41 receives a force directed to the right in the figure. This force is the master cylinder hydraulic pressure Pm
increases as the pressure rises, and overcomes the spring force of the spring 47 and the force due to the containment pressure exerted on the chamber 43 as described later, the plunger 41 moves to the right in the figure, and the hollow hole 4
The right opening end of 1a is closed by a poppet valve body 50 to cut off the above-mentioned hydraulic pressure passage. At this time, the master cylinder hydraulic pressure Pm acts only on the right side of the plunger 41 and exerts a force in the opposite direction to the above, so that the plunger 41 is returned to the left when the master cylinder hydraulic pressure Pm increases. , open the hydraulic passage again. By repeating this action, the control valve CV can control the rear wheel brake fluid pressure in the same manner as in the above example.

この間、ポート23′からのマスタシリンダ液
圧Pmは差圧弁DVの前記作用によりマスタシリ
ンダ液圧の昇圧速度に応じた値だけ減圧されて封
じ込め室54にも達しており、車両減速度が前記
一定値に達すると、減速度感知バルブGVが前記
作用により閉じて室54内にこの時の差圧弁DV
からの液圧を封じ込める。この封じ込め圧はピス
トン53を介しばね58又はこれとばね59とを
圧縮して封じ込め室54内に貯えられ、通路55
より室43に達してプランジヤ41にばね47を
助勢する方向へ作用する。ところで、当該封じ込
め圧が前述したように車両重量に対応することか
ら、コントロールバルブCVは車両重量毎に狙い
通りの液圧制御を行なうことができる。
During this time, the master cylinder hydraulic pressure Pm from the port 23' is reduced by a value corresponding to the rate of increase in the master cylinder hydraulic pressure due to the action of the differential pressure valve DV, and reaches the containment chamber 54, so that the vehicle deceleration remains constant. When the value is reached, the deceleration sensing valve GV closes due to the above action, and the differential pressure valve DV at this time is closed in the chamber 54.
Contains the hydraulic pressure from. This confinement pressure is stored in the confinement chamber 54 by compressing the spring 58 or the spring 59 through the piston 53, and is stored in the confinement chamber 54 through the passage 55.
The spring 47 reaches the chamber 43 and acts on the plunger 41 in a direction that supports the spring 47. By the way, since the containment pressure corresponds to the vehicle weight as described above, the control valve CV can perform targeted hydraulic pressure control for each vehicle weight.

そして本例でも、封じ込め室54に向う入口液
圧通路(マスタシリンダ液圧通路)中へ、前述し
た例と同様な差圧弁DVを挿入し、そのセツト荷
重を前述した例と同様なアクチユエータ25′に
より入口液圧の昇圧速度に応じ変化させる構成と
したから、封じ込め室54に向う液圧を入口液圧
のいかなる昇圧速度のもとでも、車両減速度発生
遅れ相当の時間だけ入口液圧より遅れて発生させ
ることができ、常に室54内の封じ込め圧を車両
重量に正確に対応させ得て、各車両重量毎に狙い
通りの液圧制御を実行するという本発明の目的を
達成することができる。
In this example as well, a differential pressure valve DV similar to the above-mentioned example is inserted into the inlet hydraulic pressure passage (master cylinder hydraulic pressure passage) toward the containment chamber 54, and its set load is applied to the actuator 25' similar to the above-mentioned example. Because the structure is configured to change the inlet hydraulic pressure according to the rate of increase in inlet hydraulic pressure, the hydraulic pressure toward the containment chamber 54 lags behind the inlet hydraulic pressure by a time equivalent to the delay in vehicle deceleration, no matter what rate of increase in inlet hydraulic pressure. The confinement pressure in the chamber 54 can always be made to accurately correspond to the weight of the vehicle, and the objective of the present invention, which is to execute hydraulic pressure control as desired for each vehicle weight, can be achieved. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明液圧制御弁の一例を示す縦断面
図、第2図は本発明の他の例を示す第1図と同様
の縦断側面図、第3図は本発明液圧制御弁の作用
特性図、第4図乃至第6図は夫々マスタシリンダ
液圧の昇圧速度毎に車両減速度の発生遅れ状況を
従来の減圧弁による封じ込め圧及び本発明により
設けた差圧弁による封じ込め圧の変化特性と共に
示す線図である。 1,1′……弁本体、CV……コントロールバル
ブ、15,47……ばね、GV……減速度感知バ
ルブ、12,54……封じ込め室、DV……差圧
弁、24,24′……差圧弁体、24a,24′a
……縦溝、25,25′……アクチユエータ、2
5a,25′a……連通オリフイス、27,2
7′……ばね、35,35′……バイメタル。
FIG. 1 is a longitudinal sectional view showing an example of the hydraulic pressure control valve of the present invention, FIG. 2 is a longitudinal sectional side view similar to FIG. 1 showing another example of the present invention, and FIG. 3 is a longitudinal sectional view of the hydraulic pressure control valve of the present invention. 4 to 6 show the delay in the occurrence of vehicle deceleration for each pressure increase rate of the master cylinder hydraulic pressure, and the confinement pressure by the conventional pressure reducing valve and the confinement pressure by the differential pressure valve provided according to the present invention. It is a diagram shown together with change characteristics. 1, 1'... Valve body, CV... Control valve, 15, 47... Spring, GV... Deceleration sensing valve, 12, 54... Containment chamber, DV... Differential pressure valve, 24, 24'... Differential pressure valve body, 24a, 24'a
... Vertical groove, 25, 25' ... Actuator, 2
5a, 25'a...Communication orifice, 27,2
7'... Spring, 35, 35'... Bimetal.

Claims (1)

【特許請求の範囲】 1 ばねに抗して入口液圧に応動し、この入口液
圧を制限しつつ出口液圧となすよう液圧制御を行
なうコントロールバルブと、一定以上の減速度で
閉じてこの一定減速度を発生した時の前記入口液
圧を封じ込め室に封じ込めることにより、この封
じ込め圧に応じた力で前記ばねを助勢する減速度
感知バルブとを具えた減速度感知型液圧制御弁に
おいて、 前記封じ込め室に向う入口液圧通路中へ、弾性
材のセツト荷重に抗し入口液圧に応動して開く差
圧弁を挿入し、 前記コントロールバルブに向かう入口液圧通路
の一部を成す連通オリフイスを有し、この連通オ
リフイスを通る入口液圧の昇圧速度に応じた力を
発生するアクチユエータを設け、 このアクチユエータにより前記弾性材を介し差
圧弁を付勢するよう構成配置したことを特徴とす
る減速度感知型液圧制御弁。
[Scope of Claims] 1. A control valve that responds to inlet hydraulic pressure against a spring and controls the hydraulic pressure so that the inlet hydraulic pressure is limited while maintaining the outlet hydraulic pressure, and a control valve that closes at a deceleration above a certain level. A deceleration sensing type hydraulic control valve comprising a deceleration sensing valve that assists the spring with a force corresponding to the containment pressure by confining the inlet liquid pressure when the constant deceleration occurs in a containment chamber. A differential pressure valve that opens in response to inlet hydraulic pressure against a set load of an elastic material is inserted into the inlet hydraulic passageway toward the containment chamber, and forms a part of the inlet hydraulic passageway toward the control valve. An actuator having a communicating orifice and generating a force according to the rate of increase in inlet liquid pressure passing through the communicating orifice is provided, and the differential pressure valve is configured and arranged so that the actuator biases the differential pressure valve via the elastic material. Deceleration sensing type hydraulic control valve.
JP13084382A 1982-07-27 1982-07-27 Deceleration sensitive type hydraulic control valve Granted JPS5920757A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP13084382A JPS5920757A (en) 1982-07-27 1982-07-27 Deceleration sensitive type hydraulic control valve
EP83107345A EP0100096B1 (en) 1982-07-27 1983-07-26 Brake pressure control unit of deceleration-responsive type
US06/517,410 US4560208A (en) 1982-07-27 1983-07-26 Brake pressure control unit of deceleration-responsive type
DE8383107345T DE3366880D1 (en) 1982-07-27 1983-07-26 Brake pressure control unit of deceleration-responsive type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13084382A JPS5920757A (en) 1982-07-27 1982-07-27 Deceleration sensitive type hydraulic control valve

Publications (2)

Publication Number Publication Date
JPS5920757A JPS5920757A (en) 1984-02-02
JPH0329624B2 true JPH0329624B2 (en) 1991-04-24

Family

ID=15043990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13084382A Granted JPS5920757A (en) 1982-07-27 1982-07-27 Deceleration sensitive type hydraulic control valve

Country Status (1)

Country Link
JP (1) JPS5920757A (en)

Also Published As

Publication number Publication date
JPS5920757A (en) 1984-02-02

Similar Documents

Publication Publication Date Title
JPH0134814B2 (en)
US4462641A (en) Deceleration sensing valve assembly for vehicle brake
US4205883A (en) Inertia sensing brake proportioning valve
US4499729A (en) Fast-fill master cylinder
JPS6167651A (en) Distributing valve device
JPS6220934B2 (en)
US4116493A (en) Brake pressure control valve
US4119354A (en) Hydraulic brake control assembly
US4080006A (en) Braking pressure control valve unit
JPS582860B2 (en) Hydraulic control valve for two-line piping
JPH0329624B2 (en)
JPS5848214Y2 (en) Brake hydraulic pressure control valve
JPS6215153A (en) Nonskid hydraulic control system for car
US4560208A (en) Brake pressure control unit of deceleration-responsive type
GB2097080A (en) Deceleration-sensing pressure proportioning or limiting valve assembly for vehicle braking systems
GB2069637A (en) Fluid pressure control valve assembly for automotive braking system
US4229940A (en) Hydraulic master cylinder
US4444436A (en) Hydraulic pressure control valve
JPS5925705B2 (en) master cylinder
JPS5858262B2 (en) Check valve mechanism for brake hydraulic control system
JPS6140614Y2 (en)
JPH0333540B2 (en)
JPS6330597Y2 (en)
JPS598927Y2 (en) hydraulic control device
JPH01240352A (en) Brake liquid pressure control valve