JPS5962121A - Manufacture of styrene resin foam - Google Patents

Manufacture of styrene resin foam

Info

Publication number
JPS5962121A
JPS5962121A JP57173008A JP17300882A JPS5962121A JP S5962121 A JPS5962121 A JP S5962121A JP 57173008 A JP57173008 A JP 57173008A JP 17300882 A JP17300882 A JP 17300882A JP S5962121 A JPS5962121 A JP S5962121A
Authority
JP
Japan
Prior art keywords
foam
foaming
resin
temperature
extruder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57173008A
Other languages
Japanese (ja)
Other versions
JPH0348016B2 (en
Inventor
Tomoshige Hayashi
基滋 林
Hidetomo Shirai
白井 英知
Yoshifumi Nakahara
中原 良史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kaseihin Kogyo KK
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Sekisui Kaseihin Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd, Sekisui Kaseihin Kogyo KK filed Critical Sekisui Plastics Co Ltd
Priority to JP57173008A priority Critical patent/JPS5962121A/en
Publication of JPS5962121A publication Critical patent/JPS5962121A/en
Publication of JPH0348016B2 publication Critical patent/JPH0348016B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/46Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length
    • B29C44/50Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2025/00Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material

Abstract

PURPOSE:To allow even a resin foam having a large thickness to foam uniformly and to a high degree thereby to manufacture a high-quality foam best suitable for use as an heat insulating material, by a method wherein a resin is extrusion-foamed as a primary foaming, and the surface of the resin foam is subsequently heated under vacuum to effect a secondary foaming. CONSTITUTION:A molten styrene resin including a forming agent is extruded from an extruder into a low-pressure region so as to become a foam (a primary foaming). Under the state where the inside of the foam has a high temperature and the surface portion thereof has a temperature below the heat distortion point of the resin, the foam surfade is heated to a temperature above the heat distortion point under a vacuum below 500mm.Hg, which is lower than the low pressure in the case of the primary foaming, to allow the primarily foamed resin to foam to a high degree (a secondary foaming), thereby to manufacture a final foam.

Description

【発明の詳細な説明】 この発明は、スチレン系樹脂発泡体の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a styrenic resin foam.

押出成形法によると、連続的に能率よく成形体を製造す
ることができるので、断面形状の一定な発泡体を作るに
は、押出成形法によることが好ましい。スチレン系樹脂
を用いて、スラブと呼ばれるよう力肉厚の発泡体を作る
場合に杜、押出成形法によって良好な発泡体を製造する
ことができる。
According to the extrusion molding method, a molded body can be manufactured continuously and efficiently, so the extrusion molding method is preferable in order to produce a foamed body having a constant cross-sectional shape. When making a thick foam called a slab using styrene resin, it is possible to produce a good foam using the extrusion molding method.

しかし、スラブの倍率が高くなって例えば倍率が40倍
以上となると、これを押出成形法によって作ることが困
難となる。それは、倍率が大きくなると、発泡体のセル
膜強度が弱くなり、成型時にこわれて表面部分と内部と
を一様に発泡させることが困等となるからである。そこ
で、押出成形法によって発泡倍率の高いものを均一に発
泡させるに適した方法を案出する必要があった。
However, when the magnification of the slab becomes high, for example, 40 times or more, it becomes difficult to manufacture it by extrusion molding. This is because, as the magnification increases, the cell membrane strength of the foam becomes weaker and breaks during molding, making it difficult to uniformly foam the surface and interior. Therefore, it was necessary to devise a method suitable for uniformly foaming products with a high expansion ratio by extrusion molding.

そこで、この発明者は、厚みの大きいスチレン系樹脂発
泡体を均一に発泡させる方法を案出1べく、種々の実験
を行った。その際、この発明者は、押出機から低圧力下
に押出して肉厚の発泡体を発泡さゼるとき、表面から冷
却して表面部分だけを一旦固化させて皮をつけ、内部は
まだ高温にあって柔かい発泡力の残存する状態にあると
き、この表面の皮から加熱し雰囲気を真空にしだ。その
結果、このよりにすると、発泡体の表面の皮の発泡につ
れて内部も残存発泡力で再び発泡し、その横断面では表
面部も内部も同じように発泡し高発泡倍率のものとなる
ことを見出した。この発明は、このような知見に基すい
てなされたものである。
Therefore, the inventor conducted various experiments in order to devise a method for uniformly foaming a thick styrene resin foam. At that time, when this inventor extruded the foam under low pressure from an extruder to form a thick foam, the inventor cooled it from the surface to solidify only the surface part to form a skin, while the inside was still hot. When it is in a state where soft foaming power remains, the surface skin is heated and the atmosphere is evacuated. As a result, with this twist, as the skin on the surface of the foam foams, the interior of the foam foams again due to the residual foaming force, and in the cross section, both the surface and the interior foam in the same way, resulting in a product with a high foaming ratio. I found it. This invention was made based on such knowledge.

この発明は、発泡剤を含んだ溶融スチレン系樹脂を押出
機から低圧領域に押出し、発泡させて発泡体とし92発
泡体の内部が高温にあって表面部が熱変形温度以下とな
った状態で、更に低圧である500m11g以下の減圧
された真空状態の中で発泡体表面を熱変形温度以上に加
熱して高度に発泡させることを特徴とする、スチレン系
樹脂発泡体の製造方法に関するものである。
This invention involves extruding a molten styrene resin containing a blowing agent from an extruder into a low-pressure region and foaming it to form a foam. This invention relates to a method for producing a styrenic resin foam, which is characterized by heating the surface of the foam to a temperature higher than the heat distortion temperature in a reduced pressure of 500 m 11 g or less to foam it to a high degree. .

スチレン系樹脂発泡体を朽び加熱すると、発泡体が二次
発泡し、発泡倍率を増すに至ることは、既に知られてい
る。この場合、最初の発泡すなわち一次発泡と、あとか
らの発泡すなわち二次発泡との間には、ある程度の時間
を置かなければならないとされた。例えば、少くとも一
昼夜位は放置することが必要とされた。このことは、ス
チレン系樹脂から成る発泡性ビーズを孔あき金型に入れ
、水蒸気を金型内に吹き込んで発泡成形体とする場合に
、ビーズを一次発泡させてから二次発泡させるまでに、
通常数日間放置することを必要としていたことからも明
らかである。すなわち、従来は、−次発泡に引き続いて
二次発泡を行ったのでは、二次発泡の効果が充分でない
と考えられていた。
It is already known that when a styrene resin foam is aged and heated, the foam undergoes secondary foaming and the expansion ratio increases. In this case, it was determined that a certain amount of time must be allowed between the initial foaming, or primary foaming, and the subsequent foaming, or secondary foaming. For example, it was necessary to leave it alone for at least one day and night. This means that when foaming beads made of styrene resin are placed in a perforated mold and water vapor is blown into the mold to form a foamed product, from the time the beads are firstly foamed to the time when they are secondarily foamed.
This is clear from the fact that it was usually necessary to leave it for several days. That is, conventionally, it has been thought that if secondary foaming is performed following secondary foaming, the effect of secondary foaming is not sufficient.

この発明方法では、押出発泡の過程で、−次発泡と二次
発泡とを引き続いて行うのであるから、従来の常識から
云えば二次発泡の効果が充分でなく、従って無駄なこと
をすると考えられた。ところが、その常識に反して、押
出発泡に引き続いて一度冷却された発泡体の表面を更に
加熱して雰囲気を減圧にして二次発泡を行うと、二次発
泡の効果が現れ、発泡が高度に行われることになるので
ある。
In this method of the invention, secondary foaming and secondary foaming are performed successively during the extrusion foaming process, so conventional wisdom suggests that the secondary foaming is not sufficiently effective and is therefore wasteful. It was done. However, contrary to common sense, if, following extrusion foaming, the surface of the once cooled foam is further heated and the atmosphere is reduced in pressure to perform secondary foaming, the effect of secondary foaming will appear and the foaming will become more advanced. It will be done.

従来法では、押出発泡を行9場合、発泡後は形を整える
とともに冷却を続けそのまま成形体とするのであるが、
この発明方法では、従来どおシ、例えば大気中で発泡さ
せ、形を整えるとともに冷却するが、その冷却を成形体
の取得まで継続しないで、冷却を途中で一旦停止する。
In the conventional method, when extrusion foaming is performed in step 9, after foaming, the foam is shaped and continued to be cooled to form a molded product.
In the method of the present invention, the foam is foamed in the air, shaped, and cooled as in the conventional method, but the cooling is not continued until the molded product is obtained, but the cooling is temporarily stopped midway.

その停止の時点は、発泡体の表面部分だけが熱変形温度
以下になった時である。すなわち、発泡体の内部が高温
にあって、発泡力を維持され、表面部だけが冷えた状態
のとき、冷却を中止し、代わって表面から発泡体を加熱
し雰囲気を減圧にするのである。
The point of termination is when only the surface portion of the foam is below the heat distortion temperature. That is, when the inside of the foam is at a high temperature, the foaming power is maintained, and only the surface is cooled, cooling is stopped and the foam is heated from the surface instead to reduce the pressure of the atmosphere.

加熱には赤外線や水蒸気を用いる。この点で従来法とは
異なる。
Infrared rays and water vapor are used for heating. This point differs from the conventional method.

発泡体を冷却すると云う従来法では、発泡体は表面が低
い倍率に発泡し、内部が高い倍率に発泡することとなっ
た。従って、得られた成形体は、表面に堅い表皮が存在
するものとなった。ところが、上述のように、途中で冷
却を中止し再び加熱し雰囲気を減圧にすると、表面部分
が、再び発泡するので、それにつれて内部の残存発泡力
も解除されて全体が均一に発泡することとなる。
In the conventional method of cooling the foam, the surface of the foam expands to a low magnification, and the inside expands to a high magnification. Therefore, the obtained molded article had a hard skin on its surface. However, as mentioned above, if cooling is stopped midway and the atmosphere is reduced to a reduced pressure by reheating, the surface portion will foam again, and the residual foaming force inside will also be released and the whole will foam uniformly. .

上述のように、押出成形のあと工程で行う冷却を途中で
中止し、代シに表面を加熱して減圧下に二次発泡させる
と、得られた成形体はただ高度に発泡しているというだ
けでなく、色々な面でさらに良好なものとなる。例えば
、発泡体は、全体として均一の発泡体となり、寸法安定
性がよく、さらに方向性のないものとなる。このうち、
高倍率の点では、二次発泡によ)最高元倍率の2倍にも
及ぶ発泡倍率の上昇が見られ、これに伴ない発泡体内部
の残留歪が解除され、寸法安定性の点でこれをやや高め
の温度に曝してもさほど膨張や収縮をしないものとなる
。即ち、この発明方法によるものは、一応の発泡が終っ
てまだ内部が発泡力を有するときにさらに表面の加熱が
行われ減圧下にお〜かれるので内部も表面も自由に発泡
して方向性が減少又は消失されることとなる。従って、
この発明によるものは、品質的にすぐ゛れたものとなる
As mentioned above, if cooling, which is performed in the post-extrusion process, is stopped midway through, and the surface is heated instead to allow secondary foaming under reduced pressure, the resulting molded product is only highly foamed. Not only that, but it will be even better in many ways. For example, the foam is generally uniform, has good dimensional stability, and has no directionality. this house,
In terms of high expansion ratio, an increase in expansion ratio of up to twice the maximum original expansion ratio (due to secondary foaming) was observed, and as a result, residual strain inside the foam was released, resulting in improved dimensional stability. Even when exposed to slightly higher temperatures, it does not expand or contract much. In other words, in the method of this invention, when the inside still has foaming power after some foaming, the surface is further heated and placed under reduced pressure, so both the inside and the surface foam freely and the directionality is maintained. will be reduced or eliminated. Therefore,
The product according to this invention has excellent quality.

発泡体表面の冷却は、自然放冷によって行うこともでき
るが、好ましいのは冷却流体を金型又は発泡体に接触さ
せる方法である。冷却流体としては、空気又は水を用い
ることができる。
The surface of the foam can be cooled by natural cooling, but a preferred method is to bring a cooling fluid into contact with the mold or the foam. Air or water can be used as the cooling fluid.

発泡体の表面部分が熱変形温度以下に冷却され、内部が
まだ高温にある時点は、押出機から連続的に発泡体が押
出されて行く過程で、大よそ見当がつけられる。すなわ
ち、押出された発泡体は、表面から次第に冷却され、冷
却はそれ自体が断熱材でおるために非常にゆつくシと内
部へ進行する。
The point at which the surface portion of the foam has cooled below the heat distortion temperature while the interior is still at high temperature can be approximately estimated as the foam is continuously extruded from the extruder. That is, the extruded foam is gradually cooled from the surface, and the cooling progresses very slowly into the interior because the foam itself is covered with an insulating material.

従って、発泡体の内部は相当の長い時間表面部分よシも
高温にある。そこで金型から出て表面に皮がつき、外寸
が概ね定まった時点で冷却を止め、加熱に切シ替え雰囲
気を減圧することとする。かシに、表皮の冷却と内部の
温度の関係がわからないときには、進行しつつある発泡
体をところどころで切断してその断面を観察し、内部が
残存発泡力で膨張する時点を選んで加熱に切り替え雰囲
気を減圧することができる。
Therefore, the interior of the foam remains at a higher temperature than the surface area for a considerable period of time. Therefore, when it comes out of the mold, a skin forms on the surface, and the outer dimensions are approximately determined, cooling is stopped, heating is switched on, and the atmosphere is reduced in pressure. If you do not know the relationship between the cooling of the skin and the internal temperature, cut the expanding foam in places and observe its cross section, select the point at which the interior expands with the remaining foaming power, and then switch to heating. The atmosphere can be depressurized.

この発明方法において、冷却から減圧加熱への切替を、
発泡体の冷却が進み過ぎた状態で行うと、得られた発泡
体の中央部に低発泡の中間層を生成させることになる。
In the method of this invention, switching from cooling to reduced pressure heating is performed by
If cooling is performed while the foam is too cool, a low-foaming intermediate layer will be formed in the center of the resulting foam.

また、逆に発泡体の冷却が不充分な状態で行うと、表面
が割れて良好な発泡体が得られない。そのため、切替時
点は、冷却された表面部分と、高温で残存発泡力を維持
する内部とが、適当な割合で共存する状態のときでなけ
ればならない。適当な状急け、熱変形温度以下に冷却さ
れた表面部の厚みが、発泡体の中心から表面までの厚み
の大よそ50分の1ないし2分の1の範囲内にあるとき
、さらに好ましくt′i20分の1ないし5分の1の範
囲内にあるときである。
On the other hand, if the foam is cooled insufficiently, the surface will crack and a good foam will not be obtained. Therefore, the switching point must be at a time when the cooled surface portion and the interior portion, which maintains residual foaming power at high temperature, coexist in an appropriate ratio. More preferably, the thickness of the surface portion cooled to below the heat distortion temperature in a suitable manner is within the range of approximately 1/50 to 1/2 of the thickness from the center to the surface of the foam. This is when t'i is within the range of 1/20 to 1/5.

発泡体の加熱には赤外線(遠赤外線も含む)水蒸気を用
いる事が出来る。水蒸気加熱の場合は、雰囲気温度#i
80℃ないし120℃とするのが好オしい。赤外線加熱
の場合は、雰囲気温度をさらに高くすることも可能であ
る。その接触の時間は雰囲気の温度、発泡体の大きさ等
を考慮し、発泡体の表面が熱変形温度以上になって、適
度に発泡するに至ることを基準として適当に定める。そ
の時間は、通常20秒ないし10分の程度である。
Infrared rays (including far infrared rays) and water vapor can be used to heat the foam. In the case of steam heating, the ambient temperature #i
Preferably, the temperature is 80°C to 120°C. In the case of infrared heating, it is also possible to raise the ambient temperature even higher. The contact time is determined appropriately, taking into consideration the temperature of the atmosphere, the size of the foam, etc., and based on the criterion that the surface of the foam reaches a temperature higher than the heat deformation temperature and foams appropriately. The time is usually about 20 seconds to 10 minutes.

本発明では、500 mHg以下の減圧下に発泡体をお
くこLが必要である。500 wx Hgを越える低い
減圧度では、十分な二次発泡が得られず従って発泡体の
均一性や寸法安定性が改善されない。
In the present invention, it is necessary to place the foam under a reduced pressure of 500 mHg or less. At low vacuum levels above 500 wx Hg, sufficient secondary foaming is not achieved and the uniformity and dimensional stability of the foam are not improved.

加熱の際及びその直後には、雰囲気が大気圧よシ減圧さ
れて発泡体が発泡して体積を増すから、発泡体が膨張で
きる状態に保持しなければならない。それとともに、発
泡体が望ましくない変形を起すのを避ける必要がある。
During and immediately after heating, the atmosphere is reduced to atmospheric pressure and the foam foams and increases in volume, so the foam must be maintained in a state where it can expand. At the same time, it is necessary to avoid undesirable deformations of the foam.

このために、テフロン被覆した板面で発泡体をゆるく挾
んだり、又は多数のロールを平行に並べて少くとも上下
から発泡体を支えるようにする。この減圧加熱による二
次発泡は、連続でも不連続でも一次発泡板の内部が高温
で発泡力の残存している状態であれば行なう事が出来る
。しかし、より高度に発泡させる為に不連続で行う方が
望ましい。連続的に行9ときには、板又はロール間の間
隔を入口がわから出口がわに向って次第に広くシ、広が
シに応じて発泡体が膨張できるようにする。こうして板
又はロール間を通過する間に、発泡体が表面から加熱さ
れ同時に減圧室を通過するようにする。また不連続に行
なうときは加熱減圧区域を区切って1つの槽とし、切断
した発泡体を断続的に槽内へ送υ込み、槽内に保持する
ことによって加熱減圧による二次発泡を行うようにして
もよい。勿論、この不連続に行うとき、加熱区域と減圧
区域をそれぞれ一つの槽とすることもできる。
For this purpose, the foam is loosely sandwiched between Teflon-coated plate surfaces, or a large number of rolls are arranged in parallel to support the foam from at least the top and bottom. This secondary foaming by heating under reduced pressure can be carried out either continuously or discontinuously as long as the inside of the primary foam board is at a high temperature and foaming power remains. However, in order to foam to a higher degree, it is preferable to carry out the process discontinuously. Continuously, in row 9, the spacing between the plates or rolls is gradually widened from the inlet to the outlet, allowing the foam to expand as it spreads. This causes the foam to be heated from the surface while passing between the plates or rolls and at the same time pass through the vacuum chamber. In addition, when conducting discontinuously, the heating and depressurizing area is divided into one tank, and the cut foam is intermittently fed into the tank and held in the tank to perform secondary foaming by heating and depressurizing. You can. Of course, when performing this discontinuously, the heating zone and the depressurizing zone can each be made into one tank.

この方法により、二次発泡を不連続に閉鎖された減圧室
で行なうと連続的に行なうよシも長時間減圧室内に存在
させる事が出来るので一次発泡体の3割〜最高10割迄
発泡倍率が上げられるので連転のときよシも望ましい。
With this method, secondary foaming can be carried out in a vacuum chamber that is closed discontinuously or continuously, but can be left in the vacuum chamber for a long time, increasing the foaming ratio from 30% to a maximum of 100% of the primary foam. It is also desirable to use it during consecutive rotations because it can raise the amount.

このときの望ましい倍率上昇率は5割〜8割である。そ
れ以上倍率を上げすぎると収縮や寸法変化があって望ま
しくない0 表面から加熱され、減圧槽に保持され表面部分が二次発
泡せしめられた発泡体は、その後冷却され、そのまま又
は切断されて製品となる。こうして得られた製品11表
面部分が内部と同じように高度に発泡しておル、表面部
分と内部との間に発泡倍率の差、すなわち密度差がない
のを特色とする。そのほか、前述のように、均一に発泡
しておシ、方向性のないものとなり、気温の上下による
寸法変化の少ない等の特色を併せ持っている。従つて、
この発明方法による製品は、発泡体として良好々もので
あり、この方法による板は、住宅の天井、一般建造物の
屋上又は外壁における断熱材として用いるのにとくに適
している。又高度に発泡している為に柔軟性が大きくタ
ンクや大口径パイプ等の曲面部の断熱材としても使い易
いものである。
The desirable magnification increase rate at this time is 50% to 80%. If the magnification is increased too much, it will cause shrinkage and dimensional changes, which is undesirable.0 The foam, which is heated from the surface and held in a vacuum tank to cause secondary foaming on the surface, is then cooled and then used as it is or cut into products. becomes. The product 11 thus obtained is characterized in that the surface portion is highly foamed like the inside, and there is no difference in expansion ratio, that is, no difference in density, between the surface portion and the inside. In addition, as mentioned above, it has other characteristics such as uniform foaming, no directionality, and little dimensional change due to temperature fluctuations. Therefore,
The products produced by the method of this invention are good as foams, and the plates produced by this method are particularly suitable for use as insulation in the ceilings of houses, the roofs of general buildings, or the external walls. Also, since it is highly foamed, it has great flexibility and is easy to use as a heat insulating material for curved surfaces such as tanks and large diameter pipes.

この発明方法において用いられるスチレン系樹脂は、ス
チレン系単址体の単独重合体に限らず、共重合体をも含
んでいる。スチレン系単量体にはスチレンの#1か、メ
チルスチレン、エチルスチレンも含まれる。また、共重
合体は、スチレン系単量体が50モルチ以上含まれてい
る共重合体を含んでいる。共重合の相手方単量体として
は、メタクリル酸メチル、アクリロニトリル、無水マレ
イン酸等が婚げられる。その9ち、好適な樹脂は、ポリ
スチレン、スチレン−アクリロニトリル共重合体、及び
スチレン−無水マレイン酸共重合体である。
The styrenic resin used in the method of this invention is not limited to a styrene-based monopolymer, but also includes a copolymer. Styrenic monomers include styrene #1, methylstyrene, and ethylstyrene. Further, the copolymer includes a copolymer containing 50 moles or more of a styrene monomer. Examples of the monomer to be copolymerized include methyl methacrylate, acrylonitrile, maleic anhydride, and the like. The preferred resins are polystyrene, styrene-acrylonitrile copolymer, and styrene-maleic anhydride copolymer.

この発明方法において用いられる発泡剤は、スチレン系
樹脂の熱変形温度よシも低い沸点を持った脂肪族炭化水
素、又はハロゲン化脂肪族炭化水素である。脂肪族炭化
水素の例は、プロパン、ブタン、ペンタン、ヘキサンの
ような飽和脂肪族炭化水素でアシ、プロピレン、ブテン
等の不飽和脂肪族炭化水素である。また、ハロゲン化脂
肪族炭化水素の例は、メチルクロライド、メチレンクロ
ライド、ジクロ目ジフルオロメタン、尋である。
The blowing agent used in the method of this invention is an aliphatic hydrocarbon or a halogenated aliphatic hydrocarbon having a boiling point lower than the heat distortion temperature of the styrenic resin. Examples of aliphatic hydrocarbons are saturated aliphatic hydrocarbons such as propane, butane, pentane, hexane, and unsaturated aliphatic hydrocarbons such as acetic acid, propylene, butene. Further, examples of halogenated aliphatic hydrocarbons are methyl chloride, methylene chloride, dichloromethane, and fathom.

これらのものは、単独で又社2種以上のものを混合して
用いることができる。さらに、上記各種発泡剤とC02
或社N2等の不活性ガスとを混合して用いる事も出来る
These materials can be used alone or in combination of two or more. Furthermore, the above various blowing agents and C02
It can also be used in combination with an inert gas such as N2.

樹脂に発泡剤を含ませる場所は、押出機に樹脂を供給す
る以前であっても、或い祉押出機の途中であってもよい
。押出機は、−軸スクリユーのものでも、二軸スクリュ
ーのものであってもよい。
The foaming agent may be added to the resin before the resin is supplied to the extruder, or during the extruder. The extruder may be a -screw or a twin-screw extruder.

この発明方法紘、大きい肉厚の発泡体を作る場合にとく
に顕著な効果を発揮するが、肉厚の小さい発泡体の製造
にも適用できる。ここで大きい肉厚の発泡体とれ、厚み
が10+w以上の大きさの発泡体を指している。
The method of this invention is particularly effective when producing foams with large wall thicknesses, but it can also be applied to the production of foams with small wall thicknesses. Here, we refer to foams with a large wall thickness, and refer to foams with a thickness of 10+W or more.

次に実施例を挙けて、この発明方法の具体例を述べる。Next, specific examples of the method of this invention will be described with reference to Examples.

以下で単に部というのは、重量部の意味である。In the following, parts simply mean parts by weight.

実施例1゜ 樹脂としてポリスチレンを用い、ポリスチレン100部
に微粉末タルク(気泡調整剤)0.5部を配合し、この
配合物を押出機に1時間60ににの割合で供給し、押出
機の中で発泡剤を樹脂中に圧入した。発泡剤としてtま
、ジクロロジフルオロメタン3部とメチルクロライド7
部との混合物を用い、この混合物を樹脂I Kgに対し
1iopの割合で圧入した。
Example 1 Using polystyrene as the resin, 100 parts of polystyrene was mixed with 0.5 part of finely powdered talc (bubble control agent), and this mixture was fed to an extruder at a rate of 60 minutes per hour. The blowing agent was injected into the resin. As a blowing agent, 3 parts of dichlorodifluoromethane and 7 parts of methyl chloride
This mixture was injected at a rate of 1 iop per kg of resin.

口金ケよ、先端に厚み2.5 朋、幅50絹の開口を備
え開口部の」−下に直径10mの穴をあけ、60℃の水
を通して表面を冷やしながら、この開口から樹脂を温m
l 11 (1”Cで押出した。口金の先端Ka、樹脂
の変形を防ぐために成形具を密接した。
The ferrule has an opening made of 2.5mm thick silk at the tip and a diameter of 10m below the opening, and while cooling the surface through 60°C water, heat the resin through this opening.
l 11 (Extruded at 1"C. The tip Ka of the die was held close to the molding tool to prevent deformation of the resin.

成形具としては、入口寸法が口金の開口に実質的に等し
く、出口寸法が厚み82−1幅130鰐、長さが310
mであり、入口から出口に向って緩やかに拡大された樹
脂通路を備えたものを用いた。
As a forming tool, the inlet dimensions are substantially equal to the opening of the cap, and the outlet dimensions are 82 mm thick, 130 mm wide, and 310 mm long.
m, and was equipped with a resin passageway that gradually expanded from the inlet to the outlet.

成形具の樹脂通路壁には、弗素樹脂を神値した1成形其
内に社60℃の水を循環させた。
On the resin passage wall of the molding tool, water at 60°C was circulated inside the molding tool made of fluororesin.

成形具を出た発泡体は大きく発泡していた。この発泡体
に20℃の空気を吹付けて発泡体を冷却した。冷却は成
形具の端から100mのところまでとした。このとき、
発泡体社表面温度が35℃であり、中心が75℃であっ
た。この先には長さ2mの赤外線加熱槽と8mの冷却槽
を設け、槽内け、−いずれ本zsom+1lI(絶対圧
)に減圧して発泡体を二次発泡した。
The foam that came out of the molding tool was highly foamed. This foam was cooled by blowing air at 20°C. Cooling was performed up to 100 m from the end of the molding tool. At this time,
The foam surface temperature was 35°C, and the center temperature was 75°C. An infrared heating tank with a length of 2 m and a cooling tank with a length of 8 m were provided ahead of this, and the pressure inside the tank was reduced to -1 zsom + 1 lI (absolute pressure) to perform secondary foaming of the foam.

こうして得られた成形品について物性を測定すると、次
表の実施例の欄に示すように、密度が全体にわたって均
一化し、発泡倍率が上昇して密度が小さくなっており、
さらに圧縮強度の方向性が少なくなっていることを認め
た。また、こうして得た成形品は若干フレキシブルなも
のとなっていた0 なお、比較のために1上記の実施例の操作において、減
圧加熱槽を使用しないで、直接冷却して得られた成形品
の物性を比較例の欄に記載した。比較例の場合4Ctよ
、発泡倍率が低く成形品の厚み方向に密度差が大きく、
圧縮強度の方向性の差も大きくなっている。
When the physical properties of the molded product thus obtained were measured, as shown in the Examples column of the following table, the density became uniform throughout, the expansion ratio increased, and the density became smaller.
Furthermore, it was observed that the directionality of compressive strength was reduced. In addition, the molded product obtained in this way was slightly flexible.0 For comparison, the molded product obtained by cooling directly without using a vacuum heating tank in the operation of the above example. The physical properties are listed in the column of comparative examples. In the case of the comparative example, 4Ct has a low expansion ratio and a large density difference in the thickness direction of the molded product.
The difference in the directionality of compressive strength is also large.

以下余白 表  成形品の物性 Xl 長さ200朗の成形品の皮を上下、左右約5絹ず
つ剥ぎ捨て、残った発泡体を厚み方向に3分割して、上
、中、下の密度(Kg/+y/)を測定した。
Below is a margin table Physical properties of the molded product /+y/) was measured.

※2 成形品の中から50門角の試験片を切出し、押出
方向(MD)、幅方向(TI))及び厚さ方向(VD)
の3方向から、それぞれ圧縮強度を測定し、MD X 
TD X Vl、)=1となる様にそれぞれの比率を求
めたものである。
*2 A test piece of 50 angles was cut out from the molded product and measured in the extrusion direction (MD), width direction (TI)) and thickness direction (VD).
The compressive strength was measured from each of the three directions, MD
The respective ratios were determined so that TD x Vl, )=1.

実施例2 加熱減圧槽を押出機とは別個に設け、長時間加熱減圧槽
に切断した発泡体を保持した以外は全〈実施例1と同様
の方法で行なった。
Example 2 The entire process was carried out in the same manner as in Example 1, except that a heating and depressurizing tank was provided separately from the extruder, and the cut foam was held in the heating and depressurizing tank for a long time.

即ち、成型具を出て面層の表面温度が35℃、中心温度
が75℃の一次発泡体を切断して押出機とは別個に設け
られた加熱減圧槽に入れた。
That is, the primary foam having a surface layer temperature of 35° C. and a center temperature of 75° C. after exiting the molding tool was cut and placed in a heated and reduced pressure tank provided separately from the extruder.

槽内は電気ヒーターで雰囲気が約100℃になっておシ
、−次発泡体を入れてすぐに熱源を切り、同時に槽内を
約]+wlk(絶対圧)まで、減圧にした。とのま\槽
内を冷やしながら15時間減圧に保持j−てかも二次発
泡体を外気中に取出したところ、主として長手方向では
あるが、厚さ方向、中方向にも大きく二次発泡し密度1
7)lx/P’ に発泡していたがカット面中央部分に
微少の収縮が認めら れ ノこ 。
The atmosphere inside the tank was brought to about 100° C. using an electric heater, and the heat source was immediately turned off after the foam was put in. At the same time, the pressure inside the tank was reduced to about +WLK (absolute pressure). When the secondary foam was taken out into the outside air after cooling the inside of the tank and maintaining it under reduced pressure for 15 hours, secondary foaming was observed mainly in the longitudinal direction, but also in the thickness direction and in the middle direction. Density 1
7) It was foamed at lx/P', but slight shrinkage was observed in the center of the cut surface.

しかし、これを常温に24時間放置しておいだところ、
この収縮が回復し、密度15 Kg/w/の高度に発泡
した発泡体を得だ。
However, when I left this at room temperature for 24 hours,
This shrinkage was recovered and a highly expanded foam with a density of 15 Kg/w/ was obtained.

1

Claims (1)

【特許請求の範囲】 1、 発泡剤を含んだ溶融スチレン系樹脂を押出機から
低圧領域へ押出し、発泡させて発泡体とし、発泡体の内
部が高温にあって表面部が熱変形温度以下となった状態
で、表面を熱変形温度以上に加熱して更に低圧である5
 00 m lla以下の減圧下に於て発泡させること
を特徴とする、スチレン系樹脂発泡体の製造方法。 2、 押出した発泡体を切断して、押出機と1別個に設
けられた減圧区域に導ひくことを特徴とする特許4−7
求の範囲第1項記載のスチレン系樹脂発泡体の製造方法
[Claims] 1. Molten styrene resin containing a blowing agent is extruded from an extruder to a low-pressure region and foamed to form a foam, and the interior of the foam is at a high temperature while the surface is below the heat distortion temperature. In this state, the surface is heated above the heat deformation temperature and the pressure is further lowered.
A method for producing a styrenic resin foam, the method comprising foaming under reduced pressure of 0.00 m lla or less. 2. Patent 4-7, characterized in that the extruded foam is cut and guided to a vacuum area provided separately from the extruder.
A method for producing a styrenic resin foam according to item 1.
JP57173008A 1982-09-30 1982-09-30 Manufacture of styrene resin foam Granted JPS5962121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57173008A JPS5962121A (en) 1982-09-30 1982-09-30 Manufacture of styrene resin foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57173008A JPS5962121A (en) 1982-09-30 1982-09-30 Manufacture of styrene resin foam

Publications (2)

Publication Number Publication Date
JPS5962121A true JPS5962121A (en) 1984-04-09
JPH0348016B2 JPH0348016B2 (en) 1991-07-23

Family

ID=15952480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57173008A Granted JPS5962121A (en) 1982-09-30 1982-09-30 Manufacture of styrene resin foam

Country Status (1)

Country Link
JP (1) JPS5962121A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337916A (en) * 1986-08-04 1988-02-18 Dow Kako Kk Manufacture of styrene-based resin foam
EP0701584A4 (en) * 1993-06-04 1997-08-20 Dow Chemical Co Styrenic polymer foam with comonomer content
JP2016515146A (en) * 2013-02-26 2016-05-26 ダウ グローバル テクノロジーズ エルエルシー Thermoplastic polymer foam tube insulation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5699635A (en) * 1980-01-14 1981-08-11 Sekisui Plastics Co Ltd Preparation of styrene resin foam plate of large thickness
JPS6151972A (en) * 1984-08-22 1986-03-14 Matsushita Electric Ind Co Ltd Thin film transistor array and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5699635A (en) * 1980-01-14 1981-08-11 Sekisui Plastics Co Ltd Preparation of styrene resin foam plate of large thickness
JPS6151972A (en) * 1984-08-22 1986-03-14 Matsushita Electric Ind Co Ltd Thin film transistor array and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337916A (en) * 1986-08-04 1988-02-18 Dow Kako Kk Manufacture of styrene-based resin foam
EP0701584A4 (en) * 1993-06-04 1997-08-20 Dow Chemical Co Styrenic polymer foam with comonomer content
JP2016515146A (en) * 2013-02-26 2016-05-26 ダウ グローバル テクノロジーズ エルエルシー Thermoplastic polymer foam tube insulation

Also Published As

Publication number Publication date
JPH0348016B2 (en) 1991-07-23

Similar Documents

Publication Publication Date Title
EP1511795B1 (en) Anisotropic polymer foam
US4154785A (en) Method of manufacturing a tough board of thermoplastic resin foam having integral skins and a dense intermediate layer
ES2203637T3 (en) EXTRUDED FOAM OF OPEN CELL AND MANUFACTURING PROCEDURE.
EP1263850B1 (en) Extruded foam product with reduced surface defects
US8557884B2 (en) To enhance the thermal insulation of polymeric foam by reducing cell anisotropic ratio and the method for production thereof
JPS5825096B2 (en) Method for manufacturing polyolefin resin foam
JPS5962121A (en) Manufacture of styrene resin foam
JPS6151972B2 (en)
JPS6124976B2 (en)
JPH07117094A (en) Production of heat-insulating pipe coated with foamed polystyrene copolymer
IE902196L (en) Producing extruded foam bodies
EP0256754B1 (en) Process for producing styrene resin foam
JP3865937B2 (en) Molding method of foam molded article
JPH02270539A (en) Manufacture of synthetic resin foam
JPH09254179A (en) Foamed synthetic resin molded object and its molding method
AU2003233528B2 (en) Anisotropic polymer foam
JPH0382518A (en) Manufacture of high foamed molding of polystyrene resin
JP2007223153A (en) Method for thermoforming extrusion foamed plate
JP2879827B2 (en) Method for producing thermoplastic resin foam
JPS63242520A (en) Foamed plate of flexible style resin and its manufacture
JP2001329092A (en) Extruded sheet foam
JPH07179648A (en) Production of high-expansion-ratio styrene resin foam
JPH09277347A (en) Production of tubular thermoplastic resin foam and extrusion mold
JP2007100015A (en) Process for producing polystyrene resin foamed sheet
JPS6166728A (en) Expanded plate for producing uneven heat insulating plate