JPH07179648A - Production of high-expansion-ratio styrene resin foam - Google Patents

Production of high-expansion-ratio styrene resin foam

Info

Publication number
JPH07179648A
JPH07179648A JP32387893A JP32387893A JPH07179648A JP H07179648 A JPH07179648 A JP H07179648A JP 32387893 A JP32387893 A JP 32387893A JP 32387893 A JP32387893 A JP 32387893A JP H07179648 A JPH07179648 A JP H07179648A
Authority
JP
Japan
Prior art keywords
expansion
resin
particles
primary
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32387893A
Other languages
Japanese (ja)
Other versions
JP2883269B2 (en
Inventor
Shinpei Nakayama
新平 中山
Masatomo Sasaki
正朋 佐々木
Hironori Kobayashi
弘典 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP32387893A priority Critical patent/JP2883269B2/en
Publication of JPH07179648A publication Critical patent/JPH07179648A/en
Application granted granted Critical
Publication of JP2883269B2 publication Critical patent/JP2883269B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To produce a resin foam while attaining the shortening of the production time, the reduction of the area necessary for storage, the production efficiency, etc., by thermally expanding an expandable styrene resin to a specified bulk expansion degree, shrinking the resin by cooling, re-expanding the resin to the initial bulk expanding degree in a carbon dioxide atmosphere and expanding the last resin. CONSTITUTION:100 pts.wt. styrene resin (e.g. polystyrene) being a homo-or co-polymer of a styrene monomer and containing a blowing agent comprising at least one selected from among aliphatic and halohydrocarbons, etc., is mixed with 0.001-0.01wt.% organosulfur compound as a cell modifier and optionally a solvent, a flame retardant, etc., and the resulting mixture is subjected directly to thermal expansion in one or more stages, or is subjected to primary expansion under a gauge pressure of below 0.5kg/cm<2> in the presence of an organic solvent to a bulk expansion degree of 100-350, and is shrunk by cooling in air to obtain the shrunk particles of the primary expansion, which are then reexpanded to the initial expansion degree in an atmosphere containing at least 50% carbon dioxide to obtain particles of primary expansion having a bulk expansion degree of 90-350, which in turn are packed into a mold and expansion-molded by heating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、嵩倍率100〜350
倍に加熱発泡した後、大気中で一旦収縮せしめた収縮一
次高発泡粒子を炭酸ガス雰囲気中で回復させた後、発泡
成形するスチレン系樹脂高発泡成形体の製造方法に関す
る。
BACKGROUND OF THE INVENTION The present invention has a bulk ratio of 100 to 350.
The present invention relates to a method for producing a highly foamed styrene-based resin molded product, which comprises foaming and molding after shrinking primary highly foamed particles that have been double-heated and foamed and then once shrunk in the air, are recovered in a carbon dioxide gas atmosphere.

【0002】[0002]

【従来技術と問題点】発泡剤を含有した発泡性スチレン
系樹脂粒子を原料とし、これを加熱して一次発泡粒子を
得て、次いで成形型内に充填し、蒸気加熱することによ
り所望の形状を有した発泡成形体を得ている。従来、か
かる発泡成形体としては、発泡倍率が数倍から約80倍
程度のものが、用途に応じて適宜使用されているが、最
近、緩衝包装材、断熱材、浮子材、ブロックのカット品
等の分野において、より高発泡倍率のものが要求されて
きている。
2. Description of the Related Art Foaming styrenic resin particles containing a foaming agent are used as a raw material to obtain primary expanded particles by heating the particles, which are then filled in a molding die and steam-heated to obtain a desired shape. To obtain a foamed molded product. Conventionally, as such a foamed molded product, a foamed product having a foaming ratio of several times to about 80 times is appropriately used according to the application, but recently, a cushioning packaging material, a heat insulating material, a float material, a cut product of a block. In fields such as the above, higher expansion ratios have been required.

【0003】高発泡倍率の成形体を得る方法として、例
えば、特開昭63ー182353号公報には、特定の発
泡剤と有機溶剤を併用し、一次発泡させた後収縮したも
のを、自然に回復させ、その後発泡成形してポリスチレ
ン高発泡成形体を得る方法が開示されている。一般に、
嵩倍率が数倍から約80倍程度であれば、加熱発泡後に
収縮することなく成形できるが、特に100倍以上に高
度に加熱発泡させた発泡体粒子は大気中に取り出し冷却
すると大きく収縮するので、この収縮を回復させた後で
なければ成形することができなかった。また、大気中で
自然に回復させるには数日間を必要としていた。このよ
うに自然に回復させるには長期間を要するため、生産効
率が悪く、また、多くの保管場所を必要としていた。
As a method for obtaining a molded product having a high expansion ratio, for example, Japanese Patent Laid-Open No. 182353/1988 discloses a method in which a specific foaming agent and an organic solvent are used in combination, and primary expansion is followed by shrinking. A method for recovering and then foam-molding to obtain a polystyrene high-foam molded article is disclosed. In general,
If the bulk ratio is about several times to about 80 times, it can be molded without shrinking after heat-foaming, but especially foam particles heat-foamed to 100 times or more highly shrink when taken out into the air and cooled. However, it could be molded only after recovering this shrinkage. Also, it took several days to recover naturally in the atmosphere. Since it takes a long time to recover naturally, the production efficiency is low and many storage places are required.

【0004】また、加熱発泡することで得られる一次発
泡粒子中に残留する発泡剤量が少ない場合、前記の収縮
せしめた収縮一次発泡粒子が加熱発泡時の発泡倍率まで
自然回復するのに1週間以上という長期間を必要とする
場合があり、工業生産に適しているとは言えなかった。
When the amount of the foaming agent remaining in the primary foamed particles obtained by heat-foaming is small, it takes one week for the contracted primary foamed particles to naturally recover to the expansion ratio during heat-foaming. Since it may require a long period of time as described above, it was not suitable for industrial production.

【0005】本発明者らは、このような実情に鑑み、嵩
倍率を100〜350倍に加熱発泡した一次発泡粒子を
発泡成形して得る高発泡成形体の製造において、一次発
泡後に収縮せしめた発泡粒子を早期にほぼ元の嵩倍率に
まで回復させ、発泡成形することでスチレン系樹脂高発
泡成形体を得んと鋭意検討した結果、一旦収縮させた発
泡粒子を炭酸ガス雰囲気中に置くことで、非常に早く回
復できることを見出し、本発明を完成させるに至ったも
のである。
In view of such circumstances, the inventors of the present invention contracted after primary foaming in the production of a high-foam molded article obtained by foam-molding primary expanded particles that have been heat-expanded to a bulk ratio of 100 to 350 times. As a result of diligent studies to quickly recover the expanded particles to almost the original bulk ratio and perform foam molding to obtain a highly expanded styrene resin molded product, place the shrunk expanded particles in a carbon dioxide gas atmosphere. Then, they found that they could recover very quickly, and completed the present invention.

【0006】[0006]

【課題を解決するための手段】すなわち、発泡性スチレ
ン系樹脂粒子を嵩倍率100〜350倍に加熱発泡した
後、大気中で冷却し収縮せしめて収縮一次高発泡粒子を
得、該粒子を炭酸ガス雰囲気中で元の嵩倍率の90〜1
00%に回復させ、次いで成形型内に充填して加熱発泡
成形することを特徴とするスチレン系樹脂高発泡成形体
の製造方法、を要旨するものである。
Means for Solving the Problems That is, expandable styrenic resin particles are heated and expanded to a bulk ratio of 100 to 350 times, cooled in the air and contracted to obtain contracted primary highly expanded particles, and the particles are carbonated. 90 to 1 of original bulk ratio in gas atmosphere
The present invention is directed to a method for producing a styrene resin highly foamed molded product, which comprises recovering the content of the styrene resin to 00%, and then filling it in a molding die and performing heat foaming molding.

【0007】本発明で使用する発泡性スチレン系樹脂粒
子は、易揮発性発泡剤を水性懸濁液中で含浸する懸濁含
浸法や、押出機を使用してポリスチレンを溶融し、易揮
発性発泡剤を圧入、混練して、所望の形状をしたノズル
より吐出し、未発泡状態のままで水により急冷し切断す
る押出法といった公知の方法を採用して得ることができ
る。これらの方法で発泡剤をスチレン系樹脂に含有させ
た後、脱水、乾燥、冷暗所で熟成した後、発泡性スチレ
ン系樹脂粒子中に含まれる発泡剤量は、スチレン系樹脂
100に対して、3〜9重量部であることが好ましい。
嵩倍率100〜350倍という高い嵩倍率の一次発泡粒
子を1回の一次発泡で得るためには、スチレン系樹脂中
に含まれる発泡剤は5〜8重量部であることが好まし
い。
The expandable styrenic resin particles used in the present invention are prepared by a suspension impregnation method in which an easily volatile foaming agent is impregnated in an aqueous suspension, or by melting polystyrene by using an extruder. It can be obtained by employing a known method such as an extrusion method in which a foaming agent is press-fitted, kneaded, discharged from a nozzle having a desired shape, and rapidly cooled with water in an unfoamed state and cut. After the foaming agent was contained in the styrene resin by these methods, dehydration, drying, and aging in a cool dark place, the amount of the foaming agent contained in the expandable styrene resin particles was 3 with respect to 100 of the styrene resin. It is preferably -9 parts by weight.
In order to obtain the primary expanded beads having a high bulk ratio of 100 to 350 times by one primary expansion, the foaming agent contained in the styrene resin is preferably 5 to 8 parts by weight.

【0008】本発明において使用するスチレン系樹脂と
は、スチレン系モノマーの単独又は他のコモノマーとの
共重合体である。スチレン系モノマーとしては、スチレ
ン、パラメチルスチレン、ビニルトルエン、ターシャリ
ーブチルスチレン等が挙げられる。また、共重合可能な
コモノマーとしてはアクリロニトリル、メチルメタアク
リレート、無水マレイン酸、アクリル酸、メタアクリル
酸、N−フェニルマレイミド等が挙げられる。これらの
スチレン系樹脂は公知の方法で重合される。
The styrenic resin used in the present invention is a styrenic monomer alone or a copolymer with another comonomer. Examples of the styrene-based monomer include styrene, paramethylstyrene, vinyltoluene, tertiary butylstyrene and the like. Examples of the copolymerizable comonomer include acrylonitrile, methylmethacrylate, maleic anhydride, acrylic acid, methacrylic acid, N-phenylmaleimide and the like. These styrene resins are polymerized by a known method.

【0009】また、本発明において使用するスチレン系
樹脂には、必要に応じて気泡調整剤を使用することがで
きる。特にスチレン系樹脂としてポリスチレンの単独重
合体を使用する場合の気泡調整剤には、ジラウリル3,
3−チオジプロピネート、ジミリスチル3,3−チオジ
プロピネート、ジステアリル3,3−チオジプロピネー
ト等の有機イオウ系化合物を、ポリスチレン100重量
部に対して0.001〜0.01重量部という極く微量
使用することが好ましい。このほか、ベンゼン、トルエ
ン、エチルベンゼンスチレン、等の有機溶剤、難燃剤や
帯電防止剤等を必要に応じて添加してもよい。
Further, the styrenic resin used in the present invention may contain a cell regulator, if necessary. In particular, when a homopolymer of polystyrene is used as the styrene resin, dilauryl 3,
An organic sulfur compound such as 3-thiodipropinate, dimyristyl 3,3-thiodipropinate and distearyl 3,3-thiodipropinate is added in an amount of 0.001 to 0.01 parts by weight based on 100 parts by weight of polystyrene. It is preferable to use a very small amount. In addition, organic solvents such as benzene, toluene, ethylbenzene styrene, flame retardants, antistatic agents, etc. may be added as necessary.

【0010】本発明において発泡性スチレン系樹脂に含
有される発泡剤としては、脂肪族炭化水素あるいはハロ
ゲン化炭化水素等の易揮発性発泡剤を単独で又は2種以
上混合して使用できる。脂肪族炭化水素の具体例とし
て、例えば、プロパン、n−ブタン、イソブタン、n−
ペンタン、イソペンタン、シクロペンタン、等が挙げら
れる。また、ハロゲン化炭化水素の具体例として、例え
ば、トリクロロモノフルオロメタン、ジクロロジフルオ
ロメタン、モノクロロトリフルオロメタン、ジクロロモ
ノフルオロメタン、モノクロロジフルオロメタン、トリ
クロロトリフルオロエタン、ジクロロテトラフルオロエ
タン、ジクロロトリフルオロエタン、モノクロロペンタ
フルオロエタン、モノクロロテトラフルオロエタン、モ
ノクロロトリフルオロエタン、モノクロロジフルオロエ
タン、テトラフルオロエタン、ジフルオロエタン、等が
挙げられる。なかでも、ペンタン、ブタン、及びこれら
の混合物からなる発泡剤を使用すると、一度の加熱発泡
で高倍率の発泡体が得やすく特に好ましい。
As the foaming agent contained in the foamable styrene resin in the present invention, an easily volatile foaming agent such as an aliphatic hydrocarbon or a halogenated hydrocarbon can be used alone or in combination of two or more kinds. Specific examples of the aliphatic hydrocarbon include, for example, propane, n-butane, isobutane, n-
Pentane, isopentane, cyclopentane and the like can be mentioned. In addition, as specific examples of the halogenated hydrocarbon, for example, trichloromonofluoromethane, dichlorodifluoromethane, monochlorotrifluoromethane, dichloromonofluoromethane, monochlorodifluoromethane, trichlorotrifluoroethane, dichlorotetrafluoroethane, dichlorotrifluoroethane, Examples thereof include monochloropentafluoroethane, monochlorotetrafluoroethane, monochlorotrifluoroethane, monochlorodifluoroethane, tetrafluoroethane, difluoroethane and the like. Above all, it is particularly preferable to use a foaming agent composed of pentane, butane, and a mixture thereof, since a foam having a high magnification can be easily obtained by heating and foaming once.

【0011】本発明において、発泡性スチレン系樹脂粒
子を100〜350倍に加熱発泡する方法として、特に
制限はないが、特に水蒸気を用いて直接加熱発泡する方
法が好ましい。この時の蒸気圧は、通常ゲージ圧で0〜
2kg/cm2 であれば充分であり、加熱時間は、発泡
性スチレン系樹脂中に含まれる発泡剤量に応じて、また
目標とする発泡倍率に応じて選ばれるが、大体約10秒
〜600秒である。本発明では、一段階の発泡で高倍率
の発泡体を得ることができるが、必要であればこれを多
段階行ってもよい。また、発泡性スチレン系樹脂粒子に
ベンゼン、トルエン、エチルベンゼンスチレン、等の有
機溶剤を添加した場合は、一次発泡する際の蒸気圧を、
通常ゲージ圧で0.5kg/cm2 未満とすることが好
ましい。これは、蒸気圧が0.5kg/cm2 以上で一
次発泡した際に、一次発泡粒子同士が合着しやすいから
である。
In the present invention, the method of heat-foaming the expandable styrene resin particles 100 to 350 times is not particularly limited, but a method of directly heat-foaming using steam is particularly preferable. The vapor pressure at this time is normally 0 to 0 in gauge pressure.
2 kg / cm @ 2 is sufficient, and the heating time is selected depending on the amount of the foaming agent contained in the expandable styrenic resin and the target expansion ratio, but it is about 10 seconds to 600 seconds. Is. In the present invention, a high-magnification foam can be obtained in one step of foaming, but if necessary, this may be carried out in multiple steps. In addition, when an organic solvent such as benzene, toluene, ethylbenzene styrene, etc. is added to the expandable styrene resin particles, the vapor pressure at the time of primary foaming is
Usually, it is preferable that the gauge pressure is less than 0.5 kg / cm 2. This is because the primary expanded particles are easily coalesced with each other when the primary expansion is performed at a vapor pressure of 0.5 kg / cm 2 or more.

【0012】本発明において、発泡性スチレン系樹脂粒
子を嵩倍率100〜350倍に加熱発泡した後、大気中
で冷却し収縮せしめた収縮一次高発泡粒子を、炭酸ガス
雰囲気中で回復させることを特徴とするものであるが、
回復を早期に完了させるためには、炭酸ガス雰囲気濃度
は少なくとも50%以上であることが好ましく、特に8
0%以上であることが最も好ましい。例えば、嵩倍率約
40〜100倍の収縮一次高発泡粒子であれば、炭酸ガ
ス雰囲気濃度を80%以上とすることで、約15分以内
に元の嵩倍率、例えば、嵩倍率約100〜350倍に回
復させることができる。また、炭酸ガス雰囲気を加圧雰
囲気にすることで、さらに回復に要する時間を短縮可能
であるが、その加圧雰囲気は2気圧未満であることが好
ましい。このように、従来の大気中での自然回復では数
日を要したのに比較して、著しく回復に要する時間を短
縮できる。早期に回復させた嵩倍率90〜350倍の一
次高発泡粒子を成形型内に充填し、発泡成形すること
で、良好なスチレン系樹脂高発泡成形体を製造すること
ができる。さらに、一次発泡した後、連続的に高発泡ス
チレン系樹脂粒子を炭酸ガス雰囲気中に導入すること
で、収縮させることなくスチレン系樹脂高発泡成形体を
製造することも可能である。
In the present invention, the expandable styrenic resin particles are heated and expanded to have a bulk ratio of 100 to 350 times, and then cooled in the air to be shrunk to recover the shrunk primary highly expanded particles in a carbon dioxide gas atmosphere. Although it is a feature,
In order to complete the recovery early, it is preferable that the concentration of carbon dioxide gas is at least 50% or more, and especially 8%.
Most preferably, it is 0% or more. For example, in the case of shrunk primary high-expanded particles having a bulk ratio of about 40 to 100 times, the original bulk ratio, for example, a bulk ratio of about 100 to 350 is set within about 15 minutes by setting the carbon dioxide atmosphere concentration to 80% or more. Can be doubled. Further, the time required for recovery can be further shortened by setting the carbon dioxide gas atmosphere to be a pressurized atmosphere, but the pressurized atmosphere is preferably less than 2 atm. As described above, the time required for the recovery can be significantly shortened as compared with the case where the conventional natural recovery in the atmosphere took several days. A good styrene-based resin highly foamed molded article can be manufactured by filling the high-expanded primary particles which have been recovered at an early stage with a bulk expansion ratio of 90 to 350 times in a molding die and foam-molded. Furthermore, after the primary foaming, by continuously introducing the highly expanded styrene resin particles into a carbon dioxide gas atmosphere, it is possible to produce a highly expanded styrene resin molded product without shrinkage.

【0013】また本発明において、嵩倍率100〜35
0倍に加熱発泡した一次高発泡粒子を一旦収縮させる
が、大気中で自然に回復させた場合と比較して、炭酸ガ
ス雰囲気中で回復させたほうがより元の嵩倍率に近い、
すなわち加熱発泡時の嵩倍率の90〜100%にまで回
復できる。さらに、一次発泡粒子中に残留する発泡剤量
が少ない場合でも、より加熱発泡時の嵩倍率に近い発泡
嵩倍率まで回復できるという特異な作用効果を発揮する
ことがわかった。
In the present invention, the bulk ratio is 100 to 35.
The primary high-expanded particles that have been heat-expanded to 0 times are once shrunk, but recovered in a carbon dioxide atmosphere is closer to the original bulk ratio than when naturally recovered in the atmosphere.
That is, it can be recovered to 90 to 100% of the bulk ratio at the time of foaming by heating. Further, it was found that even when the amount of the foaming agent remaining in the primary expanded beads is small, a unique effect that the expanded bulk ratio closer to the bulk ratio during heat expansion can be recovered is exhibited.

【0014】[0014]

【実施例】次に、実施例をもって本発明の方法をさらに
具体的に説明する。 実施例1〜3 ポリスチレン100重量部に対して、気泡調整剤として
ジラウリル3,3−チオジプロピネートを0.002重
量部含有する平均粒径1.0mmのパール状ポリスチレ
ンに、発泡剤としてn−ブタン10重量部を使用して、
水分散系オートクレーブ内で含浸して、n−ブタン8.
0重量部を含む発泡性ポリスチレン粒子を得た。得られ
た発泡性ポリスチレン粒子を冷暗所で5日間熟成した。
熟成後の発泡性ポリスチレン粒子はn−ブタン6.4重
量部を含むものとなった。この発泡性ポリスチレン粒子
を発泡槽内の蒸気圧(ゲージ圧)を0.9kg/cm2
とし、加熱時間を20、40、60秒とかえて発泡させ
た。発泡性ポリスチレン粒子は嵩倍率、おのおの105
倍、215倍、310倍に、一旦一次発泡したが、大気
中で冷却するとすぐにそれぞれ45倍、55倍、65倍
に収縮した。
EXAMPLES Next, the method of the present invention will be described more specifically by way of examples. Examples 1 to 3 Pearl-like polystyrene having an average particle diameter of 1.0 mm containing 0.002 parts by weight of dilauryl 3,3-thiodipropinate as a cell adjuster with respect to 100 parts by weight of polystyrene, and n- as a foaming agent. Using 10 parts by weight of butane,
Impregnation in a water dispersion autoclave to give n-butane 8.
Expandable polystyrene particles containing 0 parts by weight were obtained. The expandable polystyrene particles obtained were aged in a cool dark place for 5 days.
The expandable polystyrene particles after aging contained 6.4 parts by weight of n-butane. The vapor pressure (gauge pressure) of the expandable polystyrene particles in the foam tank is 0.9 kg / cm2.
Then, the heating time was changed to 20, 40, and 60 seconds for foaming. Expandable polystyrene particles have a bulk ratio of 105
The primary foaming was performed twice, 215 times, and 310 times, but when it was cooled in the atmosphere, it immediately shrank to 45 times, 55 times, and 65 times, respectively.

【0015】次に、収縮したポリスチレン収縮一次高発
泡粒子を炭酸ガス濃度90%となる雰囲気中で回復させ
たところ、約12分で加熱発泡時の嵩倍率に回復した。
この炭酸ガス雰囲気中での回復挙動について、図1に示
した。また、回復した嵩倍率は、それぞれ105倍、2
15倍、310倍であった。
Next, when the contracted polystyrene-shrinked primary high-expanded particles were recovered in an atmosphere having a carbon dioxide gas concentration of 90%, the bulk ratio upon heating and foaming was recovered in about 12 minutes.
The recovery behavior in this carbon dioxide atmosphere is shown in FIG. In addition, the recovered bulk magnifications are 105 times and 2 respectively.
It was 15 times and 310 times.

【0016】回復したポリスチレン一次高発泡粒子を蒸
気孔をもつ300x400x50mmの金型に充填し、
0.8kg/cm2 (ゲージ圧)の蒸気で30秒間加熱
後成形し、水冷却して高発泡成形体を得た。この高発泡
成形体を50℃の熱風乾燥室に24時間放置した。得ら
れたポリスチレン高発泡成形体の発泡倍率は100倍、
200倍、300倍であり、何ら特性がそこなわれるこ
とはなかった。
The recovered polystyrene primary high-expanded particles were filled into a 300 × 400 × 50 mm mold having steam holes,
It was heated with steam of 0.8 kg / cm @ 2 (gauge pressure) for 30 seconds, molded, and cooled with water to obtain a highly foamed molded product. This highly foamed molded product was left in a hot air drying chamber at 50 ° C. for 24 hours. The expansion ratio of the obtained polystyrene high-foam molded article is 100 times,
It was 200 times and 300 times, and the characteristics were not damaged.

【0017】比較例1〜3 実施例1〜3で得られた、それぞれ45倍、55倍、6
5倍に収縮したポリスチレン収縮一次発泡粒子を大気中
に自然放置した。大気中での回復挙動について、図2に
示した。また、2日後に自然に回復した嵩倍率は、それ
ぞれ100倍、190倍、250倍であった。このよう
に自然に回復したポリスチレン一次発泡粒子を実施例1
〜3と全く同様の方法で成形して、ポリスチレン高発泡
成形体を得た。得られたポリスチレン高発泡成形体の発
泡倍率は95倍、180倍、240倍であり、実施例1
〜3と比較して約5%〜25%発泡倍率が低いものしか
得られなかった。
Comparative Examples 1 to 3 45 times, 55 times, 6 obtained in Examples 1 to 3, respectively.
The polystyrene-shrinked primary expanded particles that had shrunk by 5 times were naturally left in the atmosphere. The recovery behavior in the atmosphere is shown in FIG. In addition, the bulk magnifications that naturally recovered after 2 days were 100 times, 190 times, and 250 times, respectively. In this way, the polystyrene primary expanded particles which were naturally recovered in this manner were used.
Molded in exactly the same manner as described above to obtain a polystyrene high-foam molded product. The expansion ratio of the obtained polystyrene high-foam molded article was 95 times, 180 times, and 240 times.
Only those having a low expansion ratio of about 5% to 25% as compared with those of Nos. 3 to 3 were obtained.

【0018】実施例4〜6 スチレンーアクリロニトリル樹脂を先端にノズルダイ装
備した押出機を使用して、ストランド状に押出し、イン
ライン中で冷却した後切断し、直径1mm,長さ1.5
mmのペレット状スチレンーアクリロニトリル樹脂を得
た。このペレット状スチレンーアクリロニトリル樹脂
に、発泡剤としてn−ペンタンを使用して、水分散系オ
ートクレーブ内で含浸して、スチレンーアクリロニトリ
ル樹脂100重量部に対してn−ペンタン8.0重量部
を含む発泡性スチレンーアクリロニトリル樹脂粒子を得
た。この得られた発泡性スチレンーアクリロニトリル樹
脂粒子を冷暗所で熟成した。熟成後の発泡性スチレンー
アクリロニトリル樹脂粒子はn−ペンタン7.0重量部
を含むものとなった。この発泡性スチレンーアクリロニ
トリル樹脂粒子を0kg/cm2 (ゲージ圧)の蒸気で
加熱発泡し、加熱時間を1分30秒、4分、9分秒とか
えて発泡させた。得られたスチレンーアクリロニトリル
樹脂一次高発泡粒子の嵩倍率は、おのおの115倍、2
20倍、320倍に、一旦発泡したが、大気中で冷却す
るとすぐにそれぞれ80倍、65倍、50倍に収縮し
た。
Examples 4 to 6 Styrene-acrylonitrile resin was extruded into a strand using an extruder equipped with a nozzle die at the tip, cooled in-line, and then cut to a diameter of 1 mm and a length of 1.5.
mm pelletized styrene-acrylonitrile resin was obtained. The pelletized styrene-acrylonitrile resin was impregnated in an aqueous dispersion autoclave using n-pentane as a foaming agent to contain 8.0 parts by weight of n-pentane per 100 parts by weight of styrene-acrylonitrile resin. Expandable styrene-acrylonitrile resin particles were obtained. The resulting expandable styrene-acrylonitrile resin particles were aged in a cool dark place. The foamable styrene-acrylonitrile resin particles after aging contained 7.0 parts by weight of n-pentane. The expandable styrene-acrylonitrile resin particles were heat-foamed with steam of 0 kg / cm 2 (gauge pressure), and the heating time was changed to 1 minute 30 seconds, 4 minutes, and 9 minutes, and foaming was performed. The bulk ratio of the obtained styrene-acrylonitrile resin primary high-expanded particles was 115 times and 2 respectively.
It once foamed 20 times and 320 times, but when it was cooled in the atmosphere, it shrank 80 times, 65 times, and 50 times, respectively.

【0019】次に、収縮したスチレンーアクリロニトリ
ル樹脂一次高発泡粒子を炭酸ガス濃度98%となる大気
圧雰囲気中に置いたところ約10分で回復した。回復し
た嵩倍率は、それぞれ115倍、220倍、320倍で
あった。回復したスチレンーアクリロニトリル樹脂一次
高発泡粒子を蒸気孔をもつ300x400x50mmの
金型に充填し、0.5kg/cm2 (ゲージ圧)の蒸気
で60秒間加熱後成形し、水冷却して高発泡成形体を得
た。この高発泡成形体を50℃の熱風乾燥室に24時間
放置した。このようにして得られたスチレンーアクリロ
ニトリル樹脂高発泡成形体の発泡倍率は100倍、20
0倍、300倍であり、何ら特性がそこなわれることは
なかった。
Next, the shrunk styrene-acrylonitrile resin primary high-expanded particles were placed in an atmospheric pressure atmosphere having a carbon dioxide gas concentration of 98%, and they were recovered in about 10 minutes. The recovered bulk magnifications were 115 times, 220 times, and 320 times, respectively. The recovered styrene-acrylonitrile resin primary high-expanded particles are filled in a 300 × 400 × 50 mm mold having steam holes, heated with steam of 0.5 kg / cm 2 (gauge pressure) for 60 seconds, molded, and cooled with water to obtain a high-foam molded product. Got This highly foamed molded product was left in a hot air drying chamber at 50 ° C. for 24 hours. The styrene-acrylonitrile resin high-foam molded product thus obtained has a foaming ratio of 100 times, 20 times.
It was 0 times and 300 times, and the characteristics were not damaged.

【0020】比較例4〜6 実施例4〜6で得られた、それぞれ80倍、65倍、5
0倍に収縮したスチレンーアクリロニトリル樹脂一次高
発泡粒子を大気中に放置した。7日後、自然に回復した
嵩倍率は、それぞれ105倍、195倍、290倍であ
った。この自然に回復したスチレンーアクリロニトリル
樹脂一次発泡粒子を実施例4〜6と全く同様の方法で成
形して、スチレンーアクリロニトリル樹脂高発泡成形体
を得た。得られたスチレンーアクリロニトリル樹脂高発
泡成形体の発泡倍率は90倍、185倍、280倍であ
った。
Comparative Examples 4 to 6 80 times, 65 times and 5 times obtained in Examples 4 to 6, respectively.
The styrene-acrylonitrile resin primary high-expanded particles that contracted 0 times were left in the atmosphere. After 7 days, the bulk magnifications that spontaneously recovered were 105 times, 195 times, and 290 times, respectively. The naturally restored styrene-acrylonitrile resin primary expanded particles were molded by the same method as in Examples 4 to 6 to obtain a styrene-acrylonitrile resin highly expanded molded product. The expansion ratio of the obtained styrene-acrylonitrile resin high foam molding was 90 times, 185 times and 280 times.

【0021】[0021]

【発明の効果】以上述べたように本発明は、発泡性スチ
レン系樹脂粒子を発泡倍率100〜350倍に加熱発泡
させ、大気中で冷却し収縮せしめたスチレン系樹脂収縮
一次高発泡粒子を炭酸ガス雰囲気中で回復させること
で、非常に短時間に回復させることが可能となる。した
がって、早期に成形することが可能となり、回復のため
の保管時間、場所を削減して効率よくスチレン系樹脂高
発泡成形体を製造できるという効果を奏する。また、大
気中で長期間を要して自然回復した場合と比較して、よ
り高倍率に回復できるので、より高発泡したスチレン系
樹脂発泡成形体を得ることができるという効果を奏する
ものである。
As described above, according to the present invention, the expandable styrenic resin particles are heat-foamed at an expansion ratio of 100 to 350 times, and the styrene resin shrinkage primary high-expanded particles which have been cooled and contracted in the atmosphere are carbonated. By recovering in a gas atmosphere, it is possible to recover in a very short time. Therefore, it is possible to mold at an early stage, and it is possible to reduce the storage time and place for recovery and efficiently produce a highly foamed styrene resin molded product. Further, as compared with the case where it takes a long time in the air to spontaneously recover, it is possible to recover to a higher magnification, so that it is possible to obtain a more highly foamed styrene resin foam molded article. .

【図面の簡単な説明】[Brief description of drawings]

【図1】炭酸ガス雰囲気中での回復挙動。FIG. 1 shows the recovery behavior in a carbon dioxide atmosphere.

【図2】大気中での回復挙動。FIG. 2 Recovery behavior in the atmosphere.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】発泡性スチレン系樹脂粒子を嵩倍率100
〜350倍に加熱発泡した後、大気中で冷却し収縮せし
めて収縮一次高発泡粒子を得、該粒子を炭酸ガス雰囲気
中で元の嵩倍率の90〜100%に回復させ、次いで成
形型内に充填して加熱発泡成形することを特徴とするス
チレン系樹脂高発泡成形体の製造方法。
1. A foaming styrenic resin particle having a bulk ratio of 100
After heat-foaming up to 350 times, it is cooled in the air and contracted to obtain contracted primary highly expanded particles, and the particles are recovered to 90 to 100% of the original bulk ratio in a carbon dioxide gas atmosphere, and then in a molding die. A method for producing a highly foamed styrenic resin molded article, comprising:
JP32387893A 1993-12-22 1993-12-22 Method for producing highly expanded molded article of styrene resin Expired - Lifetime JP2883269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32387893A JP2883269B2 (en) 1993-12-22 1993-12-22 Method for producing highly expanded molded article of styrene resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32387893A JP2883269B2 (en) 1993-12-22 1993-12-22 Method for producing highly expanded molded article of styrene resin

Publications (2)

Publication Number Publication Date
JPH07179648A true JPH07179648A (en) 1995-07-18
JP2883269B2 JP2883269B2 (en) 1999-04-19

Family

ID=18159614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32387893A Expired - Lifetime JP2883269B2 (en) 1993-12-22 1993-12-22 Method for producing highly expanded molded article of styrene resin

Country Status (1)

Country Link
JP (1) JP2883269B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0896870A2 (en) * 1997-08-11 1999-02-17 Hahn, Ortwin, Prof. Dr.-Ing. Method and apparatus for foaming and sintering EPS granules
JP2000080515A (en) * 1998-08-31 2000-03-21 T S Tec Kk Helmet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0896870A2 (en) * 1997-08-11 1999-02-17 Hahn, Ortwin, Prof. Dr.-Ing. Method and apparatus for foaming and sintering EPS granules
EP0896870A3 (en) * 1997-08-11 2000-01-05 Hahn, Ortwin, Prof. Dr.-Ing. Method and apparatus for foaming and sintering EPS granules
JP2000080515A (en) * 1998-08-31 2000-03-21 T S Tec Kk Helmet

Also Published As

Publication number Publication date
JP2883269B2 (en) 1999-04-19

Similar Documents

Publication Publication Date Title
US4925606A (en) Method for enhancing thermal expandability of direct-injection foams
US5110837A (en) Process for making molded polymeric product with multipass expansion of polymer bead with low blowing agent content
JPS5943492B2 (en) Manufacturing method of polypropylene resin foam molding
US5086078A (en) Process for making expanded polymeric product with low level of emission of blowing agent
KR100284215B1 (en) Process for preparing alkenyl aromatic foam
JP3435161B2 (en) Method for Unimodal Cell Size Distribution Styrene Foam Structure
US5240657A (en) Process for making expanded polymeric product with low level of emission of blowing agent
KR910008773B1 (en) Expandable vinyliden chloride composition
US5114640A (en) Time-efficient process for making expanded polymeric products with multipass expansion of polystyrene bead
US5110524A (en) Process for making molded polymeric product with multipass expansion of polymer bead with low blowing agent content
JP2883269B2 (en) Method for producing highly expanded molded article of styrene resin
JP2002302567A (en) Method for continuous production of pre-expanded bead of biodegradable polyester-based resin
JPH07314438A (en) Production of foamable thermoplastic resin granule
USRE34123E (en) Method for enhancing thermal expandability of direct-injection foams
JPH05262909A (en) Production of heat-resistant foamed material
JPH06298983A (en) Production of expandable thermoplastic resin particle
JPH0464302B2 (en)
CA2056248C (en) Process for making molded polymeric product with multipass expansion of polymer bead with low blowing agent content
JP3580317B2 (en) Method for producing flame-retardant expanded styrene resin molded article having voids
JPH06100724A (en) Production of synthetic resin expansion molded body good in dimensional stability
JPH05255531A (en) Production of molded polymer foam
JPS5940164B2 (en) Method for producing expandable thermoplastic resin particles
JPS597730B2 (en) Method for producing expandable thermoplastic polymer particles
JPH10330526A (en) Heat-resistant expanded resin particle
JPH04272940A (en) Foamable particle and foamed particle