JPS5961178A - Semiconductor device for power - Google Patents

Semiconductor device for power

Info

Publication number
JPS5961178A
JPS5961178A JP17165682A JP17165682A JPS5961178A JP S5961178 A JPS5961178 A JP S5961178A JP 17165682 A JP17165682 A JP 17165682A JP 17165682 A JP17165682 A JP 17165682A JP S5961178 A JPS5961178 A JP S5961178A
Authority
JP
Japan
Prior art keywords
emitter
pattern
base
patterns
polygons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17165682A
Other languages
Japanese (ja)
Other versions
JPH0460339B2 (en
Inventor
Makoto Tomita
真 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
NEC Corp
Original Assignee
NEC Home Electronics Ltd
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd, Nippon Electric Co Ltd filed Critical NEC Home Electronics Ltd
Priority to JP17165682A priority Critical patent/JPS5961178A/en
Publication of JPS5961178A publication Critical patent/JPS5961178A/en
Publication of JPH0460339B2 publication Critical patent/JPH0460339B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To accelerate a switching rate by partitioning and forming an emitter pattern into polygons, also setting a base pattern to polygons of approximately similar figures to the emitter pattern and regularly forming the polygons on the emitter pattern to a lattice point shape. CONSTITUTION:The emitter patterns 1... uniformly partitioned to a regular hexagonal shape form reticulate emitter regions 2, and stabilized dispersion resistors are set by polycrystallized silicon 3 in the straight-line segment boundaries. The base patterns 4... of similar figures each smaller than the emitter patterns 1... are isolated in the regular lattice point shape, and buried and disposed in each emitter pattern-that is, they are surrounded and arranged one by one in every other emitter pattern 1. When a base electrode 11 and emitter electrodes 13 are brought to zero or reverse bias, currents 14 annularly flow through the fringes of the small hexagons of the base patterns 4, concentrated current density is reduced, the dispersion of currents can be regarded as approximately uniform regarding the emitter regions 2, and the effective areas of emitters are not damaged. Not only the peripheral length of the emitters is large and stable operating regions enlarge because the emitter patterns 1 being in contact with the base patterns 4 are set to a polygonal shape but also currents are dispersed uniformly because the base patterns 4 take the regular lattice point shape, and there is hardly a possibility resulting in a secondary breakdown phenomenon.

Description

【発明の詳細な説明】 (技 術 分 甲f 〕 この発明は、バイポーラパワートランジスタ構造を備え
た電力用半導体装置の高速スイッチング特性向上に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Section Af) This invention relates to improving the high-speed switching characteristics of a power semiconductor device having a bipolar power transistor structure.

〔技術的背策〕[Technical countermeasure]

電力用゛1′*悴装置m、 vcおいては、バイポーラ
パワートランジスタは、一般にMOS FETノぐワー
トランジスタと比較すれば、周知の通り高速スイッチン
グ特性が劣るにもかかわらず製造技術的に先行しており
、量産性が優れ低価格である。よって、バイポーラパワ
ートランジスタ構造の電力用半導体装置は、スイッチン
グ式電源等に依然として賞用されている。しかし、上記
スイッチング式電源等は、現在も益々小型化、軽量化の
必要から、半導体装置のスイッチング速度を数百KHz
もの超高速化させることが要求されている。ところが、
従来より周知の通り、高速スイッチング性と高耐圧性と
は相反の関係にあり、したがって、高速化を図れば耐圧
を犠牲にせさ゛るを得ない事情があった。
In power devices, bipolar power transistors are generally superior in manufacturing technology compared to MOS FET power transistors, even though they have inferior high-speed switching characteristics, as is well known. It is suitable for mass production and is inexpensive. Therefore, power semiconductor devices having a bipolar power transistor structure are still being used in switching power supplies and the like. However, due to the current need for smaller and lighter switching power supplies, etc., the switching speed of semiconductor devices has been reduced to several hundred KHz.
There is a need to make things extremely fast. However,
As is well known in the past, high-speed switching performance and high voltage resistance are in a contradictory relationship, and therefore, in order to increase the speed, it is unavoidable to sacrifice voltage resistance.

が、現在では、その相反もエミッタパターンの設計によ
りかなり改善されるに至っている。すなわチ、エミッタ
パターンを櫛形状に設定することにより、ベース領域中
のエミッタ直下部分の横方向抵抗の影響で、エミッタ直
下部分とその他の部分で、パワートランジスタ動作中に
電位差が生じて、特にスイッチングOFF時に、エミッ
タ中央Wlt &c電Mr、が集中してしまい、エミッ
タ有効m1偵か減少し、結局スイッチング降F時間を速
められなかった点が改@をれ又きた。また櫛形エミッタ
とするエミツク周囲長とエミッタ面積の比 E/A、が
人となり、いわゆる安全動作領域も増し、二次1伶伏q
盲慴も良好となり耐圧向上が図れる点でも好都合である
However, this conflict has now been considerably improved through the design of emitter patterns. In other words, by setting the emitter pattern in a comb shape, due to the influence of the lateral resistance of the part directly below the emitter in the base region, a potential difference is generated between the part directly below the emitter and other parts during power transistor operation, and When the switching is OFF, the emitter central Wlt & c electric currents concentrate, the emitter effective m1 decreases, and the switching down F time cannot be sped up after all. In addition, when using a comb-shaped emitter, the ratio of the emitter perimeter to the emitter area (E/A) increases, the so-called safe operating area increases, and the secondary
It is also advantageous in that blindness is also good and pressure resistance can be improved.

しかし先ホした通り、超晶速化を図る一1ニーAは、補
形エミッタでは、エミッタよりベースへのキャリアの注
入が困難きなり、限界が生している。その原因としては
、if!II杉エミッタの歯部の幅寸法か十分に選定で
きないことなとが考えられているが、有効な解決手段が
採られていない。
However, as mentioned above, in order to increase the supercrystalline speed, it is difficult to inject carriers into the base rather than the emitter with a complementary emitter, and there is a limit to this. The reason is if! It is thought that the width dimension of the teeth of the II cedar emitter cannot be selected sufficiently, but no effective solution has been taken.

〔発明の開示〕[Disclosure of the invention]

この発明は、上記の問題に鑑み提唱されたもので、パワ
ートランジスタ構造におけるエミッタパターン及びベー
スパターンヲ櫛形とぜず、エミッタパターンを多角形に
区画形成して、ベースパターンもエミッタパターンとほ
ぼ相似形の多角影VC設足し、エミッタパターン」二に
規則的に格子点状4C設けることを特徴としている。し
たがって、この発明は、スイッチング動作の高速化は勿
繻、耐圧特性を含めた安全動作領域の点でも従来の櫛形
エミッタのものよりも一段と優れており、製造上の股甜
変更も容易となる長所がある。
This invention was proposed in view of the above problem, and the emitter pattern and the base pattern in the power transistor structure are not comb-shaped, but the emitter pattern is divided into polygons, and the base pattern is also almost similar to the emitter pattern. A polygonal shadow VC is provided, and lattice points 4C are regularly provided in the emitter pattern. Therefore, the present invention is superior to conventional comb-shaped emitters not only in terms of faster switching operation but also in terms of safe operation range including withstand voltage characteristics, and has the advantage that it is easy to change the manufacturing route. There is.

〔発明を実施するための最良の形態〕[Best mode for carrying out the invention]

第1図は、この発明の一実施例を示すバイポーラパワー
トランジスタのエミッタパターン及びベースパターンを
概念的に示L7こ平面視概略構成図である。尚この実施
例の説明に当っては、元来、スイッチング時にベース領
域中に蓄積した多数キャリアをより速く外部へ流出させ
ることが出来る型のもの、すなわちベース領域をP型と
して注入される多数キャリアを電子に設定したnprI
型トラノンスタを前提として行うが、この発明は、j京
理的に他のpnp型に適用してもよく、以下の説明から
明らかとなる。
FIG. 1 is a schematic plan view showing conceptually an emitter pattern and a base pattern of a bipolar power transistor according to an embodiment of the present invention. In the explanation of this embodiment, we will use a type that allows the majority carriers accumulated in the base region to flow out more quickly during switching, that is, a type in which majority carriers are injected with the base region as P type. nprI with electron set to
Although the present invention is based on the premise of a type transonstar, the present invention may be logically applied to other pnp types, which will become clear from the following description.

さて、第1図において、l、1.  は、正六角形状に
均一区画されたエミッタノぐターンで、いわば網目状の
エミッタ領域2を形作っていて、その直#i1線分境界
は多結晶化ンリコン3,3.・・ によって安定化分散
抵抗が設定されたものである。さら[4,4,・ は、
エミッタパターン1,1.・・・よりは夫々小さい相似
形のベースパターンで、規則的な格子点状に離隔され、
かつ各々のエミッタパターン中に埋め込み配設、すなわ
ち、一つ置きのエミッタパターン1中に一個一個囲繞配
置されたものである。以上のパターン概念に基いて、バ
イポーラパワートランジスタの断mi構造を示したもの
が第2図で、第1図におけるA−A線部分で切断した断
面について設計したものである。第2図において、5は
N−形コレクタ領域、6&″iP形ヘース領域、7は1
形エミッタ領域で、第1図のA−A線17J断箇所に相
当する正六角形区画Bは破線8.8間で示されている。
Now, in FIG. 1, l, 1. are emitter grooves uniformly partitioned into a regular hexagonal shape, forming a so-called mesh-like emitter region 2, whose direct #i1 line segment boundaries are polycrystalline silicon 3, 3 . The stabilized distributed resistance is set by... Sara [4,4,・ is,
Emitter pattern 1, 1. ...is a base pattern of similar shapes, each smaller than the other, spaced apart in the form of regular lattice points,
In addition, they are embedded in each emitter pattern, that is, they are surrounded by every other emitter pattern 1. Based on the above pattern concept, FIG. 2 shows the cross-sectional mi structure of a bipolar power transistor, which is designed with respect to the cross section taken along line A--A in FIG. 1. In FIG. 2, 5 is an N-type collector region, 6 is an iP-type heath region, and 7 is 1
In the shaped emitter region, a regular hexagonal section B corresponding to the cut point 17J on line AA in FIG. 1 is shown between dashed lines 8.8.

さらに9はエミッタ及びベース領域形成表1fIを保論
する5102膜、10はS i 、111.等の絶縁膜
である。ざて、11は正六角形区画Bの中央部に位11
するベースパターン4々P″−形のへ一スコンタクト1
2を介して接続したA見のベース電極、そして13は、
正六角形区画B内の周辺部上に、多結晶化シリコンを介
在させて設けたA見のエミッタ面積である。
Furthermore, 9 is a 5102 film that holds the emitter and base region formation table 1fI, 10 is S i , 111 . It is an insulating film such as 11 is located in the center of the regular hexagonal section B.
Base pattern 4 P″-shaped bottom contacts 1
A base electrode connected through 2, and 13,
This is the area of the emitter in view A, which is provided on the periphery of regular hexagonal section B with polycrystalline silicon interposed therebetween.

上記構成としたバイポーラパワートランジスタのスイッ
チング動作においては、従来のOF F 時に生してい
たエミッタ有効面積の減少は、次の通り完全に駆逐でき
る。すなわち、第3図に示すようにベース電極11とエ
ミッタ電4傘13とを零又は遊バイアスとした時には、
電源14はエミッタパターン1の中央部直下へ集中しよ
うとするが、中央部はベースパターン4が仕りエミッタ
領域は形成されていないので、結局電流14はベースパ
ターン4の小六角形周縁に環状に流れ、集中電流密度が
減しられ、第1図におけるエミッタ領域2に関しては、
はぼ電流均一分散と見すことができ、エミッタ有効面積
が損われないのである。しかもこのパワートランジスタ
は、ベース領域6での電流集中緩和とともに、−一−ス
パターン4と接するエミッタパターン1は多角杉状に設
定されるから、エミッタ周囲長が大きく、安全動作領域
が犬になるばかりか、ベースパターン4が規則的格子点
状で、従来の櫛形パターンよりも著しく電流均一分散が
行え、二次降伏現象を招く危険性が減少する。
In the switching operation of the bipolar power transistor configured as described above, the reduction in the effective emitter area that occurs during the conventional OFF time can be completely eliminated as follows. That is, when the base electrode 11 and the emitter capacitor 13 are set to zero or free bias as shown in FIG.
The power source 14 tries to concentrate directly under the center of the emitter pattern 1, but since the center is covered by the base pattern 4 and no emitter region is formed, the current 14 ends up flowing in a ring around the small hexagonal periphery of the base pattern 4. , the concentrated current density is reduced and for emitter region 2 in FIG.
This can be regarded as a uniform distribution of current, and the effective area of the emitter is not impaired. Moreover, in this power transistor, in addition to alleviating current concentration in the base region 6, the emitter pattern 1 in contact with the -base pattern 4 is set in a polygonal cedar shape, so the emitter circumference is large and the safe operation area becomes a dog. Moreover, since the base pattern 4 has a regular lattice shape, the current can be distributed more uniformly than in the conventional comb-shaped pattern, and the risk of secondary breakdown phenomenon is reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例を示す電力用半導体装置
のエミッタパターン及びベースパターンの構成を示す平
面視概念図、第2図は、そのA−A線で切断したと想定
した電力用半導体装置の要部断面図、第3図はその逆バ
イアススイッチング時の同様な断面図である。 1・ エミッタパターン、 4・・・ ベースパターン、 6・・・・ ベース領域、 7・・−・ エミッタ領域。
FIG. 1 is a conceptual plan view showing the structure of an emitter pattern and a base pattern of a power semiconductor device showing one embodiment of the present invention, and FIG. 2 is a power semiconductor device assumed to be cut along line A-A. FIG. 3 is a cross-sectional view of the main part of the semiconductor device, and a similar cross-sectional view during reverse bias switching. 1. Emitter pattern, 4... Base pattern, 6... Base area, 7... Emitter area.

Claims (1)

【特許請求の範囲】[Claims] 少くともエミッタ領域とベース領域とを同一面より形成
する半導体装置において、多角形に区画形成したエミッ
タパターンと、上記エミッタパターンとほぼ相似形の多
角形状ベースパターンを規則的格子点状に設けたことを
特徴上する電力用半導体装置。
In a semiconductor device in which at least an emitter region and a base region are formed from the same surface, an emitter pattern formed into polygonal sections and a polygonal base pattern substantially similar to the emitter pattern are provided in the form of regular lattice points. A power semiconductor device characterized by:
JP17165682A 1982-09-30 1982-09-30 Semiconductor device for power Granted JPS5961178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17165682A JPS5961178A (en) 1982-09-30 1982-09-30 Semiconductor device for power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17165682A JPS5961178A (en) 1982-09-30 1982-09-30 Semiconductor device for power

Publications (2)

Publication Number Publication Date
JPS5961178A true JPS5961178A (en) 1984-04-07
JPH0460339B2 JPH0460339B2 (en) 1992-09-25

Family

ID=15927255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17165682A Granted JPS5961178A (en) 1982-09-30 1982-09-30 Semiconductor device for power

Country Status (1)

Country Link
JP (1) JPS5961178A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262665A (en) * 1988-04-13 1989-10-19 Mitsubishi Electric Corp Semiconductor device for power
DE102005046738A1 (en) * 2005-09-29 2007-03-22 Infineon Technologies Ag Bipolar transistor with protection against electrical overloading by transients or peaks, includes emitter structure comprised of two distinct layers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5043885A (en) * 1973-08-20 1975-04-19
JPS53103668U (en) * 1977-01-24 1978-08-21
JPS5691468A (en) * 1979-12-25 1981-07-24 Nec Corp Semiconductor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5043885A (en) * 1973-08-20 1975-04-19
JPS53103668U (en) * 1977-01-24 1978-08-21
JPS5691468A (en) * 1979-12-25 1981-07-24 Nec Corp Semiconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262665A (en) * 1988-04-13 1989-10-19 Mitsubishi Electric Corp Semiconductor device for power
DE102005046738A1 (en) * 2005-09-29 2007-03-22 Infineon Technologies Ag Bipolar transistor with protection against electrical overloading by transients or peaks, includes emitter structure comprised of two distinct layers

Also Published As

Publication number Publication date
JPH0460339B2 (en) 1992-09-25

Similar Documents

Publication Publication Date Title
US4646117A (en) Power semiconductor devices with increased turn-off current ratings and limited current density in peripheral portions
US3740621A (en) Transistor employing variable resistance ballasting means dependent on the magnitude of the emitter current
JPH0358187B2 (en)
US4786959A (en) Gate turn-off thyristor
GB2144267A (en) Improvements in or relating to semiconductor overvoltage suppressors
EP0008535B1 (en) A gate controlled semiconductor device
JPH0156531B2 (en)
JPH0138381B2 (en)
US4151541A (en) Power transistor
US4288807A (en) Darlington circuit having an improved diode drain
US4760439A (en) Bi-directional overvoltage protection device
JPS5961178A (en) Semiconductor device for power
US3906545A (en) Thyristor structure
US4352118A (en) Thyristor with segmented turn-on line for directing turn-on current
US4253105A (en) Semiconductor power device incorporating a schottky barrier diode between base and emitter of a PNP device
KR20000061463A (en) Power MOSFET having low on-resistance and high ruggedness and method for manufacturing thereof
US2988677A (en) Negative resistance semiconductor device structure
US4035825A (en) Thyristor with branched base
US4176371A (en) Thyristor fired by overvoltage
GB1573234A (en) Thyristors
US4609933A (en) Gate turn-off thyristor having P+ gate and emitter
US5005065A (en) High current gate turn-off thyristor
JPS5934147Y2 (en) Gate turn-off thyristor
JPH0133951B2 (en)
US4460913A (en) Fast switching transistor