JPS5960871A - Particle charger - Google Patents

Particle charger

Info

Publication number
JPS5960871A
JPS5960871A JP17062282A JP17062282A JPS5960871A JP S5960871 A JPS5960871 A JP S5960871A JP 17062282 A JP17062282 A JP 17062282A JP 17062282 A JP17062282 A JP 17062282A JP S5960871 A JPS5960871 A JP S5960871A
Authority
JP
Japan
Prior art keywords
electrode
corona
charging device
electric field
particle charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17062282A
Other languages
Japanese (ja)
Inventor
増田 閃一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP17062282A priority Critical patent/JPS5960871A/en
Publication of JPS5960871A publication Critical patent/JPS5960871A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catching Or Destruction (AREA)
  • Electrostatic Spraying Apparatus (AREA)
  • Elimination Of Static Electricity (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は微細な粒子に短時間内に強力な電荷を与えるだ
めのコロナ荷電装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a corona charging device for imparting a strong charge to fine particles within a short period of time.

従来,接地円筒電極内にその中心軸に沿って針金状ない
し釘付棒状のコロナ放電極を絶縁配設し,両者の間に直
流高電圧を印加して該コロナ放電極より該円筒電極内壁
に向けて直流コロナ放電を発生せしめた上。
Conventionally, a corona discharge electrode in the form of a wire or a nailed rod is insulated and arranged inside a grounded cylindrical electrode along its central axis, and a high DC voltage is applied between the two to cause the corona discharge electrode to reach the inner wall of the cylindrical electrode. A direct current corona discharge was generated towards the target.

この円筒内に含塵気体を通過せしめ,コロナ放電により
生じたイオンを気体中のダスト粒子に衝突せしめてこれ
を荷電する所の同心円筒状コロナ荷電装置はそれ自体公
知であり,広く利用されている。
A concentric cylindrical corona charging device in which dust-containing gas is passed through this cylinder and ions generated by corona discharge collide with dust particles in the gas to charge them is well known and widely used. There is.

しかし乍らこの装置においては,印加電圧を上げて両電
極間の荷電空間における平均電界強度Ef.E=5〜6
 kv々程度以上に上げると火花を生ずるため,この値
をこれをこえて上げるととができず,したがってコロナ
電流密度の値JもJ=0.2〜0. 5 mA/rn”
程度に止って,短時間にダスト粒子に強力な電荷を与え
ることが不可能であった。何故ならば,粒子に与えられ
る電荷量はその飽和値がEに比例し,またその荷電時定
数がJに反比例するからである。
However, in this device, the applied voltage is increased to increase the average electric field strength Ef in the charged space between the two electrodes. E=5~6
If the value is increased above about 1.5 kV, sparks will be generated, so if this value is increased beyond this value, it will not be possible to obtain a spark. 5 mA/rn”
However, it was impossible to impart a strong charge to dust particles in a short period of time. This is because the saturation value of the amount of charge given to the particle is proportional to E, and the charging time constant is inversely proportional to J.

これに対して放電極として第1図に示す如く,比較的太
い導体円柱1の端部に鋭い円周2を有する円板状の放電
極3をとりつけ,これを隔壁4に支持されたペンチーリ
ー形状を有する接地電極5のスロート部6の中心部に,
これと同軸に支柱7を用いて配置し,両者間に直流高圧
電源8により直流高電圧を放電極3を負ている。この装
置は円周2とスロート部6の間の荷電空間に含塵ガスを
通常30(m/s)程度の高速で通過せしめ.2より6
に向うコロナ放電によりダスト粒子を荷電するが.この
場合,この高いガス速度と太い導体電空間にE>10(
KV/m) 、  J = 20(mA/rn”)程度
の著るしく高いB,Jの値を安定に形成せしめることが
出来,ダスト粒子を短時間に強力に荷電するととが可能
となった。
On the other hand, as a discharge electrode, as shown in FIG. In the center of the throat part 6 of the ground electrode 5 having
A column 7 is arranged coaxially with this, and a high DC voltage is applied between the two by a high voltage DC power source 8 to a discharge electrode 3. This device allows dust-containing gas to pass through the charged space between the circumference 2 and the throat portion 6 at a high speed of usually about 30 (m/s). 6 than 2
The dust particles are charged by the corona discharge toward the In this case, E>10(
KV/m), J = 20 (mA/rn"), which were able to stably form extremely high B and J values, making it possible to strongly charge dust particles in a short time. .

しかし乍ら,本装置において捕集すべきダスト粒子が極
度に細かく.その質量平均粒径が1〔μm〕程度以下に
なると,上記円板状放電極3のコロナ放電を生ずべき円
周2の上流側及び下流側にダストが耐着堆積して円周2
がこの堆積層に埋没し,そのためコロナ放電の発生が著
るしく抑制され,荷電性能が大巾に低下するという大き
な欠点があった。そしてこの傾向は耐着傾向の強い微細
粒子.例えばディーゼルヱンジン排気中の微細なカーボ
ン粒子等では特に著るし<、シたがって上記「ハイイン
テンシテイ−・アイオナイザ−」をこの様な超微細粒子
の荷電に利用することは不可能であった。
However, the dust particles to be collected by this device are extremely fine. When the mass average particle diameter becomes about 1 [μm] or less, dust is deposited on the upstream and downstream sides of the circumference 2 of the disc-shaped discharge electrode 3 where corona discharge should occur, and the dust is deposited on the circumference 2.
is buried in this deposited layer, and as a result, the generation of corona discharge is significantly suppressed, resulting in a major drawback in that the charging performance is greatly reduced. This tendency is associated with fine particles that have a strong tendency to resist adhesion. For example, this is particularly noticeable in the case of fine carbon particles in diesel engine exhaust, and therefore it is impossible to use the above-mentioned "high-intensity ionizer" to charge such ultra-fine particles. Ta.

本発明はこの困難を解決し,如何なる種類の超微細粒子
に対しても放電極への粒子耐着によるコロナ放電の低下
を防止して強力な電荷を短時間内に附与することを可能
ならしめた新規のコロナ荷電装置を提供することを目的
とする。しかして本発明は,この目的を上整電極上に比
較的短かい針状電極群を等間隔に配設し。
The present invention solves this difficulty and makes it possible to impart a strong electric charge to any type of ultrafine particles within a short time while preventing the corona discharge from decreasing due to particle adhesion to the discharge electrode. The purpose of the present invention is to provide a novel corona charging device with improved performance. Therefore, the present invention achieves this objective by disposing a group of relatively short needle-like electrodes at equal intervals on the upper adjustment electrode.

これをコロナ放電極として用いることによって達成する
This is achieved by using it as a corona discharge electrode.

すなわち本願の発明者はこの場合、(1)針電極尖端に
生ずる著るしく強力な負コロナ放電は、それ自体の強力
な荷電作用と電界集中とによる大きなり−ロンカの作用
で、少くとも該尖端部への微粒子耐着を大巾に抑制する
こと、(2)特に微粒子がディーゼルエンジン排気中の
カーボン粒子等の如く可燃性粒子の時は、上記の著るし
く強力な針電極尖端の負コロナに起因する活性なo3.
o英、0.OH等の化学種の酸化作用によってCOない
しCO2へと酸化される結果、該尖端部は常に清浄に保
たれること、この針電極群を上記円板電極に代えると、
上記(1)、 (2)の作用が著るしく低下してコロナ
放電極への粒子耐着とそれによる肥大、コロナ電流の低
下がさけられないこと等を見出したのである。
That is, in this case, the inventor of the present application believes that (1) the extremely strong negative corona discharge that occurs at the tip of the needle electrode is due to the large Ronca effect caused by its own strong charging action and electric field concentration; (2) Particularly when the particulates are combustible particles such as carbon particles in diesel engine exhaust, the above-mentioned extremely strong negative electrode tip Active o3 caused by corona.
o English, 0. As a result of being oxidized to CO or CO2 by the oxidizing action of chemical species such as OH, the tip is always kept clean, and if this needle electrode group is replaced with the disk electrode,
They found that the effects of (1) and (2) above are significantly reduced, and particles are prevented from adhering to the corona discharge electrode, resulting in enlargement and a decrease in corona current.

すなわち本発明による新規のコロナ荷電装置け1回転対
稍形^地の非コロナ対向電極のほぼ中心軸に活って円柱
状の電界調整電極を絶縁支持の上配設すると共に、該電
界調整電極のほぼ中央附近より放射状に多数の比較的短
かい針状コロナ放電極を該非コロナ対向電極内面に向っ
て突出せしめ、該電界調整電極ならびに斜状コロナ放電
極に負の直流高電圧を印加して該針状コロナ放電極尖端
より該非コロナ対向電極の内面に向けて強力な負コロナ
放電を発生せしめ、これにより生じた負イオンを両電極
間にガス流と共に導入せる微粒子に射突せしめてこれを
短時間内に強力に荷電すると共に、針状コロナ電極の尖
端に生ずる強力な負コロナの作用により、該尖端部を常
に清浄に保持することを特徴とする。
That is, in the novel corona charging device according to the present invention, a cylindrical electric field adjustment electrode is disposed on an insulating support approximately at the central axis of a small-shaped non-corona counter electrode, and the electric field adjustment electrode A large number of relatively short needle-shaped corona discharge electrodes are radially projected from approximately the center of the electrode toward the inner surface of the non-corona facing electrode, and a negative DC high voltage is applied to the electric field adjustment electrode and the oblique corona discharge electrode. A strong negative corona discharge is generated from the tip of the needle-like corona discharge electrode toward the inner surface of the non-corona counter electrode, and the negative ions generated by this are caused to collide with fine particles that are introduced together with the gas flow between the two electrodes. It is characterized by being strongly charged within a short period of time, and by the action of a strong negative corona generated at the tip of the needle-like corona electrode, the tip is always kept clean.

但し、上記円柱状電界調整電極の外径d1は上記回転対
稍形状の接地非コロナ電極内径d2の%〜%の範囲にと
るのがよく、特に%附近にとるのがよい。また該円柱状
電界調整電極の長さLは、その外径d1の少くとも2倍
以上にとるのがよい。また上記の比較的短かい針状コロ
ナ放電極の突出長さhは1円柱状電界調整電極の外径d
1の%〜%にとるのがよく、特に%附近にとるのがよい
However, the outer diameter d1 of the cylindrical electric field adjustment electrode is preferably set within a range of % to % of the inner diameter d2 of the grounded non-corona electrode of the rotationally irregular shape, and particularly preferably around %. Further, the length L of the cylindrical electric field adjustment electrode is preferably at least twice the outer diameter d1. In addition, the protrusion length h of the above-mentioned relatively short needle-like corona discharge electrode is 1. The outer diameter d of the cylindrical electric field adjustment electrode is
It is best to set it to 1% to %, especially around %.

いま本発明の特徴を実施例及び図面によってより詳細に
説明する。牙2図は本発明の一実施例の縦断面図。
The features of the present invention will now be explained in more detail with reference to examples and drawings. Figure 2 is a longitudinal sectional view of one embodiment of the present invention.

第3図はその入口端より見た正面図を示す。図において
9は接地の円筒状対向電極で、10はガス入口、11は
ガス出口である。12は該円筒状対向電極の内部にその
中心軸に沿って同心的に配置せる円筒状の電界調整電極
で、その上流端13は半球状をなし、またそのほぼ中央
部に外向きに等間隔に放射状に突出せる比較的短かい多
数の針状コロナ放電極群14が植えつけられている。
FIG. 3 shows a front view from the inlet end. In the figure, 9 is a grounded cylindrical counter electrode, 10 is a gas inlet, and 11 is a gas outlet. Reference numeral 12 denotes a cylindrical electric field adjustment electrode disposed concentrically along the central axis inside the cylindrical counter electrode, the upstream end 13 of which has a hemispherical shape, and approximately the center of which is arranged outwardly at equal intervals. A large number of relatively short needle-like corona discharge electrode groups 14 that can protrude radially are planted.

該電界調整電極12は同じく中心軸に沿って配設された
セラミック絶縁円筒15の上流端に固定支持されており
The electric field adjusting electrode 12 is fixedly supported at the upstream end of a ceramic insulating cylinder 15 which is also arranged along the central axis.

また該セラミック絶縁円筒15はその下流端16におい
て4本の支柱17.18.19.20により円筒状対向
電極9の内壁に固定せる円筒状保持金具21により把持
固定されている。セラミック絶縁円筒15はその内面に
導電性塗料を塗布して導電膜nが形成されており、かつ
その基底部nにこれと一体となった絶縁用碍管列を有し
、24は円筒状対向電極9の壁を貫ぬいて外部に突出し
、その内部に導電膜nに接続された導線6を有する。い
ま直流高圧電源8により導線n、端子謳、導線す、導電
膜nおよび接地導線列を介して該電界調整電極12−針
状コロナ放電極群14と該円筒状対向電極9との間に。
Further, the ceramic insulating cylinder 15 is gripped and fixed at its downstream end 16 by a cylindrical holding fitting 21 which is fixed to the inner wall of the cylindrical counter electrode 9 by means of four pillars 17, 18, 19, 20. The ceramic insulating cylinder 15 has a conductive film n formed by applying a conductive paint on its inner surface, and has an array of insulating insulating tubes integrated with this at its base n, and 24 is a cylindrical counter electrode. It penetrates through the wall of 9 and protrudes to the outside, and has a conductive wire 6 inside thereof connected to the conductive film n. Now, a DC high-voltage power source 8 is used to connect the electric field adjusting electrode 12 to the needle-like corona discharge electrode group 14 and the cylindrical counter electrode 9 via a conductor wire n, a terminal, a conductor wire, a conductive film n, and a ground conductor array.

前者が負となる様に直流高電圧を印加すると、該針状コ
ロナ放電極群14の尖端よりこれに対向する該円筒状対
向電極9の内面四に向って強力な負コロナ放電を生じ、
多量の負イオン電流を供給する。この場合、すでにのべ
た如く電界調整電極12 (7p作用とコロナ放電極篩
2電空間凹には10 (KVA−IrL)以上の著るし
く高い電界強度Eが安定に形成維持でき、またここを流
れる負イオン電流密度Jも20 (mA/rr? )ま
たはそれ以上の極めて大きな値を達成することができる
のである。
When a high DC voltage is applied so that the former becomes negative, a strong negative corona discharge is generated from the tip of the needle-like corona discharge electrode group 14 toward the inner surface 4 of the cylindrical counter electrode 9 facing thereto,
Provides a large amount of negative ion current. In this case, as already mentioned, a significantly high electric field strength E of 10 (KVA-IrL) or more can be stably formed and maintained in the electric space concavity of the electric field adjustment electrode 12 (7p action and the corona discharge electrode sieve 2). The flowing negative ion current density J can also achieve an extremely large value of 20 (mA/rr?) or more.

を供給すると、14と19の間を通過する該微粒子はこ
の負イオンの射突をうけて強力に負に荷電され矢印32
の方向に進行してガス出口11より目的とする装置へと
供給される。この場合、出口11を入口とし、入口10
を出口としてガスの流れ方向を逆向きとしてもよいこと
は云うまでもない。いま本実施例における数値の一例を
あげると1円筒状対向電極9の内径d2=47(mm)
When ions are supplied, the particles passing between 14 and 19 are bombarded with negative ions and are strongly negatively charged, as indicated by the arrow 32.
The gas flows in the direction shown in FIG. 1 and is supplied to the target device through the gas outlet 11. In this case, the outlet 11 is the inlet, and the inlet 10 is the inlet.
It goes without saying that the gas flow direction may be reversed with the outlet as the outlet. Now, to give an example of numerical values in this embodiment, the inner diameter d2 of the cylindrical counter electrode 9 is 47 (mm).
.

電界調整電極12およびセラミック絶縁円筒15の外径
The outer diameter of the electric field adjustment electrode 12 and the ceramic insulating cylinder 15.

dl = 18(mm) I電界調整電極nの全長L 
= 55(mm)。
dl = 18 (mm) I Total length L of electric field adjustment electrode n
= 55 (mm).

セラミック絶縁円筒15の有効長160(mm)、針状
コロナ放電極14の突出長さh = 3(mm)、ガス
温度40℃で微細なディーゼルエンジンのカーボン粒子
を含む排ガスを入口10より導入する時、平均ガス速度
v =8(m/s)で、火花電圧Vs=18(KV)(
E=12.4KVA−rrL) テコl1ffす電流I
s=2(mA)(J=68mA/Tr?)、またv =
32(rr)/s)(J=119mA/m”)という高
い荷電空間電界強度と荷電空間電流密度が得られ、ここ
を通過するカーボン粒子には極めて短かい滞留時間にも
かかわらず、理論的に到達しうる飽和電荷量に等しい高
い電荷が与えられた。伺、ディゼルヱンジン排気を流通
する長期間の連続運転でも上記セラミック絶縁円筒表面
のカーボン粒子層の耐着厚さはt2=0.5 (mm 
)程度にすぎず、その時のもれ電流の値はVs=18(
KV)のときI/=0.3(mA)。
The effective length of the ceramic insulating cylinder 15 is 160 (mm), the protrusion length h of the acicular corona discharge electrode 14 is 3 (mm), and the exhaust gas containing fine carbon particles from a diesel engine is introduced from the inlet 10 at a gas temperature of 40°C. time, average gas velocity v = 8 (m/s), spark voltage Vs = 18 (KV) (
E=12.4KVA-rrL) Lever l1ff current I
s=2(mA) (J=68mA/Tr?), and v=
A high charged space electric field strength and charged space current density of 32 (rr)/s) (J = 119 mA/m") were obtained, and the carbon particles passing through this had a theoretical A high charge equal to the saturation charge that can be reached is given.However, even during long-term continuous operation with diesel engine exhaust flowing through it, the adhesion-resistant thickness of the carbon particle layer on the surface of the ceramic insulating cylinder was t2 = 0.5 ( mm
), and the value of the leakage current at that time is Vs=18(
KV) when I/=0.3 (mA).

Vs=22(KV)のときIr=0.4(mA)にすぎ
ず、全電流に清浄に保たれ、カーボン粒子耐着によるコ
ロナ電流の低下はまったく生じなかった。
When Vs = 22 (KV), Ir = only 0.4 (mA), and the current was kept clean at all times, and no decrease in corona current due to carbon particle adhesion occurred.

本発明による所の新規の粒子荷電装置は、電気集塵装置
、微粒子の静電凝集装置、バグフィルタ−9静電界を併
用せる沖過集塵装置、静電粉体塗着装置、静電式農薬撒
布装置、その細微粒子の荷電を必要とする凡ゆる処理装
置の前段ないし内部に設けて、微粒子の荷電に利用する
ことができる。
The novel particle charging device according to the present invention includes an electrostatic precipitator, an electrostatic aggregation device for fine particles, an overflow dust collector that uses a bag filter-9 electrostatic field, an electrostatic powder coating device, and an electrostatic type It can be installed in front of or inside a pesticide spraying device or any processing device that requires charging fine particles, and can be used to charge fine particles.

田・4図は本発明による所の新規の粒子荷電装置33を
ケーシング涜の中にガス流に平行に配設された所の負の
直流高圧電源35に接続され、絶縁せるコロナ放電極群
謁と接地の集塵極群37より成る電気集塵装置間の前置
予備荷電装置として利用せる実施例の縦断面図を示す。
Figure 4 shows a novel particle charging device 33 according to the present invention connected to a negative DC high voltage power source 35 arranged parallel to the gas flow inside the casing, and an insulated corona discharge electrode group. 2 is a vertical cross-sectional view of an embodiment used as a pre-charging device between an electrostatic precipitator consisting of a group of dust collecting electrodes 37 connected to a grounded dust collecting electrode group 37.

図において、矢印31の方向にガスと共に進入せるダス
ト粒子は該粒子荷電装置33内を通過することにより強
力に負に予備荷電されたのち電気集塵装置間の入口39
よりその集塵空間40に入るので、その捕集効率は格段
に向上を示す。
In the figure, dust particles entering along with the gas in the direction of arrow 31 are strongly negatively precharged by passing through the particle charging device 33, and are then precharged at the inlet 39 between the electrostatic precipitators.
Since more dust enters the dust collection space 40, the collection efficiency is significantly improved.

第5図は本発明による所の新規の粒子荷電装置33を微
粒子の静電凝集装置41の前置荷電装置として利用せる
実施例の斜視図を示す。矢印31の方向にガスと共に進
入せるダスト粒子は該粒子荷電装置33内を通過中強力
に荷電されて、入口42より41のケーシング43内に
進の直流高電圧を印加された平板電極群°46が対向配
設され、その間の空間に直流電界を形成している。した
がって、ここに導入された負に荷電された微粒子はクー
ロン力により直ちに正極性にある接地平板電極群44の
上に捕集されて堆積層を形成する。そこでいま、これら
電極群材、46を機械的に槌打すると、微粒子層は剥離
し、大きく凝集成長した粒子塊として出口47より次段
の装置、たとえば電気集塵装置ないしバグフィルタ−等
に供給され、その性能を大巾に向上せしめる。
FIG. 5 shows a perspective view of an embodiment in which the novel particle charging device 33 according to the present invention is utilized as a pre-charging device for an electrostatic aggregation device 41 for fine particles. The dust particles entering together with the gas in the direction of the arrow 31 are strongly charged while passing through the particle charging device 33, and are introduced into the casing 43 at 41 from the inlet 42 into the flat plate electrode group 46 to which a positive DC high voltage is applied. are arranged facing each other, and a DC electric field is formed in the space between them. Therefore, the negatively charged fine particles introduced here are immediately collected by the Coulomb force on the grounded plate electrode group 44 of positive polarity to form a deposited layer. Now, when these electrode group materials 46 are mechanically hammered, the particulate layer is peeled off, and the large agglomerated and grown particles are supplied from the outlet 47 to the next stage of equipment, such as an electrostatic precipitator or a bag filter. This will greatly improve its performance.

第6図は本発明による新規の粒子荷電装置をそのまま静
電粉体塗装用ガンとして利用した実施例で、ガン本体の
絶縁円筒48の尖端部の内壁に円筒状対向電極49が設
けられており、牙2図、第3図に示す如導これと対向す
る中心軸上に電界調整電極50と針状コロナ放電極群5
1が絶縁物円筒52に支持されて配設されている。
FIG. 6 shows an embodiment in which the new particle charging device according to the present invention is used as it is as an electrostatic powder coating gun, in which a cylindrical counter electrode 49 is provided on the inner wall of the pointed end of the insulating cylinder 48 of the gun body. , an electric field adjustment electrode 50 and a needle-shaped corona discharge electrode group 5 are arranged on the central axis opposite to the guide shown in FIGS. 2 and 3.
1 is supported and disposed on an insulating cylinder 52.

iは負の直流高圧電源で出力端子53からは1例えば−
50KVの雷、圧がケーブル聞、絶縁物円筒52を介し
て上記電界調整用電極間と針状コロナ放電極群51に供
給され、出力端子55からはケーブル聞を介して9例え
ば−に向けて強力な負コロナ放電を発生し、その間の円
環状空間に荷電空間57を形成している。いま、塗料粉
体を貯槽間よりプロワ−59により圧送せる空気によっ
て可撓式バイブωを介してガン本体48の入口61内に
送入すると、該塗料粉体は矢印62の方向に進行して該
荷電空間57を通過する際9強力に負に荷電されてガン
前方域63に噴出される。ガン前方には接地された被塗
装物例があり、電極49.50と倒の間には直流電界が
形成さ小帯電塗料粉体は例へと運ばれその表面へと塗着
される。但し、電極49.50は自由に滑動できる構造
となっており、これを左方へ引込めるとガン前方域63
の電界が弱まって、帯電塗料粉体は主として自己の形成
する空間電荷電界により駆動されて倶に耐着する。
i is a negative DC high voltage power supply, and from the output terminal 53, 1, for example -
A voltage of 50 KV is supplied between the cables and the insulating cylinder 52 between the electric field adjustment electrodes and to the acicular corona discharge electrode group 51, and from the output terminal 55 through the cables towards 9, for example -. A strong negative corona discharge is generated, and a charged space 57 is formed in the annular space between them. Now, when the paint powder is fed into the inlet 61 of the gun body 48 through the flexible vibrator ω by the air that can be forced by the blower 59 from between the storage tanks, the paint powder advances in the direction of the arrow 62. When passing through the charged space 57, the particles 9 are strongly negatively charged and ejected into the gun front area 63. In front of the gun is a grounded object to be painted, and a DC electric field is formed between the electrodes 49, 50 and the surface of the object, and the slightly charged paint powder is carried to the object and applied to its surface. However, the electrodes 49 and 50 have a structure that allows them to slide freely, and when they are retracted to the left, the front area 63 of the gun
The electric field weakens, and the charged paint powder is driven mainly by the space charge electric field formed by itself and sticks to it.

牙7図は牙6図に示す静電粉体塗装用ガンを粉体状農薬
の撒布に用いた静電粉体農薬撒布機を示すもので。
Figure 7 shows an electrostatic powder pesticide sprayer that uses the electrostatic powder coating gun shown in Figure 6 to spray powdered pesticides.

長いバイブロ5の先端に本発明による新規の粒子荷電装
置おが同軸に装置されている。但し1本実施例では羽は
牙2図、第3図に示す例の如く1円筒状対向電極49が
導線θによって接地されている。いま粉体状農薬を貯槽
、58より空気輸送により長筒状バイブロ5の基底部6
7に供給し、65の内部を矢印部の方向に輸送すると1
粒逸散率は大巾に減少する。この場合、牙6図に示すご
まだ直筒状バイブロ5の代りに印と同様の可撓状の小径
のパイプを用い、牙6図の如<33の基底部67に粉体
農薬を供給してもよいことは云うまでもない。
A novel particle charging device according to the present invention is installed coaxially at the tip of the long vibro 5. However, in this embodiment, one cylindrical counter electrode 49 is grounded by a conducting wire θ, as in the examples shown in FIGS. 2 and 3. Now, the powdered agricultural chemicals are stored in the storage tank 58 and transported by air to the base 6 of the long cylindrical vibro 5.
When the inside of 65 is transported in the direction of the arrow, 1
The grain escape rate is greatly reduced. In this case, instead of the sesame straight cylindrical vibro 5 shown in Fig. 6, a flexible small-diameter pipe similar to the mark is used, and the powder pesticide is supplied to the base 67 of <33 as shown in Fig. 6. Needless to say, it's a good thing.

第8図は本発明による新規の粒子荷電装置33の出口1
1に1両端を把持引張せる絶縁性の可撓式ホース又は直
筒状パイプから成り、かつその下向き側面に一定間隔を
もって多数の噴出ロア1 、71’、 71“、・・・
・・・を備えた撒布ヘッド72を装置することにより形
成せる農薬撒布機である。貯槽聞より粉体農薬がブロワ
−59の圧送する空気により可撓式バイブロ0を介して
粒子荷電装置330基底部67に供給され1強力に荷電
されて撒布ヘッド72内に矢印73の方向に送入され、
噴出ロア1.、7]’、 71“、・・・・・・より下
方に向けて噴出される。このとき帯電粉体農薬の負電荷
の一部が絶縁性の撒布ヘッド72自体に与えられ一ロン
カにより駆動してその表面に極めて有効に耐着せしめる
。76は粒子荷電装置の出口に装置された丸味づけ用の
環状のつばで、出口]1の電界を緩和し、11から高電
位にある撒布ヘッド72の内外表面に向けて沿面コロナ
放電が発生し、その電位を低下せしめるのを防止する。
FIG. 8 shows outlet 1 of a novel particle charging device 33 according to the present invention.
1 consists of an insulating flexible hose or straight cylindrical pipe that can be gripped and pulled at both ends, and has a number of ejection lowers 1, 71', 71'', . . . at regular intervals on its downward side.
This is a pesticide spraying machine formed by installing a spraying head 72 equipped with... Powdered agricultural chemicals are supplied from the storage tank to the base part 67 of the particle charging device 330 through the flexible vibro 0 by the air forced by the blower 59, where they are strongly charged and sent into the spraying head 72 in the direction of the arrow 73. entered,
Gushing lower 1. , 7]', 71", . . . are ejected downward. At this time, a part of the negative charge of the charged powder pesticide is given to the insulating spray head 72 itself, which is driven by the Ronka. 76 is an annular collar for rounding provided at the outlet of the particle charging device, which relaxes the electric field at the outlet 1 and removes the spraying head 72 which is at a high potential from 11. This prevents creeping corona discharge from occurring on the inner and outer surfaces of the capacitor and lowering its potential.

77は撒布ヘッド72の他端にとりつけられた所電撃が
生ずるのを防止すると共に、その表面に向けて沿面コロ
ナ放電がおこるのを防ぐものである。8oはい捷一つの
押手である。
Reference numeral 77 is attached to the other end of the spraying head 72 to prevent electric shock from occurring, as well as to prevent creeping corona discharge from occurring toward the surface thereof. 8o is a single push.

形成せる農薬撒布装置で、各粒子荷電装置の電界調整電
極及び針状コロナ放電極群には共通の直流高圧電源52
に接続せる高圧ケーブル82がら分岐ケーブル83.8
3’。
A common DC high-voltage power supply 52 is used for the electric field adjustment electrode and the needle-like corona discharge electrode group of each particle charging device.
High voltage cable 82 to be connected to branch cable 83.8
3'.

83“、・・・・・・を介して負の直流高電圧を供給す
る。貯槽μsからブロワ−59による圧送空気により供
給された粉体状農薬は可撓バイブロ0を介して分岐器澗
に供給され、ここから分岐パイプ85.85’、 85
“、・・・・・・を介して各粒子荷電装置33.33’
、 33“、・・・・・・の基底部に接線方向に送入さ
れ。
83", . . . . A negative DC high voltage is supplied through the storage tank μs and the powdered pesticide is supplied by the air compressed by the blower 59 to the branching device via the flexible vibro 0. from which branch pipes 85.85', 85
“, . . . through each particle charging device 33, 33'
, 33",... are fed tangentially to the base of.

その内部を激しく旋回しつつ下降して該針状コロナ放電
極群の負コロナ放電による負イオン射突により強カオ7
図に示す粉体状農薬撒布装置は、果樹への撒布に適して
おり、牙8図および牙9図のものは大豆、稲。
The needle-like corona discharge electrode group descends while swirling violently, and the negative ions hit by the negative corona discharge generate strong chaos 7.
The powdered pesticide spraying device shown in the figure is suitable for spraying on fruit trees, and those shown in Figures 8 and 9 are for soybeans and rice.

麦等への撒布に適している。Suitable for spraying on wheat, etc.

【図面の簡単な説明】[Brief explanation of drawings]

牙1図は従来型ハイインチシティ−・アイオナイザ−粒
子荷電装置の縦断面図を示す。第2図は本発明の一実施
例の縦断面図、第3図はその正面図を示す。牙4図は本
発明を前置荷電装置として利用せる電気集塵装置の縦断
面図、牙5図は本発明を前置荷電装置として利用せる微
粒子静電凝集装置の内部を示した斜視図。 牙6図は本発明を静電粉体塗装用ハンドガンに利用せる
ものの縦断面図、オフ図、牙8図、牙9図はそれぞれ本
発明による粒子荷電装置を利用せる三種類の静電粉体状
農薬撒布装置の縦断面図を示す。 各図における重要要素を示すと次の通りである。 l112・関・・・・・・・・・・・・ 円柱状電界調
整電極3 ・・・・・・・・・・・・・・・・・・・・
・・・・・・・ 円板状コロナ放電極5 ・・・・・・
・・・・・・・・・・・・・・・・・・・・・ ベンチ
ーリー型接地対向電極8・あ・45・  ・・・ 高圧
直流電源I4・51・・・・・・・・・・・・・・・・
・・・・・ 針状コロナ放電極群9・49・・・・・・
・・・・・・・・・・・・・・・ 円筒状対向電極15
.57−・・・・・・・・・・・・・・・・・・・・・
・・・・ セラミック絶縁円筒21  ・・・・・・・
・・・・・・・・・・・・・・・・・・・・ 支持金具
勿 ・・・・・・・・・・・・・・・・・・・・・・・
・・・・ セラミック碍管n ・・・・・・・・・・・
・・・・・・・・・・・・・・・・導電膜33  ・・
・・・・・・・・・・・・・・・・・・・・・・・・・
 粒子荷電装置■、46・・・・・・・・・・・・・・
・・・・・・・ 正・負板状電極54.56.82・・
・・・・・・・・・・ 高圧ケーブル聞 ・・・・・・
・・・・・・・・・・・・・・・・・・・・・粉体貯槽
59  ・・・・・・・・・・・・・・・・・・・・・
・・・・・・ ブロワ−60・・・・・・・・・・・・
・・・・・・・・・・・・・・・ 可撓パイプ72  
・・・・・・・・・・・・・・・・・・・・・・・・・
・・撒布ヘッド85、85’、 85“・・・・・・・
・・・・・分岐パイプ81  ・・・・・・・・・・・
・・・・・・・・・・・・・・・・ 支持ビーム78.
80・・・・・・・・・・・・・・・・・・・・・把持
体76.77・・・・・・・・・・・・・・・・・・・
・・ つげ69.74・・・・・・・・・・・・・・・
・・・・・・対象植物t。 70.75・・・・・・・・・・・・・・・・・・・・
・ 枝蘂以上
Figure 1 shows a longitudinal cross-sectional view of a conventional high inch city ionizer particle charging device. FIG. 2 is a longitudinal sectional view of one embodiment of the present invention, and FIG. 3 is a front view thereof. Fig. 4 is a longitudinal sectional view of an electrostatic precipitator using the present invention as a pre-charging device, and Fig. 5 is a perspective view showing the inside of a particulate electrostatic coagulation device using the present invention as a pre-charging device. Fig. 6 is a longitudinal cross-sectional view of a handgun for electrostatic powder coating to which the present invention can be applied, and Figs. FIG. The important elements in each diagram are as follows. l112・Seki・・・・・・・・・Cylindrical electric field adjustment electrode 3・・・・・・・・・・・・・・・・・・・・・
...... Disc-shaped corona discharge electrode 5 ......
・・・・・・・・・・・・・・・・・・・・・ Benchley type grounded counter electrode 8・A・45・・・・ High voltage DC power supply I4・51・・・・・・・・・・・・・・・・・・
...Acicular corona discharge electrode group 9,49...
・・・・・・・・・・・・ Cylindrical counter electrode 15
.. 57-・・・・・・・・・・・・・・・・・・
... Ceramic insulation cylinder 21 ...
・・・・・・・・・・・・・・・・・・・・・ Support metal fittings not included ・・・・・・・・・・・・・・・・・・・・・
・・・ Ceramic insulator tube n ・・・・・・・・・・・・
・・・・・・・・・・・・・・・Conductive film 33...
・・・・・・・・・・・・・・・・・・・・・・・・
Particle charging device■, 46・・・・・・・・・・・・・
・・・・・・Positive/negative plate electrode 54.56.82・・
・・・・・・・・・ High voltage cable ・・・・・・
・・・・・・・・・・・・・・・・・・・・・Powder storage tank 59 ・・・・・・・・・・・・・・・・・・・・・
・・・・・・Blower-60・・・・・・・・・・・・
・・・・・・・・・・・・・・・ Flexible pipe 72
・・・・・・・・・・・・・・・・・・・・・・・・
...Spraying head 85, 85', 85"...
・・・・・・Branch pipe 81 ・・・・・・・・・・・・
・・・・・・・・・・・・・・・ Support beam 78.
80・・・・・・・・・・・・・・・Gripper 76.77・・・・・・・・・・・・・・・・・・
・・ Boxwood 69.74・・・・・・・・・・・・・・・
...Target plant t. 70.75・・・・・・・・・・・・・・・・・・
・ Branches and above

Claims (1)

【特許請求の範囲】 1、回転対稍形状の接地の非コロナ対向電極と、その中
心軸に清ってこれと同心的に対向の上絶縁支持せる円柱
状の電界調整電極と、該電界調整電極のほぼ中央部の円
周上に該対向電極に向けて放射状に突出するごとく相互
に一定間隔をもって配設された複数個の比較的短かい針
状コロナ放電極群を有し、該接地非コロナ対向電極と電
界調整電極及び針状コロナ放電極群間に後す対向電極間
に強力な直流電界を形成すると共に、該針状コロナ放電
極群より該対向非コロナ電極に向けて強力かつ安定な負
コロナ放電を発生せしめ、この間の円環状荷電空間に被
荷電微粒子状物体を通過せしめて該負コロナより供給さ
れた負イオンの射突により迅速かつ強力にこれを負に荷
電せしめた上、外部に供給することを特徴とする所の粒
子荷電装置。 ナ対向電極の中心軸に溢って伸延し、かつ基底部におい
て該非コロナ対向電極に支持固定され、かつこの基底部
よりL字状に該非コロナ対向電極を貫いて外部に突出す
る一体構造の碍管部を有し、かつこの碍管部を含めたそ
の内部に高電圧供給用のケーブルと電界調整電極を接続
する導電体を有する所の絶縁物円筒を用いることを特徴
とする特許 荷電装置。 3、該絶縁物円筒がセラミック絶縁材料より成ることを
特徴とする所の特許請求範囲2に記載の粒子荷電装置。 4、該円柱状電界調整電極の外径d1が該非コロナ対向
電極の内径d2の(3A)〜(%)の範囲であり,その
長さLがその外径d1の2倍以上であり,かつ該針状コ
ロナ電極の突出長さhがdlの(%)〜(%)の範囲に
あることを特徴とする所の特許請求範囲lより3までに
記載の粒子荷電装置。 5、特許請求範囲1,2,3.4に記載の粒子荷電装置
を予備荷電装置として使用することを特徴とする所の電
気集塵装置。 6、特許請求範囲1,2.3.4に記載の粒子荷電装置
を予備荷電装置として使用することを特徴とする所のる
正・負平行平板電極群および2両電極間に直流高電圧を
印加するだめの電源より成る静電凝集装置。 7、特許請求範囲1,2,3.4に記載の粒子荷電装置
を粉体塗装ガンとして使用するととを特徴とする所の粉
体貯槽、粉体圧送用プロワ−9粉体圧送用輸送パイプよ
り成る静電粉体塗装装置。 8、該非コロナ対向電極に、該電界調整電極及び針状コ
ロナ電極よりも低い負の直流高電圧を与えるだめの直流
高圧電源を有することを特徴とする特許・   囲7に
記載の静電粉体塗装装置。 9、特許請求範囲1.2,3.4に記載の粒子荷電装置
を粉体状農薬の荷電部として用いることを特徴とする所
の,粉体状農薬の貯槽,粉体状農薬圧送用ブロワ−。 同圧送用輸送パイプを有する所の静電粉体状農薬撒布装
置。 10、  粉体農薬圧送用輸送パイプの最下流部の一部
が置部であり,その先端に該粒子荷電装置を装置せるこ
とを特徴とする所の特許請求の範囲9に記載の静電粉体
状農薬撒布装置。 11、  該粒子荷電装置の出口側に多数の粉体状農薬
の噴出口を有する長形の円筒状撒布ヘッドを装着せるこ
とを特徴とする所の特許請求範囲9に記載の静電粉体状
農12、  該円筒状撒布ヘッドが絶縁性の可撓式ホー
スより成ることを特徴とする所の特許請求範囲11に記
載の静電粉体状農薬撒布装置。 13、該円筒状撒布ヘッドが絶縁性の直筒状パイプから
成ることを特徴とする所の特許請求範囲11に記載の静
電粉体状農薬撒布装置。 14、  該粒子荷電装置を複数個並列に一定間隔をも
って支持ビームに装着して成ることを特徴とする所の特
許請求範囲9に記載の静電粉体状農薬撒布装置。
[Scope of Claims] 1. A grounded non-corona opposing electrode with a rotating pair of fine shapes, a cylindrical electric field adjustment electrode that is insulated and supported on the central axis of the electrode and concentrically opposed to the electrode, and the electric field adjustment A plurality of relatively short needle-shaped corona discharge electrodes are arranged on the circumference of the electrode at approximately the center thereof and are arranged at regular intervals so as to project radially toward the counter electrode. A strong DC electric field is formed between the corona opposing electrode, the electric field adjustment electrode, and the opposing electrodes located between the needle-like corona discharge electrode group, and a strong and stable electric field is generated from the needle-like corona discharge electrode group toward the opposing non-corona electrode. generating a negative corona discharge, causing a charged particulate matter to pass through the annular charged space between the negative corona discharges, and quickly and strongly charging the charged particulate matter negatively by the bombardment of negative ions supplied from the negative corona; A particle charging device characterized in that it is supplied externally. An integrally constructed insulator tube extends over the central axis of the counter electrode, is supported and fixed to the non-corona counter electrode at its base, and projects outward from the base in an L-shape through the non-corona counter electrode. A patented charging device characterized in that it uses an insulating cylinder having a section and a conductor for connecting a high voltage supply cable and an electric field adjustment electrode inside the insulating tube section. 3. The particle charging device according to claim 2, wherein the insulating cylinder is made of a ceramic insulating material. 4. The outer diameter d1 of the cylindrical electric field adjustment electrode is in the range of (3A) to (%) of the inner diameter d2 of the non-corona opposing electrode, and its length L is at least twice the outer diameter d1, and 3. A particle charging device according to claims 1 to 3, characterized in that the protrusion length h of the needle-like corona electrode is in the range of (%) to (%) of dl. 5. An electrostatic precipitator characterized in that the particle charging device according to claims 1, 2, and 3.4 is used as a precharging device. 6. The particle charging device according to claim 1, 2.3.4 is used as a pre-charging device, and a DC high voltage is applied between the positive and negative parallel plate electrode groups and the two electrodes. An electrostatic condensation device consisting of an applied power source. 7. A powder storage tank, a blower for pumping powder, and a transport pipe for pumping powder, characterized in that the particle charging device according to claims 1, 2, and 3.4 is used as a powder coating gun. Electrostatic powder coating equipment consisting of: 8. A patent characterized in that the non-corona opposing electrode has a DC high-voltage power source that provides a negative DC high voltage lower than that of the electric field adjustment electrode and the needle-like corona electrode. The electrostatic powder described in Box 7. Painting equipment. 9. A storage tank for powdered agricultural chemicals and a blower for pressure-feeding powdered agricultural chemicals, characterized in that the particle charging device according to claims 1.2 and 3.4 is used as a charging section for powdered agricultural chemicals. −. An electrostatic powder pesticide spraying device that has a transport pipe for pressure feeding. 10. The electrostatic powder according to claim 9, characterized in that a part of the most downstream part of the transportation pipe for force-feeding powdered agricultural chemicals is a holding part, and the particle charging device is installed at the tip of the holding part. Physical pesticide spraying device. 11. An electrostatic powder spraying head according to claim 9, characterized in that an elongated cylindrical spraying head having a plurality of spouting ports for powdery pesticide is attached to the outlet side of the particle charging device. 12. The electrostatic powder pesticide spraying device according to claim 11, wherein the cylindrical spraying head comprises an insulating flexible hose. 13. The electrostatic powder pesticide spraying device according to claim 11, wherein the cylindrical spraying head is comprised of an insulating straight cylindrical pipe. 14. The electrostatic powder pesticide spraying device according to claim 9, characterized in that a plurality of the particle charging devices are mounted in parallel on a support beam at regular intervals.
JP17062282A 1982-09-29 1982-09-29 Particle charger Pending JPS5960871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17062282A JPS5960871A (en) 1982-09-29 1982-09-29 Particle charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17062282A JPS5960871A (en) 1982-09-29 1982-09-29 Particle charger

Publications (1)

Publication Number Publication Date
JPS5960871A true JPS5960871A (en) 1984-04-06

Family

ID=15908283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17062282A Pending JPS5960871A (en) 1982-09-29 1982-09-29 Particle charger

Country Status (1)

Country Link
JP (1) JPS5960871A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141224A (en) * 1983-12-28 1985-07-26 農業機械化研究所 Agricultural charging powder scattering apparatus
JPH01122299U (en) * 1988-02-15 1989-08-18
JPH0471197A (en) * 1990-07-10 1992-03-05 Tohoku Electric Power Co Inc Ground discharge preventive device of ion active emission type
JP2010129499A (en) * 2008-12-01 2010-06-10 Hugle Electronics Inc Ionizer and ionizer system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS441030Y1 (en) * 1966-07-01 1969-01-16
JPS55143788A (en) * 1979-04-25 1980-11-10 Senichi Masuda Low ozone low nox type corona discharge ion source

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS441030Y1 (en) * 1966-07-01 1969-01-16
JPS55143788A (en) * 1979-04-25 1980-11-10 Senichi Masuda Low ozone low nox type corona discharge ion source

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141224A (en) * 1983-12-28 1985-07-26 農業機械化研究所 Agricultural charging powder scattering apparatus
JPH01122299U (en) * 1988-02-15 1989-08-18
JPH0471197A (en) * 1990-07-10 1992-03-05 Tohoku Electric Power Co Inc Ground discharge preventive device of ion active emission type
JP2010129499A (en) * 2008-12-01 2010-06-10 Hugle Electronics Inc Ionizer and ionizer system

Similar Documents

Publication Publication Date Title
US5591412A (en) Electrostatic gun for injection of an electrostatically charged sorbent into a polluted gas stream
CA1336130C (en) Spray pistol using electro-kinetic charging of powder material
US4110086A (en) Method for ionizing gases, electrostatically charging particles, and electrostatically charging particles or ionizing gases for removing contaminants from gas streams
US4247307A (en) High intensity ionization-wet collection method and apparatus
US3698636A (en) Device for the electrostatic application of protective coatings with synthetic powders by the use of spray guns
US2710773A (en) Electrostatic spray coating apparatus
US4171100A (en) Electrostatic paint spraying apparatus
US2357355A (en) Electrical dust precipitator utilizing liquid sprays
US6949715B2 (en) Method and apparatus for particle size separation
JPS6250192B2 (en)
US3111266A (en) Spray painting gun for electrostatic spray painting
US3540653A (en) Apparatus for dispersing and electrically charging substances in discrete particulate form
US5648049A (en) Purging electrostatic gun for a charged dry sorbent injection and control system for the remediation of pollutants in a gas stream
US4398928A (en) Electrogasdynamically assisted cyclone system for cleaning flue gases at high temperatures and pressures
US5147423A (en) Corona electrode for electrically charging aerosol particles
US4157162A (en) Electrostatic spraying apparatus
US4692174A (en) Ionizer assembly having a bell-mouth outlet
JPS5960871A (en) Particle charger
WO1992019380A1 (en) Wet electrostatic precipitator and method of using same
JPS5930468B2 (en) Powder charging method and device
US7261764B1 (en) System and method for spatially-selective particulate deposition and enhanced deposition efficiency
SE7712049L (en) IODIZATION DEVICE ANOD
US3568404A (en) Low pressure electrostatic precipitator
US2949167A (en) Electrostatic precipitator
CN113369017B (en) Continuous generation system of electrostatic discrete microparticles