JPS5960615A - Mechanism for adjusting eccentric quantity and converting displacement - Google Patents

Mechanism for adjusting eccentric quantity and converting displacement

Info

Publication number
JPS5960615A
JPS5960615A JP17177482A JP17177482A JPS5960615A JP S5960615 A JPS5960615 A JP S5960615A JP 17177482 A JP17177482 A JP 17177482A JP 17177482 A JP17177482 A JP 17177482A JP S5960615 A JPS5960615 A JP S5960615A
Authority
JP
Japan
Prior art keywords
cylinder
hole
tube
axial direction
eccentricity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17177482A
Other languages
Japanese (ja)
Inventor
Daizou Itou
伊藤 台「ぞう」
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP17177482A priority Critical patent/JPS5960615A/en
Publication of JPS5960615A publication Critical patent/JPS5960615A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To continuously change an eccentric quantity irrespective of the stopping time and rotating time by installing an adjusting tube between an outer and inner tubes, either of which becomes the driving side or driven side and moving the adjusting tube in the axial direction. CONSTITUTION:An outer tube 1 is supported by a frame body 2 under a rotation-free condition by means of a bearing 3 and an inner tube 9 is supported in a through hole 6 eccentric from the center axis of the outer tube 1 under a rotation-free condition by means of a bearing 8. A center shaft 18 is rotatably supported in a through hole 10 eccentric from the center axis of the inner tube 8 by means of bearings 19 and 20. Either of the outer tube 1 or inner tube 9 (center shaft 18), for example the outer tube 1 becomes the driving side. Moreover, an adjusting tube 14 which can rotate freely and move in the axial direction is put between the outer tube 1 and inner tube 9 and torsional grooves 7 and 13 and tooth sections 11 and 12 which are engaged with the tubes 1, 9, and 14 so that the adjusting tube 14 is moved through a shifter 16 and the eccentric quantity is adjusted, are formed to each tube 1, 9, and 14.

Description

【発明の詳細な説明】 本発明は偏心量調整と変位変換に使用できる機構に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mechanism that can be used for eccentricity adjustment and displacement conversion.

一般に知られている偏心量を調整する構造としては二重
偏心構造、即ち外筒の中心軸に対して穴を偏心させて設
け、この穴に同じ偏心量偏心した中心軸を有する内筒を
挿通する組合わせによって中心軸の偏心量は外筒、内筒
の角度の相対位置を変更することによって調整するのが
普通である。
A generally known structure for adjusting the amount of eccentricity is the double eccentric structure, in which a hole is provided eccentrically with respect to the central axis of the outer cylinder, and an inner cylinder whose central axis is eccentric by the same amount of eccentricity is inserted into this hole. Depending on the combination, the amount of eccentricity of the central axis is usually adjusted by changing the relative angular positions of the outer cylinder and the inner cylinder.

この場合調整は内、外筒が停止状態において行なわなけ
ればならない。 従って内、外筒が回転中、即ち何らか
の作業中において偏心量をかえて中心軸の位置を変更す
ることは不可能であった。
In this case, adjustments must be made while the inner and outer cylinders are stopped. Therefore, it has been impossible to change the position of the center axis by changing the amount of eccentricity while the inner and outer cylinders are rotating, that is, during some kind of work.

本発明は」二重に鑑みなされたものであって停止時、同
転時をとわず偏心量がB:M整でき、且連続して行なえ
るとともに変位の変換を行うことのできる機構を提供し
J:うとするもので、本発明は外筒。
The present invention has been made with two considerations in mind, and is a mechanism that can adjust the amount of eccentricity to B:M regardless of whether it is stopped or rotating, and can also perform continuous operation and convert displacement. Provided by J: The present invention is an outer cylinder.

W11整筒、内筒、(軸部)が回転可能であって更に調
整筒のみ軸方向に移動可能な重ね合わせ構造とし、調整
筒に対して外筒と内筒とを互に反対の捩れrNによって
連接関係におき、且外筒と繭相部。
W11 Adjustment cylinder, inner cylinder, (shaft part) are rotatable, and furthermore, only the adjustment cylinder is movable in the axial direction, with an overlapping structure, and the outer cylinder and inner cylinder are twisted in opposite directions with respect to the adjustment cylinder. The outer cylinder and cocoon phase part are in a connected relationship.

A+、)a相部と内筒、内筒と軸部の関係の白河れか2
つを同じ偏心量を有する偏心関係におき外筒、調整筒、
内筒が一体回転中においても調整筒の軸方向位置を制御
することにより偏心L±を回転中において連続的に変更
できるとともに変位を変換することができるようになし
たことを特徴とするものである。
A+,) Reka Shirakawa 2 of the relationship between the a phase part and the inner cylinder, and the inner cylinder and the shaft part
The outer cylinder, the adjustment cylinder, and
Even when the inner cylinder is rotating integrally, by controlling the axial position of the adjustment cylinder, eccentricity L± can be changed continuously during rotation, and displacement can also be converted. be.

以下本発明の実11j1例を図面にもとづき説明する。An example of the present invention will be explained below based on the drawings.

本発明の構成主要部は外筒、調整筒、内筒、中心軸が順
次重ねられた構成であって2つの偏心部をどこに設ける
かによって第1図のように形態が区別される。 即ち外
筒と内筒に偏心部を設けた第1図(イ)、外筒と調整筒
に偏心部を設けた第1図(ロ)、調整筒と内筒に偏心部
を設けた第1図(ハ)となる。 偏心量の場合は第1図
(ニ)となり、この場合は回転連動とW線運動の変換機
構として利用できるものである。
The main components of the present invention are an outer cylinder, an adjustment cylinder, an inner cylinder, and a central axis stacked one on top of the other in this order, and the configuration is differentiated as shown in FIG. 1 depending on where the two eccentric parts are provided. In other words, Fig. 1 (a) shows eccentric parts provided on the outer cylinder and inner cylinder, Fig. 1 (b) shows eccentric parts provided on the outer cylinder and adjustment cylinder, and Fig. 1 shows eccentric parts provided on the adjustment cylinder and inner cylinder. Figure (c) becomes. In the case of eccentricity, it is shown in FIG. 1 (D), and in this case, it can be used as a conversion mechanism between rotation interlock and W-line motion.

次に外筒、内筒に偏心部を有する形を例として説明する
。 第2図の主要部品図と第3図の機構の縦〜1面図に
おいて、外筒1は枠体2に軸受3によって同転のみiJ
能に軸承されており、図示しないモータからベルトを介
して低速回転されるプーリ4が固着されている。 外筒
1はその中心軸心に対してε偏心した軸心を有する貫通
穴6が穿設されており、中央部のめすみ5を堺として片
側の内周に1本又は?!、!数本の捩れ溝7が刻設され
ている。 捩れ角は入出力の可逆性、変位の大きさを考
慮すれば好ましくは45°であるがその用途によって角
度は自由に決定される。 前記貫通穴6の、ぬすみ5の
他の側には軸受8を介して内m9が回転のみ可能に軸承
されており、この内筒9に中心軸心に対し7て軸心が貫
通穴6の偏心量と同量ε偏心した貫通穴10が穿設され
ている。 また内筒9は前記捩れ溝7に対応する位置で
貫通穴乙の内面との間に後述の調整筒が入る隙間を形成
する小径の端部外周に欽れ方向が前記捩れ溝7と反対方
向で同じ捩れ角の1本又は複数本の歯部又は丸いピン1
1が毅゛けられている。 そして外筒1の捩れ溝7を有
する部の穴6と、内筒9の歯部11を有する部の外周と
の隙間に、外周には挟れ溝7と噛合する同じ捩れ角、方
向の1本又は複数本の歯部又は丸いビン12が、また同
心に穿設された貫通穴の内周には歯部11と噛合する前
記捩れ尚7と反対方向で同じ挾れ角の1本又は複数本の
捩れ@16が形成された調整筒14が介装されており、
内外筒と一体に回転可能且軸方向に移動可能に支承され
ている。 従って調整筒14の外周の歯部と内周の溝と
は互に反対方向の同じ捩れ角を有している。 調整筒1
4の端部には7ランジ15が設けられていて、その7ラ
ンジ15の両側が枠体2に軸方向移動用能に設けられた
シフタ16の2個のローラ17,17によって挾持され
、シフタ16の動きにつれて調整筒15が軸方向に位1
9′調整される。 この位fat 調整によって軸方向
の動きが規制された外筒1.内筒9は一方に対して捩れ
角により決定される蝋の倍量旋回させられる。
Next, an example in which the outer cylinder and the inner cylinder have eccentric portions will be explained. In the main parts diagram in Fig. 2 and the longitudinal to first view of the mechanism in Fig. 3, the outer cylinder 1 is mounted on the frame 2 by a bearing 3, and only rotates in the same direction.
A pulley 4, which is rotatably supported on a shaft and rotated at low speed by a motor (not shown) via a belt, is fixed thereto. The outer cylinder 1 is provided with a through hole 6 whose axis is eccentric by ε with respect to the central axis of the outer cylinder 1. One or more through holes 6 are formed on the inner periphery of one side with the female hole 5 in the center as the center. ! ,! Several twisted grooves 7 are carved. The twist angle is preferably 45° in consideration of the reversibility of input and output and the magnitude of displacement, but the angle can be determined freely depending on the application. An inner cylinder m9 is rotatably supported on the other side of the recess 5 of the through hole 6 via a bearing 8, and the axis of the inner cylinder 9 is 7 relative to the central axis of the through hole 6. A through hole 10 eccentric by the same amount ε as the eccentricity is bored. In addition, the inner cylinder 9 is inserted into the outer periphery of a small-diameter end forming a gap between the inner surface of the through hole B and the adjustment cylinder described below at a position corresponding to the torsional groove 7, and the direction is opposite to the torsional groove 7. One or more teeth or round pins with the same helix angle 1
1 is being held strong. Then, in the gap between the hole 6 of the part of the outer cylinder 1 having the torsion groove 7 and the outer periphery of the part of the inner cylinder 9 having the teeth 11, a hole 6 of the same torsion angle and direction that meshes with the pinch groove 7 is placed on the outer periphery. One or more teeth or round pins 12 are provided on the inner periphery of the concentrically drilled through hole, and one or more teeth or round pins 12 are provided on the inner periphery of the concentrically drilled through hole and have the same angle in the opposite direction to the twisting hole 7 that engages with the teeth 11. An adjustment cylinder 14 in which a book twist @ 16 is formed is interposed,
It is rotatably supported integrally with the inner and outer cylinders and movably in the axial direction. Therefore, the teeth on the outer periphery and the grooves on the inner periphery of the adjusting cylinder 14 have the same twist angle in opposite directions. Adjustment tube 1
A 7 flange 15 is provided at the end of the 4, and both sides of the 7 flange 15 are held by two rollers 17, 17 of a shifter 16 provided on the frame 2 for axial movement. 16, the adjustment cylinder 15 is positioned 1 in the axial direction.
9' adjusted. Outer cylinder 1 whose axial movement is regulated by this fat adjustment. The inner tube 9 is turned on one side by a double amount of wax determined by the twist angle.

内筒9の前記と同量ε偏心した貫通穴1oには中心軸1
8が穴中心に軸受19,20によって回転のみ可能に軸
承されている。 この中心軸18はユニバーサルジヨイ
ント21を介してモータに連結され軸端のテーパ部22
に必要なる工具等を嵌着するものである。
The center axis 1 is located in the through hole 1o of the inner cylinder 9 which is eccentric by the same amount ε as described above.
8 is rotatably supported by bearings 19 and 20 at the center of the hole. This central shaft 18 is connected to a motor via a universal joint 21 and has a tapered portion 22 at the end of the shaft.
This is used to fit the tools, etc. needed for this purpose.

今本機構を内蔵した装置の使用例としてテーブルと相対
的に直角座標上を任意に位置決めされうる腕に垂直に取
付けられており、中心軸18端のテーパ部22に内研砥
石を嵌層した研磨機において、プーリ4には砥石に公転
を与える低速の回転を伝達しユニバーサルジヨイント2
1にはi 石カ研磨に必要な速度の回転が与えられる。
As an example of the use of a device incorporating this mechanism, it is installed vertically on an arm that can be positioned arbitrarily on orthogonal coordinates relative to a table, and an internal grindstone is fitted into the tapered portion 22 at the end of the central shaft 18. In a polishing machine, a pulley 4 has a universal joint 2 that transmits low-speed rotation that causes the grinding wheel to revolve.
1 is given a rotation speed necessary for i stone polishing.

 そして加工すべき穴の中心を軸として回転させられな
い形状の工作物の穴を内研する場合を説明する。
Next, a case will be described in which a hole in a workpiece whose shape cannot be rotated about the center of the hole to be machined is internally ground.

また本装置りの偏心量εが加工穴をカバーできる充分に
大きなものとする。 研磨するMr+にシフタ16を操
作して偏心量εを零にしておき加工穴の中心と砥石中心
とを一致させて位置決め固定する。
In addition, the eccentricity ε of this device should be large enough to cover the machined hole. The shifter 16 is operated to make the eccentricity ε of Mr+ to be polished zero, and the center of the machined hole and the center of the grindstone are aligned and fixed in position.

しかる後中心軸の研1石を高速回転させ、プーリ4を低
速回転させて砥石を公転させるべくシフタ16を徐々に
移動させて偏心量ε′を大きくすると公転半径はε′で
変化し、砥石は加工穴内面にk)触して研磨を開始する
。 粗研磨中はシフタ16の移動を早くして偏心量を大
きく粗切込を行なわせる。
After that, the grinding stone on the central shaft is rotated at high speed, the pulley 4 is rotated at low speed, and the shifter 16 is gradually moved to increase the eccentricity ε', so that the radius of revolution changes by ε', and the grinding wheel k) Touch the inner surface of the machined hole to start polishing. During rough polishing, the shifter 16 is moved quickly to increase the amount of eccentricity and perform rough cutting.

穴径が所定寸法に近くなればシフタ16の移動をおそく
微量にして仕上研磨の密9J込みを行ない定寸でシフタ
16の移動を止めて切込みを零としスパークアウトをさ
せる。 そののちシフタ16を急速に逆方向に#勤させ
偏心量ε′を零として遣避させることによって加工を終
るものである。
When the hole diameter is close to a predetermined size, the shifter 16 is moved slowly and minutely to perform final polishing, and the shifter 16 is stopped moving at the predetermined size to make the depth of cut zero and spark out. Thereafter, the shifter 16 is rapidly moved in the opposite direction to reduce the eccentricity ε' to zero, thereby completing the machining.

また本装置の他の使用例として、イdt磨砥石に替え軸
と直角な底面が被研磨面全面をカバーする大きさの研磨
面を有する研磨定盤を取付ける。 一方加工物例えは弁
体又は弁座をテーブル上に被研磨面を上面として水平に
固定しその上面にラップ材を流入させるようにしておく
。 調整m14はd1h方向に移動させて偏心t)ε′
を大きくし、外筒1と中心軸18を早くない所定速度で
回転させながら腕を下降させ、研磨定盤と被研磨面とを
所定圧通常自重程度で努触させラッピングさせる。 ラ
ッピングの進行とともに調整筒14を移A1させて順次
偏心量ε′を小さくしていき必要によりラップ材の粒度
を細かくし或いは供給を停止して被研磨面をラップ仕上
げする。 このようにラッピング途中で偏心量ε′を順
次小さくして行くことによりラップ材による合理的な仕
上げが得られ極めて高い平面度を得ることができる。 
なお必要によりテーブルを外筒1の回転方向と逆方向に
回転させることも自由である。 また被研磨面と本装置
の軸心のお′角度の影響が出ないように研磨定盤には回
転力のみを伝達し自重によって圧接することはより好ま
しいことである。 なお砥石による研磨及び研磨定盤で
説明したが工具は自由に変更各種加工に応用できるもの
である。 本実施例の外見内筒に等しい偏心部を1.y
けたものは調整筒の製作が容易である。 なお捩れ海に
替えてヘリカル歯車にすれば歯車切削で製作が容易であ
るとともに力の配分が全周で等分され操作性が良くなる
As another example of the use of this device, a polishing surface plate whose bottom surface perpendicular to the shaft has a polishing surface large enough to cover the entire surface to be polished is attached instead of the IDT grindstone. On the other hand, as an example of a workpiece, a valve body or a valve seat is fixed horizontally on a table with the surface to be polished as the upper surface, and the lapping material is allowed to flow into the upper surface. Adjustment m14 is performed by moving in the d1h direction to adjust the eccentricity t)ε'
is made larger, the arm is lowered while rotating the outer cylinder 1 and the central shaft 18 at a predetermined speed that is not fast, and the polishing surface plate and the surface to be polished are brought into contact with each other under a predetermined pressure, usually about their own weight, to perform lapping. As the lapping progresses, the adjusting cylinder 14 is moved A1 to gradually reduce the eccentricity ε', and if necessary, the particle size of the lapping material is made finer or the supply is stopped to complete the lapping of the surface to be polished. In this way, by gradually decreasing the eccentricity ε' during wrapping, a reasonable finish can be obtained with the lapping material, and extremely high flatness can be obtained.
Note that it is also possible to rotate the table in the opposite direction to the direction of rotation of the outer cylinder 1 if necessary. Further, it is more preferable to transmit only rotational force to the polishing surface plate and press it with its own weight so that the angle between the surface to be polished and the axis of the apparatus is not affected. Although the explanation has been made regarding polishing using a grindstone and a polishing surface plate, the tools can be changed freely and applied to various types of processing. In this example, the eccentric part is equal to the outer and inner cylinders. y
It is easy to make an adjustment tube with a girder. If a helical gear is used instead of a helical gear, it will be easier to manufacture by gear cutting, and the force will be equally distributed over the entire circumference, improving operability.

更にポールねじに変えれば正逆回転の円滑なる操作が一
層可能である。 また捩れ角は45°に限定されるもの
ではなく捩れ角の選択によって微少変位戊いは拡大変位
をうることができる。
Furthermore, if you change to a pole screw, smoother operation of forward and reverse rotation will be possible. Further, the twist angle is not limited to 45°, and by selecting the twist angle, a slight displacement or an enlarged displacement can be obtained.

次に本装置itをレシプロポンプ等のストローク、、1
7J・綻に用いた応用例を第4図にもとづき説明する。
Next, apply this device to the stroke of a reciprocating pump, etc.
An example of application used in 7J・Raku will be explained based on FIG. 4.

中心軸51をiN!+受52,53を介して機台に回転
のみ可能に軸承し、カンプリング54を介してモータ5
5に連結し外筒56にはプーリにかえて軸受57を介し
てレシプロポンプ58のピストン59に枢結されたコネ
クティングロッド60端と回動的に連結する。 また調
整筒61を移動させるシフタ62を位1r:j決め装J
I−j 6ろによって制御するものである。 モータ5
5によって回転軸51が回転されるとシフタ61の位t
(Jによって決定された偏心量ε′の2倍の2ε′で夕
1筒56がクランク回転し、コネクティングロッド60
によりピストン59は2ε′のストロークで液体を送り
出す。 位置決め装置66によりシフタ62の位置が順
次移動されると調整筒61が軸方向に移動されて偏心量
ε′の変化にともないストロークが変更され、吐出量が
運転を止めずに連続的に変えられるものであもなお位1
rン決め装置63としてはレシプロポンプ58の吐出側
の圧力、又は流量をフィートノくツクして制御するよう
にし、シフタ62により調整筒61の位置を自動的に変
更して所定の吐出圧、及び吐出量をうろことができる。
Center axis 51 is iN! The motor 5 is rotatably supported on the machine base via supports 52 and 53, and is connected to the motor 5 via a camp ring 54.
5, and the outer cylinder 56 is rotatably connected to an end of a connecting rod 60 pivotally connected to a piston 59 of a reciprocating pump 58 via a bearing 57 instead of a pulley. In addition, the shifter 62 for moving the adjustment cylinder 61 is moved to the position 1r:j.
It is controlled by I-j6. motor 5
When the rotating shaft 51 is rotated by 5, the shifter 61 position t
(The first cylinder 56 cranks at 2ε', which is twice the eccentricity ε' determined by J, and the connecting rod 60
As a result, the piston 59 pumps out the liquid with a stroke of 2ε'. When the position of the shifter 62 is sequentially moved by the positioning device 66, the adjustment cylinder 61 is moved in the axial direction, and the stroke is changed as the eccentricity ε' changes, so that the discharge amount can be changed continuously without stopping the operation. #1
The pressure or flow rate on the discharge side of the reciprocating pump 58 is controlled by adjusting the pressure or flow rate on the discharge side of the reciprocating pump 58, and the shifter 62 automatically changes the position of the adjustment cylinder 61 to maintain a predetermined discharge pressure and flow rate. You can control the discharge amount.

 更に吐出側の圧力を昇圧する時には、初めはピストン
のストロークを大きくし昇圧が終りに近づくに従ってス
トロークを小さくするよう調整筒61を制御することに
より同一馬力で行なえるとともに消費動力並びに駆動装
置を小さくして経済的にすることができる。
Furthermore, when increasing the pressure on the discharge side, by controlling the adjustment cylinder 61 so that the stroke of the piston is initially large and the stroke becomes smaller as the pressure increases nears the end, it is possible to increase the pressure at the same horsepower and reduce the power consumption and drive device. It can be done economically.

以上畔述したように本発明は駆動側又は被駆動側となる
外筒と、被駆動側又は駆動側となる中心軸を有する内筒
との間に調整筒を介在させ、調整筒を互に反対方向のヘ
リカル歯車で外筒及び内筒とを連結し、重ねた該6簡の
内の伺れか2簡に同一14偏心させて嵌合させたから外
筒、内筒が回転しているときにも調整筒を軸方向に移動
させるのみで偏心量を自由に連続的に変更することがで
きる。 そして a、外筒又は内筒を固定位置で回転させ、調整筒を軸方
向に移動させると内筒又は外面を回転させることができ
る。
As described above, the present invention interposes an adjusting cylinder between an outer cylinder that is a driving side or a driven side and an inner cylinder that has a central axis that is a driven side or a driving side, and the adjusting cylinders are mutually connected. The outer cylinder and inner cylinder are connected by helical gears in opposite directions, and two of the stacked six rings are fitted with the same 14 eccentrically, so when the outer cylinder and inner cylinder are rotating. Also, the amount of eccentricity can be freely and continuously changed simply by moving the adjustment cylinder in the axial direction. Then, a) by rotating the outer cylinder or the inner cylinder at a fixed position and moving the adjustment cylinder in the axial direction, the inner cylinder or the outer surface can be rotated.

b、外筒又は内筒を固定し内筒又は外筒を回転運動させ
ると調整筒を軸方向に直線運動させることができる。
b. When the outer cylinder or the inner cylinder is fixed and the inner cylinder or the outer cylinder is rotated, the adjustment cylinder can be moved linearly in the axial direction.

このため各権工作嶺械或いは工具の偏心部1に決め、遊
星連動機器の偏心量の変更、攪件機械、研磨機械、据動
モータの偏心量H整、レシプロポンプの容量調整2回転
運動と直線運動の変換等広い利用範囲を有する。 また
調整筒の内外に互に反対の等しい捩れ面を設けて力の伝
達を行なわせるので力の釣合がとれ調整筒の制御が滑ら
かである。
For this reason, we decided on the eccentric part 1 of each machine or tool, and changed the eccentricity of planetary interlocking equipment, adjusted the eccentricity H of stirring machines, polishing machines, and stationary motors, and adjusted the capacity of reciprocating pumps by two rotations. It has a wide range of uses such as converting linear motion. Further, since equal and opposite torsion surfaces are provided on the inside and outside of the adjustment cylinder to transmit force, the forces are balanced and the adjustment cylinder can be controlled smoothly.

また従来のダブル偏心機構に対して主要部の部品は、1
1整筒が1個増すのみで極めて簡単であり、且調相部は
訓整時以外は回転中に外筒、内筒との相対回転をしない
から摩耗及び動力損失がない等の大きな特徴がある。
In addition, compared to the conventional double eccentric mechanism, the main parts are one
It is extremely simple as it only requires one adjustment cylinder, and the phase adjustment part does not rotate relative to the outer cylinder or inner cylinder during rotation except during training, so it has great features such as no wear or power loss. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は主要部品の偏心部の組合わせ説明図、搏2図は
主要部品の斜視図、 第3図は本発明の機構の縦断面図、 第4図は本機構の応用説明図である。 1・・・外筒、      7,13・・・捩れ溝、9
・・・内筒、11.12・・・捩れ歯、14・・・調整
筒、      1日・・・中心軸、特許出願人  伊
 藤 台 蔵
Fig. 1 is an explanatory diagram of the combination of eccentric parts of the main parts, Fig. 2 is a perspective view of the main parts, Fig. 3 is a vertical sectional view of the mechanism of the present invention, and Fig. 4 is an explanatory diagram of the application of the mechanism. . 1... Outer cylinder, 7, 13... Twisted groove, 9
...Inner cylinder, 11.12...Twisted teeth, 14...Adjustment cylinder, 1st...Central shaft, Patent applicant: Dai Ito Kura

Claims (1)

【特許請求の範囲】[Claims] (1)軸方向の穴内面に1本又は複数本の第1捩れ溝を
有し回転のみ可能に軸承された駆動側又は被駆動側とな
る外筒と、該外筒の穴に挿通し外面に前記第1捩れ溝に
噛合する第1歯部を有するとともにその軸方向の穴内面
に前記第1捩れ溝の方向に対して反対方向で同じ捩れ角
の1本又は複数本の第2捩れ溝を有し回転並びに軸方向
移動可能に軸承された調整筒と、該W〜整簡の穴に挿通
し外面に前記第2捩れ溝に噛合する第2歯部を有し回転
のみ可能に軸承された内筒と、該内筒の軸方向に挿1i
77又は同定された軸部とよりなり、前記外筒の穴、調
v筒の穴、内筒の軸部の内何れか2つか同量偏心して設
けられ、前記調整筒を軸方向に移動させることによって
偏心量を調整できるとともに外筒、内筒を固定または回
転させ或いは調整筒を軸方向に移動させることにより変
位を変換させることを特徴とする偏心量調整並びに変位
変換機構。
(1) An outer cylinder that is a driving side or a driven side that has one or more first torsion grooves on the inner surface of a hole in the axial direction and is rotatably supported, and an outer cylinder that is inserted into the hole of the outer cylinder. has a first tooth portion that meshes with the first torsion groove, and one or more second torsion grooves having the same torsion angle in the opposite direction to the direction of the first torsion groove on the inner surface of the hole in the axial direction. an adjustment cylinder which is supported so as to be rotatable and movable in the axial direction; and a second toothed portion which is inserted into the hole of the W~shape and engages with the second torsion groove on the outer surface, and which is supported so as to be only rotatable. The inner cylinder is inserted in the axial direction of the inner cylinder.
77 or an identified shaft part, and any two of the hole in the outer cylinder, the hole in the adjustment cylinder, and the shaft part in the inner cylinder are provided eccentrically by the same amount, and the adjustment cylinder is moved in the axial direction. What is claimed is: 1. An eccentricity adjusting and displacement converting mechanism, characterized in that the eccentricity can be adjusted by adjusting the eccentricity, and the displacement can be changed by fixing or rotating the outer cylinder and the inner cylinder, or by moving the adjusting cylinder in the axial direction.
JP17177482A 1982-09-30 1982-09-30 Mechanism for adjusting eccentric quantity and converting displacement Pending JPS5960615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17177482A JPS5960615A (en) 1982-09-30 1982-09-30 Mechanism for adjusting eccentric quantity and converting displacement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17177482A JPS5960615A (en) 1982-09-30 1982-09-30 Mechanism for adjusting eccentric quantity and converting displacement

Publications (1)

Publication Number Publication Date
JPS5960615A true JPS5960615A (en) 1984-04-06

Family

ID=15929427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17177482A Pending JPS5960615A (en) 1982-09-30 1982-09-30 Mechanism for adjusting eccentric quantity and converting displacement

Country Status (1)

Country Link
JP (1) JPS5960615A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6392242A (en) * 1986-10-02 1988-04-22 Natl Aerospace Lab Motor-operated direct driving positioning apparatus with rotor of complex eccentricity type
JP2016068231A (en) * 2014-09-30 2016-05-09 富士フイルム株式会社 Processing device and processing method for lens molding mold, and lens molding mold and lens

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5482779A (en) * 1977-11-23 1979-07-02 Glazier William J Method and device for kinetically changing eccentric position of rotary member

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5482779A (en) * 1977-11-23 1979-07-02 Glazier William J Method and device for kinetically changing eccentric position of rotary member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6392242A (en) * 1986-10-02 1988-04-22 Natl Aerospace Lab Motor-operated direct driving positioning apparatus with rotor of complex eccentricity type
JP2016068231A (en) * 2014-09-30 2016-05-09 富士フイルム株式会社 Processing device and processing method for lens molding mold, and lens molding mold and lens

Similar Documents

Publication Publication Date Title
US4651599A (en) Method for producing workpieces having polygonal outer and/or inner contours
US2693066A (en) Portable device for encircling machining of work
US3287859A (en) Rotatable grinding and surfacing tool
CN2040425U (en) Valve grinder
US6273799B1 (en) Polishing head for plate materials in granite, hard stone or ceramic with abrasive segments having continuous oscillating tangential motion
US4203258A (en) Gear finishing machine
JPS5960615A (en) Mechanism for adjusting eccentric quantity and converting displacement
JPH0551425B2 (en)
GB526620A (en) Improvements in the production of cross-section profiles bounded by cycloidal curves
JPH0847741A (en) Rocking die forging machine
US3921339A (en) Apparatus for generating trochoidal surfaces
JP2000343328A (en) Lapping method and device
US4061078A (en) Device for removing external circular fins from pipe joints
EP0657248B1 (en) Improved lapping head for rocky materials, particularly for granite slabs
JPS6210766B2 (en)
JPS62277218A (en) Continuously variable adjustment helical guide mechanism for gear shaper
CN217453327U (en) Prism rough polishing equipment
SU1553352A1 (en) Honing-lapping machine
TWI753725B (en) Servo-driven polishing equipment and servo-driven polishing method
CN220445986U (en) Product burr grinding device
CN220463406U (en) Abrasive material device for surface hardening treatment of eccentric shaft
RU70836U1 (en) CNC DRILLING MACHINE
CN215920082U (en) Polishing machine used after welding
SU1346398A2 (en) Device for grinding and polishing the surfaces of bodies of revolution of varying curvature
CN211029555U (en) Multifunctional valve grinding machine