JPS5960333A - Pressure detector - Google Patents

Pressure detector

Info

Publication number
JPS5960333A
JPS5960333A JP17176382A JP17176382A JPS5960333A JP S5960333 A JPS5960333 A JP S5960333A JP 17176382 A JP17176382 A JP 17176382A JP 17176382 A JP17176382 A JP 17176382A JP S5960333 A JPS5960333 A JP S5960333A
Authority
JP
Japan
Prior art keywords
pressure
slit
optical
displacement
pedestal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17176382A
Other languages
Japanese (ja)
Inventor
Koichiro Miyagi
宮城 幸一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP17176382A priority Critical patent/JPS5960333A/en
Publication of JPS5960333A publication Critical patent/JPS5960333A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/02Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To obtain a simple, small-sized pressure detector which has various response characteristics by varying the quantity of transmitted light by the displacement of a slit provided to a pressure pedestal, and displaying pressure on a voltmeter in a state of balance with the electromagnetic resiliency of the voltage of a photodetecting element. CONSTITUTION:When pressure is applied to the pedestal 1, the optical slit 7 fitted at one end of a supporting rod 2 is displaced at the same time, and this optical slit 7 is disposed crossing the optical path of an optical displacement detector 12. The quantity of light is converted photoelectrically by the photodetecting element 8, amplified by an amplitude amplifier 13, and added to a reference signal from an external terminal by an adding circuit 14, whose sum signal is amplified by an amplifier 15, flowed through an electromagnetic coil 5, and converted by a precise resistance 16 into a voltage value, thereby displaying the value on a meter 17. The slit stops when the resiliency of the electromagnetic coil 5 and the pressure balance with each other and the pressure is detected by conversion to the pressure value. Various shapes are applicable to light transmission windows of the optical slit 7 and a fixed slit 10 according to the purpose of use by changing function relations between the extent of relative displacement between the both and the quantity of transmitted light.

Description

【発明の詳細な説明】 本発明は受台が外部より加えられた圧力に対して反発力
を有17.その位置を所定位置に保つように構成された
圧力検出器に関するものでちる。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, the pedestal has a repulsive force against pressure applied from the outside.17. This relates to a pressure sensor configured to maintain its position at a predetermined position.

従来、この棟の圧力検出器において受台の位置制御圧用
いられる手段は電気的また(は機械的に位置変位量を検
出し、 ilr、子回路によるフィードバック系によっ
て電気機械的に位置を調整するものであった。この丸め
、受台の変位11尤の精密測定方法。
Conventionally, the means used to control the position of the pedestal in the pressure detector in this building is to electrically or (mechanically) detect the amount of positional displacement, and to adjust the position electromechanically using a feedback system using an ilr and sub-circuit. It was a precision measurement method for this rounding and displacement of the pedestal.

あるいは、非線形となるにとが多いフィードバック回路
特性の実現が難しく、高価で複雑かつ大形の装置となる
ことが多かった。また、受台変位量の検出を機械的1・
段で行う場合にtま摩擦等によって感度が低下し、電磁
的検出の場合には検出信号の直線化が容易でtユなかっ
た〇 これら従来例の問題点に対して本発明では以下に述べる
特@を有している。
Alternatively, it is difficult to realize feedback circuit characteristics that are often nonlinear, resulting in expensive, complicated, and large devices. In addition, the amount of displacement of the pedestal can be detected mechanically.
When detection is performed in stages, the sensitivity decreases due to friction, etc., and in the case of electromagnetic detection, it is not easy to linearize the detection signal.To address these problems of the conventional method, the present invention is described below. It has special @.

(1)圧力検出器の受台を含む可動台と反発力発生用の
電磁コイルおよび位置検出用の)1;学的変位陸検出装
置りは、非接触で機能するように構成されているため受
台の感度が高い。さらに、受台の形状および質量を検出
すべき用カイロ号の振幅1周波数(加速度)に適応させ
易い。
(1) The movable base including the pressure detector cradle, the electromagnetic coil for generating repulsive force, and the position detection device) are configured to function without contact. The sensitivity of the pedestal is high. Furthermore, it is easy to adapt the shape and mass of the pedestal to the amplitude and frequency (acceleration) of the Cairo to be detected.

(2)可動台の動きによって光学的変位J+L LIl
ll定装置より発生する信号は2可動台および検出器本
体に取り付けである光学スリットの形状によって任意に
設定することができる。このため、単純なフィードバッ
ク回路特性を有する電子回路を使用しても複雑な非直線
特性のフィードバックを可動台にかけることが可能で、
振動系の最適フィードバックiの設定、調整が容易に行
える。
(2) Optical displacement J+L LII due to the movement of the movable table
The signal generated by the detector can be arbitrarily set depending on the shape of the optical slit attached to the two movable stands and the detector body. Therefore, even if an electronic circuit with simple feedback circuit characteristics is used, feedback with complex nonlinear characteristics can be applied to the movable platform.
The optimum feedback i of the vibration system can be easily set and adjusted.

(3)光学的変位値検出装置は、現在のマイクロオプチ
クス技術、半導体プロセスにおりる微細加工技術を用い
れば、非常に小形lll1!nc化することが可能であ
るため、前記1.0特徴と合わせて感圧部分を小形化す
ることができる。
(3) Optical displacement value detection devices can be made very small by using current micro-optics technology and microfabrication technology used in semiconductor processes. Since it is possible to make it NC, the pressure sensitive part can be downsized in addition to the above-mentioned feature 1.0.

次に1本−Jも明のIIIIJ作原理について実施例を
もとに説明する。第1図に実施例を示す。外部圧力の検
出に先立−1で、零校東イ[行うため、受台1.支持棒
2、電磁コア3より成る可動台4を%IJ記電磁コアを
取9巻くように設置した電磁コイル(5)に電流を流す
ことにより所定位置に浮上させる。この時、コイルに流
す電流は外部端子6より加え、この電流値を受台変位が
零(圧力零)の基準イ1aとする。
Next, the operating principle of Ippon-J Maki's IIIJ will be explained based on an example. An example is shown in FIG. Prior to detecting the external pressure, set the zero calibration position to the cradle 1. A movable base 4 consisting of a support rod 2 and an electromagnetic core 3 is levitated to a predetermined position by passing an electric current through an electromagnetic coil (5) installed so as to have nine turns around the electromagnetic core written in %IJ. At this time, the current flowing through the coil is applied from the external terminal 6, and this current value is taken as the reference A1a at which the displacement of the pedestal is zero (zero pressure).

次に外部より前NL受台にI:F、力が加わると前記可
動台に位置変位が生じ、前記支持イヤの一端に取り伺け
である光学的スリット7が同時に変位する。この光学的
スリットは1発光素子へ受光素子9.固定スリット1q
Vンズ】1よりなる光学的変位量検出装置l】2の光路
l!:横切る形で配W−されている。また。
Next, when an I:F force is applied to the front NL cradle from the outside, a positional displacement occurs in the movable table, and the optical slit 7, which can be accessed at one end of the support ear, is simultaneously displaced. This optical slit connects the light emitting element 1 to the light receiving element 9. Fixed slit 1q
Optical displacement detection device consisting of 1] optical path 1 of 2! : Distributed W- in a crosswise manner. Also.

前記光学的スリットと前記固定スリットの光透過窓の形
状&;L 、後y1(のどとく特定の関連をもって定め
られており、わずかな光学的スリットの変位に対して大
きな光量変化を受光素子面で得ることができ、かつ、光
学的スリットの変位量に対し任意の関係を有する光量変
化を設定できるものである。
The shapes of the light transmitting windows of the optical slit and the fixed slit are determined with a specific relationship, and a large change in the amount of light is caused on the light receiving element surface due to a slight displacement of the optical slit. In addition, it is possible to set a change in the amount of light having an arbitrary relationship with the amount of displacement of the optical slit.

さて1通常、正の圧力による前記可動台の変位に対して
、光量変化は増加する傾向に設定する。この光量は前記
受光素子によって光電変換し、振幅増幅器13に送られ
る0前記増幅器で適当な振幅に増幅された信号は、加算
回路14に加えられ、前記外部端子よりの基準信号に加
算される。基準信号に加算された信号は′重力増幅のだ
めの増幅器15に送られ、前記電磁コイルを十分稼動で
きるだけの大きさに増幅されたのち、前記コイルpc加
えられる。電磁コイルに流れ込む電流は2例えば基準と
なる精密抵抗16などで電圧値に変換し7.メータ17
で表示するような表示装置18で表示される。前記受台
に加えられた圧力によって生じた電流が0iS記電磁コ
イルに加えられると、前記可動台をよ圧力に反発し1反
発力と圧力とが等しい大きさに達すると停止する。この
時、光学的変位量検出装置18よ多発生し、電気回路、
前記コイルを流れる?ti、θIl:は一定値となるか
ら、この値を圧力値に換胸することにより圧力の強さを
検出することができる。
Now, 1. Normally, the change in light amount is set to increase with respect to the displacement of the movable table due to positive pressure. This amount of light is photoelectrically converted by the light receiving element and sent to an amplitude amplifier 13. The signal amplified to an appropriate amplitude by the amplifier is applied to an adder circuit 14 and added to the reference signal from the external terminal. The signal added to the reference signal is sent to the gravity amplification amplifier 15, where it is amplified to a size sufficient to operate the electromagnetic coil, and then applied to the coil pc. 2. The current flowing into the electromagnetic coil is converted into a voltage value using, for example, a precision resistor 16 that serves as a reference. meter 17
It is displayed on a display device 18 such as the one shown in FIG. When a current generated by the pressure applied to the pedestal is applied to the 0iS electromagnetic coil, the movable pedestal is repelled by a higher pressure and stops when the repulsive force and the pressure reach an equal magnitude. At this time, the optical displacement detection device 18 generates a large number of occurrences, and the electric circuit,
Flow through the said coil? Since ti and θIl: are constant values, the strength of the pressure can be detected by converting these values into pressure values.

次に本発明の特徴の一つである。光学的スリットを用い
た変位量検出、および、非線形フィートノ(ツク信号の
発生について説明する。
Next is one of the features of the present invention. Displacement detection using an optical slit and generation of a nonlinear foot signal will be explained.

第2図は横軸に可動台の変位X、縦軸に前記変位層検出
装置の出力(i号の大きさSfc示したものであ0る。
In FIG. 2, the horizontal axis represents the displacement X of the movable table, and the vertical axis represents the output of the displacement layer detection device (the size of i, Sfc, which is 0).

同図a、bの直線は圧力と変位用、が比例して変化する
もので、コイルバネ等を用いた圧力指示器と同じ特性を
示しておQ、aが高感度、bが広ダイナミツクレンジを
表わす。aに示した高感度特性を極端なものにすれば、
可動台の変位を非常にホきくしたjf、力検出器が実現
できるが、微少圧力の検出感度が感化して精度的に問題
がある。
The straight lines a and b in the same figure are for pressure and displacement, which change proportionally, and have the same characteristics as a pressure indicator using a coil spring, etc. Q, a is for high sensitivity, and b is for a wide dynamic range. represents. If we take the high sensitivity characteristics shown in a to an extreme, we get
Although it is possible to realize a force detector in which the displacement of the movable base is extremely large, there is a problem in accuracy due to sensitivity to minute pressure detection.

ここで圧力の検出分解能を、加えられている圧力の何%
まで検出口j能でおるかといった。相対的分解能で考え
、この分解能の値を一定とするフィードバック皿を発生
させるとすれば、同図Cに示したような非直線特性が必
要となる。この特性を用いれば、微少圧力の検出が可能
で、かつ可動台の変位長を小さくすることができる。さ
らに、同図dに示す↓うな4j?線状の特性を設定すれ
ば、微少圧力に対する不感領域、すなわち、スレツシホ
ールド値を設定することが可能である。この特性は圧力
雑音を除去する方法として有効である。さらにまた、d
の特性を拡張して同図eにノjりす様な階段波形特性を
用いれば出力信号はl?ll:数的に変化し。
Here, the pressure detection resolution is the percentage of the applied pressure.
It is said that the detection port can be detected up to the point. If we consider relative resolution and generate a feedback plate that keeps the resolution constant, we will need non-linear characteristics as shown in Figure C. By using this characteristic, it is possible to detect minute pressures and to reduce the displacement length of the movable base. Furthermore, ↓ Una 4j shown in figure d? By setting a linear characteristic, it is possible to set an insensitive area to minute pressure, that is, a threshold value. This characteristic is effective as a method for removing pressure noise. Furthermore, d
If we extend the characteristic of , and use a staircase waveform characteristic like that shown in e in the same figure, the output signal will be l? ll: Changes numerically.

デジタルイI(号として取扱うことがi’T fil:
である。以上、同図a−eに示した特性はフィードバッ
クjヨの代表的な一例であり、これらの特4!(: 金
、7:lI合Wで使用すればさらに複雑なフィードパI
り1ルを出力させることができる。また、フィードバッ
クhトを任意に設定できる特徴は、電気回路早、111
磁コイル等における電気信号と反発力の非直11;!関
係を補正することにも活用することができ、1条面の′
でIC気回路設計を容易にする効果がある。第二)図(
a) 、 (b)K前記第2図に示したa−eの特性を
′IIIるための光学的スリット7a、 7b −7e
、固定スリン)・10.+、10b・・・10e、およ
び相岨相関演栃を基本原理とする光学系の構成を示す。
Digital I (i'T fil:
It is. The characteristics shown in Figures a to e are typical examples of feedback, and these characteristics 4! (If used with gold, 7:lI combination W, it will be more complicated
It is possible to output 1 file. In addition, the feature that the feedback ht can be set arbitrarily is that
Non-direction of electrical signals and repulsive force in magnetic coils etc. 11;! It can also be used to correct the relationship;
This has the effect of facilitating IC circuit design. 2nd) Figure (
a), (b) K Optical slits 7a, 7b-7e for determining the characteristics of a-e shown in FIG.
, fixed sulin)・10. +, 10b . . . 10e, and the configuration of an optical system based on the basic principle of the Aigami correlation equation.

同図(b) K示した光学系は光学的スリット7の移動
に伴い、固定スリット(+0)との開口の重なり具合が
変化してこの2枚のスリットを通過する光量の総和が複
雑に変化するものである。
In the optical system shown in Figure (b) K, as the optical slit 7 moves, the degree of overlapping of the aperture with the fixed slit (+0) changes, and the total amount of light passing through these two slits changes in a complicated manner. It is something to do.

スリットの移動量(変位量)を71両スリットの開口関
数を各々f (x)、 g fx)、光量の総和を積分
記号で表わ辻ば、出力光量■は変数τの関数となり。
If the amount of movement (displacement) of the slit is expressed by the aperture function of each slit (f(x), gfx), and the total amount of light is expressed by an integral symbol, then the output light amount ■ becomes a function of the variable τ.

と表すことができる。ただし、XとTの座標軸は同方向
、(1は光束幅を表わすものとする。(1)式はf (
x)とg (x)との相互4[」関関数を表わしており
、前記第2図で示したフィードバックに用いる変位−喰
検出装置の出力信号には、(1)式によって作られる全
ての借上が使用0]′能である。f (x) 、  g
 (x)を作成するにあたー)ては2面積的に通過光址
の変化を行うエリアチャート方式、あるいは、透過光量
を制御するトランアベアレンン一方式があるが、微細加
工技術を用い1スリットの小形化を実現するには、エリ
アチャート方式が有望である。
It can be expressed as. However, the coordinate axes of X and T are in the same direction, and (1 represents the beam width. Equation (1) is f (
x) and g(x), and the output signal of the displacement-feed detection device used for feedback shown in FIG. Borrowing is the ability to use 0]'. f(x), g
To create (x), there is an area chart method that changes the area of light passing through two areas, or a trans-average lens method that controls the amount of transmitted light, but using microfabrication technology. The area chart method is promising for realizing miniaturization of one slit.

第4図は反射鏡(1(:を用いた光学的変位量測定装置
の実施例を示す(/q成図である。前述の9動的な光学
的スリットを廃し2代りに光学反射鏡を設置する。また
、置屋スリットは2収(]、Of、 10g)設置し。
Figure 4 is a (/q diagram) showing an example of an optical displacement measuring device using a reflecting mirror (1). Also, install 2 okiya slits (], Of, 10g).

仁の2枚のスリット間において光束の通過位置を前記光
学反射鏡で変化させるものである。光学反射鏡は前記可
動台に取り付けられており、前記受台に圧力が加わると
同図中矢印の方向に移動する。
The optical reflecting mirror changes the passing position of the light beam between the two slits. The optical reflecting mirror is attached to the movable table, and when pressure is applied to the pedestal, it moves in the direction of the arrow in the figure.

この結果、前記反射鏡によって反射さノtた光束は点線
で示したように変位し、相対的に固定スリットが移動し
たと等しい結果をもたらす。
As a result, the light beam reflected by the reflecting mirror is displaced as shown by the dotted line, producing a result equivalent to a relative movement of the fixed slit.

反射鏡を用いる方法の長所は、I=TIII台111へ
にスリットを取り付ける必要が無いため、スリン]・の
交換が容易な点でちる。すなわち、同一の圧力検出器を
用いて、検出感度、応答特性などを変化させながら測定
する場合、2枚−組の16j定スリツトを可動部に影響
を与えずに交換するだけでaい点である。
The advantage of the method using a reflecting mirror is that it is not necessary to attach a slit to the I=TIII stand 111, so the slit can be easily replaced. In other words, when measuring while changing the detection sensitivity, response characteristics, etc. using the same pressure sensor, it is possible to easily replace the two sets of 16J fixed slits without affecting the moving parts. be.

本発明は以上のような構成であり、検出すべき圧力の強
度に対し任意の出力特性をイ1する光学的変位置測定装
置を用いることによって、 4+li々の応答特性を有
する圧力検出器金簡単に、しかも小形化して実現できる
%微を有する。また2本文説jjlJにおいては基準値
となるべき1ヒ訛によって可動台を浮上させ、零位+E
を行うと述べたが、これはJE力の加わる方向に11i
力が存在する場合であって、可動台を横方向に設置if
、 I、で用いれば不便である。また、′−反発力を強
め、電磁コイルに流す電流を少なくする方法とし°で電
磁コアに永久磁石を使用することも考えられる。さらに
1だ、外部より加えられる圧力は、市負どちらでも検出
可能で、正負の圧力強度に応じて前記基準値となるべき
電流の設定を行う。この場合、可動台にはあらがじめ、
重力、電磁ツノ、あるいはバネ等の機械力でバイアス圧
力を加え一〇から零調整を行う。
The present invention has the above-described configuration, and by using an optical position measuring device that has arbitrary output characteristics with respect to the intensity of pressure to be detected, it is possible to easily create a pressure detector having 4+1 response characteristics. Moreover, it has a small size that can be realized by miniaturization. In addition, in the 2nd text theory jjlJ, the movable platform is levitated by the 1st accent, which should be the standard value, and the zero position + E
11i in the direction in which the JE force is applied.
If a force exists and the movable platform is installed laterally
, I, it is inconvenient to use it. It is also possible to use a permanent magnet in the electromagnetic core as a way to strengthen the repulsive force and reduce the current flowing through the electromagnetic coil. Furthermore, the pressure applied from the outside can be detected whether it is positive or negative, and the current that should be the reference value is set depending on the positive or negative pressure intensity. In this case, the movable platform has a
Apply bias pressure using gravity, electromagnetic horns, or mechanical force such as a spring to adjust from 10 to zero.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す図、第2図tよ可動台の
変位;−1と光学的変位置検出装置の出力との関変位量
検出装置の実施例を示す図でるる。 1は受台、2eよ支柱、3は′ら、磁コア、4は前記受
台、支柱、■L磁磁子1アり成る可?、l1台、5は電
磁コイル、71よ光学的スリット、8は兄光素子、9は
受光素子、 10は固定スリット、11はレンズ、12
は・前記光学的スリット、発光素子、受光素子、固定ス
リット、レンズより成る光学的変位111検出装置I〆
1−113.15は増幅器、 +8は表示装置4を示す
、第10 178− 第2目 ニー[シ)3[−z)1(1′)) 罰、3巨1(b)
FIG. 1 is a diagram showing an embodiment of the present invention, and FIG. 2 is a diagram illustrating an embodiment of the displacement amount detection device in relation to the displacement of the movable base (-1) and the output of the optical displacement detection device. 1 is the pedestal, 2e is the support, 3 is the magnetic core, 4 is the pedestal, the support, ■ Can the L magnet be made up of 1a? , l1 unit, 5 is an electromagnetic coil, 71 is an optical slit, 8 is an older photo element, 9 is a light receiving element, 10 is a fixed slit, 11 is a lens, 12
Optical displacement 111 detection device I consisting of the optical slit, a light emitting element, a light receiving element, a fixed slit, and a lens. Knee [shi] 3 [-z) 1 (1')) Punishment, 3 giant 1 (b)

Claims (1)

【特許請求の範囲】 1、受台(1)と、該受台と一体に設けられた支柱(2
)と。 該支柱に固% 1./て設けらJまたR’+磁コア(:
1)とを具備した可動台(4)と、前記可動台の微少変
位M′を光学的に非接触で検知するために設けられた発
光素子(8)、光学的スリット(7)、固定スリット(
1+11 、レンズ(+1)、受光素子(9)から成る
光学的変位量検出装置f’t (1と;該検出装置の出
力信号を増幅する増幅器(141つと;該増幅器の出力
信号を受領して前記可動台を所定位jηに保持するよう
に該可動台に11′L磁的反発力を加える電磁コイル(
5)と:該電磁コイルに流れた電流値を測定し表示する
表示装置W (u4とを備えた圧力検出器。 2前記支柱(2)の一端部が光学的スリットC(14成
されていることを特徴とする特許1i+’f求のI館囲
I4j、 I JA記載の圧力検出器。 3、前記支柱(2)の一端部が光反射鏡であることを特
徴とする特r「請求の範囲第1項記載の圧力検出器。 4、前記電磁コア(3)が永久磁石であることを特徴と
する特許請求の範囲第1項、第2項、第3項記載の圧力
検出器1.
[Claims] 1. A pedestal (1) and a support (2) provided integrally with the pedestal.
)and. % hardness on the strut 1. / J and R' + magnetic core (:
1), a light emitting element (8), an optical slit (7), and a fixed slit provided to optically and non-contact detect the minute displacement M' of the movable table. (
1+11, a lens (+1), and a light receiving element (9). an electromagnetic coil (
5) and: a pressure detector equipped with a display device W (u4) that measures and displays the value of the current flowing through the electromagnetic coil. 3. A pressure detector according to Patent No. 1i+'f, I4j, IJA, characterized in that: 3. A pressure detector according to Patent No. 4. The pressure detector according to claim 1, wherein the electromagnetic core (3) is a permanent magnet.
JP17176382A 1982-09-30 1982-09-30 Pressure detector Pending JPS5960333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17176382A JPS5960333A (en) 1982-09-30 1982-09-30 Pressure detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17176382A JPS5960333A (en) 1982-09-30 1982-09-30 Pressure detector

Publications (1)

Publication Number Publication Date
JPS5960333A true JPS5960333A (en) 1984-04-06

Family

ID=15929222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17176382A Pending JPS5960333A (en) 1982-09-30 1982-09-30 Pressure detector

Country Status (1)

Country Link
JP (1) JPS5960333A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6432142A (en) * 1987-07-29 1989-02-02 Migi Ichikawa Gas pressure measuring instrument for wheel tire
JPH03189530A (en) * 1989-12-19 1991-08-19 Ckd Corp Pressure detector
JPH06160224A (en) * 1992-07-17 1994-06-07 Hughes Aircraft Co Electromagnetic pressure transducer
EP1748290A1 (en) * 2005-07-28 2007-01-31 Fondazione Torino Wireless A device and a system for measuring forces
US7526967B2 (en) * 2004-09-10 2009-05-05 Schaeffler Kg Measuring device for detecting stresses of a bearing arrangement
US7642504B2 (en) 2005-07-28 2010-01-05 Fondazione Torino Wireless System and method for measuring forces

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321972A (en) * 1976-08-12 1978-02-28 Matsushita Electric Ind Co Ltd Apparatus for converting pressure into electric signal
JPS55140125A (en) * 1979-04-19 1980-11-01 Copal Takeda Eng:Kk Piezo-electric converter for sphygmomanometry

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321972A (en) * 1976-08-12 1978-02-28 Matsushita Electric Ind Co Ltd Apparatus for converting pressure into electric signal
JPS55140125A (en) * 1979-04-19 1980-11-01 Copal Takeda Eng:Kk Piezo-electric converter for sphygmomanometry

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6432142A (en) * 1987-07-29 1989-02-02 Migi Ichikawa Gas pressure measuring instrument for wheel tire
JPH03189530A (en) * 1989-12-19 1991-08-19 Ckd Corp Pressure detector
JPH06160224A (en) * 1992-07-17 1994-06-07 Hughes Aircraft Co Electromagnetic pressure transducer
US7526967B2 (en) * 2004-09-10 2009-05-05 Schaeffler Kg Measuring device for detecting stresses of a bearing arrangement
EP1748290A1 (en) * 2005-07-28 2007-01-31 Fondazione Torino Wireless A device and a system for measuring forces
US7642504B2 (en) 2005-07-28 2010-01-05 Fondazione Torino Wireless System and method for measuring forces

Similar Documents

Publication Publication Date Title
US4639665A (en) Sensing system for measuring a parameter
US4821218A (en) Method and apparatus for determining at least one characteristic value of movement of a body
US2695165A (en) Electromagnetic accelerometer
JPH03503804A (en) Precision capacitive transducer circuit and method
JP3212859B2 (en) Acceleration detector
US6075754A (en) Single-coil force balance velocity geophone
JP2007256266A (en) Compensated accelerometer with optical angle detection
JPS60213867A (en) Wind velocity sensor
US3775617A (en) Servo apparatus with photosensitive device and compensating circuit
JPS5960333A (en) Pressure detector
US3456508A (en) Vibrating diaphragm pressure sensor apparatus
US4186324A (en) Linear accelerometer with piezoelectric suspension
US3191440A (en) Pressure gauge instrument
US3756686A (en) Servo-integrating stabilizer
JP2687242B2 (en) Servo accelerometer
JPH02186284A (en) Magnetic flux sensor used in magnetic field for detecting flux density
US3664237A (en) Pressure sensor
US3882731A (en) Torquer scale factor temperature correction means
JPS62106312A (en) Torque equilibrium apparatus for measuring angle of inclination
JP4352892B2 (en) Micro tilt detector
JPH04204060A (en) Semiconductor acceleration detection device
JP2711790B2 (en) Vibration measuring instrument
CN110133323B (en) Reflection-type optical fiber acceleration measuring device
JP2009222540A (en) Servo vibration meter
JPS5926286Y2 (en) Accelerometer