JPS5960151A - Manufacture of solar heat collector - Google Patents

Manufacture of solar heat collector

Info

Publication number
JPS5960151A
JPS5960151A JP57167700A JP16770082A JPS5960151A JP S5960151 A JPS5960151 A JP S5960151A JP 57167700 A JP57167700 A JP 57167700A JP 16770082 A JP16770082 A JP 16770082A JP S5960151 A JPS5960151 A JP S5960151A
Authority
JP
Japan
Prior art keywords
glass tube
film
titanium dioxide
nickel
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57167700A
Other languages
Japanese (ja)
Inventor
Hirotaka Nakano
博隆 中野
Naomi Hirano
尚実 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
AGC Techno Glass Co Ltd
Original Assignee
Toshiba Corp
Toshiba Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Glass Co Ltd filed Critical Toshiba Corp
Priority to JP57167700A priority Critical patent/JPS5960151A/en
Publication of JPS5960151A publication Critical patent/JPS5960151A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/50Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings
    • F24S80/52Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • F24S10/45Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors the enclosure being cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/225Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Abstract

PURPOSE:To unnecessitate a large-scale installation and to form a selective transmissive membrane manufacture at low cost and having a high performance on a cylindrical base plate having a large surface area by forming a metal membrane on a dielectric film by an electroless plating method, and forming again a dielectric film on the metal membrane. CONSTITUTION:After forming a film of titanium dioxide on the inner surface of a first glass tube 3, the first glass tube 3 is dipped into a sensitizer at an ordinary temperature. Next, the first glass tube 3 is washed with pure water, and then is dipped into an activator. Then, the tube 3 is washed with pure water, and thereafter dipped into a heated electroless nickel plating solution. By the above procedures, a film of nickel having a thickness of approximately 100Angstrom is formed on the titanium dioxide membrane of the first glass tube 3 on which a film of titanium dioxide has been formed on the inner side surface. Then, the masking tape is removed, and washed with hot water and then dried. Then, a film of titanium dioxide is again formed on the nickel film of the first glass tube 3 formed with the films of titanium dioxide and nickel.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は太陽熱コレクターの製造方法特にその選択透過
膜形成法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for manufacturing a solar collector, particularly an improvement in a method for forming a selectively permeable membrane.

(発明の技術的背景およびその問題点)太陽熱コレクタ
ーは、例えば温水器、冷暖房システム、太陽熱発電シス
テム等に使用される。その構造は、例えば第1図及びそ
の断面図である第2図に示す如くである。即ち、太陽光
(1)を集光するように、放物面鏡(2)が設けられて
鰺り、大気圧よυも圧力の低い状態すなわち真空状態+
51で隔てられた、二重管構造となっている。第1のガ
ラス管(3)の内1■セ外面には、選択透過膜(4)が
真空(5)側に形成されている。前記第1のガラス管(
3)の内部には、真空(5)で断熱され選択吸収膜(6
)で表面処理された、第2のガラス管または金属管(7
)が具備されている。前記第2のガラス管または金属管
(力の中には、内部に熱媒体が流れる熱媒管(8)が具
備されている。
(Technical background of the invention and its problems) Solar collectors are used, for example, in water heaters, air-conditioning systems, solar power generation systems, and the like. Its structure is as shown, for example, in FIG. 1 and FIG. 2, which is a sectional view thereof. That is, a parabolic mirror (2) is provided to concentrate sunlight (1), and the pressure is lower than atmospheric pressure, i.e., a vacuum state +
It has a double pipe structure separated by 51. A selectively permeable membrane (4) is formed on the outer surface of the first glass tube (3) on the vacuum (5) side. The first glass tube (
3) is insulated with a vacuum (5) and has a selective absorption membrane (6).
), the second glass tube or metal tube (7
) is provided. The second glass tube or metal tube is provided with a heat transfer pipe (8) in which a heat transfer medium flows.

従来から選択透過膜の形成方法は真空蒸着法スパッタリ
ング法やCVD法が知られている。しかしながらこれら
の方法では真空装置等大がかシな設備を必要とし、また
外径50〜5QJ11、長さ1〜2m程大きな集熱管を
真空装置に収納するには数が限られ、これを対等するた
めに装置を大型化すると排気時間が長くなる。又従来の
方法では均一な厚さの透過膜を得ることが難かしい。さ
らに従来の方法ではガラス管と選択透過膜との付着力が
充分でなく、又耐熱性も悪い。
Conventionally, vacuum evaporation, sputtering, and CVD have been known as methods for forming selectively permeable films. However, these methods require large and bulky equipment such as a vacuum device, and the number of large heat collecting tubes with an outer diameter of 50 to 5QJ11 and a length of 1 to 2 meters is limited to accommodate them in the vacuum device, so it is difficult to If the equipment is made larger to achieve this, the evacuation time becomes longer. Furthermore, it is difficult to obtain a permeable membrane with a uniform thickness using conventional methods. Furthermore, in the conventional method, the adhesion between the glass tube and the permselective membrane is insufficient, and the heat resistance is also poor.

(発明の目的) 本発明は以上のような従来の欠点をなくした新しい太陽
熱コレクターの製造方法を提供することを目的とする。
(Objective of the Invention) An object of the present invention is to provide a new method for manufacturing a solar collector that eliminates the above-mentioned conventional drawbacks.

(発明の概要) 本発明は内部が中空で真空状態であって外部から太陽光
が入射する第1のガラス管と、この第1のガラス管の真
空を介して内側に設けられ表面に選択吸収膜を具備する
第2のガラス管または金属管とを有し、前記第1のガラ
ス管の管壁にはとの管壁に接するように被着される第1
の誘遮体薄層とこの第1の誘電体薄層上に形成される金
属層とこの金属層上に被着される第2の誘電体薄層とで
構成される選択透過膜を有する太陽熱コレクターの製造
方法において、前記各誘電体薄層は二酸化チタン、五酸
化タンタル、または五酸化ニオブのうちから選ばれた一
種類あるいはそれらの混合物の溶液からの塗布法によシ
塗膜した後、酸化性界囲気中で500℃以上の熱処理を
施すことにより形成され、前記金属層はニッケル、コバ
ルト、銀または銅のうちから選ばれた少なくとも一種を
無電解メッキ法によフ形成されることを特徴とする太l
id i4Aコレクターの製造方法である。
(Summary of the Invention) The present invention includes a first glass tube which is hollow inside and in a vacuum state and into which sunlight enters from the outside, and which is provided inside through the vacuum of the first glass tube and has a surface that selectively absorbs sunlight. a second glass tube or a metal tube provided with a membrane, and a first glass tube attached to the tube wall of the first glass tube so as to be in contact with the tube wall of the first glass tube.
A solar heating system having a selectively permeable film consisting of a thin dielectric layer, a metal layer formed on the first thin dielectric layer, and a second thin dielectric layer deposited on the metal layer. In the method for manufacturing a collector, each dielectric thin layer is coated by a coating method using a solution of one selected from titanium dioxide, tantalum pentoxide, or niobium pentoxide, or a mixture thereof; The metal layer is formed by heat treatment at 500°C or higher in an oxidizing atmosphere, and the metal layer is formed by electroless plating of at least one selected from nickel, cobalt, silver, or copper. Characteristic thick l
This is a method for manufacturing an id i4A collector.

本発明の太陽熱コレクターは、例えば温水器。The solar collector of the present invention can be used, for example, in a water heater.

冷暖房システム、太陽熱発−シスオム等に使用される。Used in heating and cooling systems, solar heating systems, etc.

そのj1゛4造は、例えば第1図及びその断面図である
第2図に示す如くである。即ち、太陽光(1)を集光す
るように、放物面鏡(2)が設けられており、真空(5
)で隔てられた、二重管構造となっている。
The j1-4 structure is as shown, for example, in FIG. 1 and FIG. 2, which is a sectional view thereof. That is, a parabolic mirror (2) is provided to collect sunlight (1), and a vacuum (5
), it has a double-tube structure.

第1のガラス管(3)の内面又は外面又は内外面しこは
選択透過膜(4)が真空(5)側に形成されている。前
記第1のガラス管(3)の内部には、真空(5)で断熱
され選択吸収膜(6)で表面処理された、i2のガラス
管または、金属管(7)が具備されている。前記第2の
ガラス管または金属管(力の中には、内部に熱媒体が流
れる熱媒管(8)が具備されてλハる。
A selectively permeable membrane (4) is formed on the inner or outer surface of the first glass tube (3) on the vacuum (5) side. Inside the first glass tube (3), an i2 glass tube or metal tube (7) is provided, which is insulated with a vacuum (5) and whose surface is treated with a selective absorption film (6). The second glass tube or metal tube is provided with a heat medium tube (8) in which a heat medium flows.

第3図の1太陽光の放射」に示すような放射エネルギー
強度スペクトルを持つ太陽光(1)は、放」勿面鏡(2
)で集光され、第1のガラス管(3)に入射し選択透過
膜(4)と真空(5)を通過して選択吸収膜(6)を具
備した第2のガラス管または金属管(7)に至る。太陽
光(1)は、ここで熱エネルギーに変換され熱媒管(8
)中を循環している熱媒体に集められる。しかし、熱媒
体の温度が200℃乃至300℃となるため、第3図に
示される「発熱による放射」の如く熱線が放射される。
Sunlight (1) has a radiant energy intensity spectrum as shown in Figure 3.
), the light enters the first glass tube (3), passes through a selectively permeable membrane (4) and a vacuum (5), and enters a second glass tube or metal tube (6) equipped with a selectively absorbing membrane (6). 7). The sunlight (1) is converted into thermal energy here and is passed through the heat medium pipe (8).
) is collected by the heating medium circulating inside. However, since the temperature of the heat medium is 200° C. to 300° C., heat rays are radiated as shown in “radiation due to heat generation” shown in FIG.

その熱線は第1のガラス管(3)を通して外部に逃げる
。それ故選択透過膜に要求される特性は、「太陽光の放
射」に示される波長範囲の光を良く透過し、「発熱によ
る放射」の波長範囲の光を良く反射し選択吸収M(6)
に戻すというものである。
The hot rays escape to the outside through the first glass tube (3). Therefore, the characteristics required of a selectively transmitting film are that it can well transmit light in the wavelength range shown in "sunlight radiation", it can well reflect light in the wavelength range "radiation due to heat generation", and it can selectively absorb M(6).
The idea is to return it to .

本発明においては、前記選択透過膜を、前記第1のガラ
ス管の内側に金属アルコキシドを溶質とした溶液より塗
布膜を形成した後に、大気中で熱処理することによシ誘
電体薄膜を形成し、前記誘電体薄膜上に無電解メッキ法
により金属膜を形成し、前記金属膜上に再び前記塗布法
によシ誘・成体薄膜を形成することによシ作製する。
In the present invention, the permselective membrane is formed by forming a coating film on the inside of the first glass tube from a solution containing a metal alkoxide as a solute, and then heat-treating it in the atmosphere to form a dielectric thin film. , a metal film is formed on the dielectric thin film by an electroless plating method, and a dielectric, mature thin film is again formed on the metal film by the coating method.

(発明の実施例) 以下図面を用いて本発明の実施例を詳細に説明する。(Example of the invention) Embodiments of the present invention will be described in detail below with reference to the drawings.

溶液からの塗布法により形成可能な高力1]折率誘′成
木、偉膜としては、二酸化チタン、五酸化タンタル、五
酸化ニオブが有シ、これら三種類の物質の屈折率はほぼ
等しく、その値は約2,2である。本実施例では二酸化
チタンを用すた場合につき詳述する。また前記無d解メ
ッキ法によ多形成可能な金属)11Aとしてはニッケル
、i、tq、  コバルト等があるが、本実施例ではニ
ッケルの場合を例に取り詳述する。尚、用いたガラス管
の外径は57門、長さ1300朋である。
High-strength materials that can be formed by coating from a solution 1] Refractive index mature wood and film include titanium dioxide, tantalum pentoxide, and niobium pentoxide; the refractive index of these three types of materials is almost equal. , its value is approximately 2,2. In this example, the case where titanium dioxide is used will be described in detail. Further, the metal (11A) which can be multiformed by the above-mentioned non-d plating method includes nickel, i, tq, cobalt, etc., and in this embodiment, nickel will be explained in detail as an example. The outer diameter of the glass tube used was 57 mm and the length was 1300 mm.

本実施例による太11す熱コレクター用選択透過膜の製
造方法の流れ図4j)第4図に示す。先ずガラス管(3
)をアルカリ脱指処理等のため洗浄を行なう。
A flowchart 4j) of a method for manufacturing a selectively permeable membrane for a heat collector according to this embodiment is shown in FIG. First, a glass tube (3
) is cleaned for alkaline defingering treatment, etc.

次にこの選択透過膜を1iJ記ガラス管(3)の内側表
面にのみ形成させるために前記ガラス管(3)の外(1
1tlをテープごマスキングする。次に二酸化チタンの
薄膜をディッピング法によ多形成する。第5図にデイツ
ビノグ法V概念図を示す。二酸化チタンの薄膜形成用溶
液(,2としては溶質としてチタン・イソプロコキシド
(Ti −i −(QC,H,)4 )  を、34チ
含み、溶媒と1ツてエタノールと酢酸エチル(エタノー
ルと酢酸エチルの比は9:1)から成るものである。必
要とされる二酸化チタンの膜厚は約400Xであシ、こ
の膜厚は溶液からの引上速度によって制御される。第6
図に500℃大気中熱処理後の膜厚と引上速度の関係を
示す。これよ)2朋/seCで引上げれば良いことがわ
かる。ディッピングによシ二酸化チタンの塗布膜を形成
した後、次にテープをはずしてマスキング除去をして、
酸化性雰囲気例えば大気中にて熱処理を施す。条件は例
えば500℃20分である。
Next, in order to form this permselective film only on the inner surface of the glass tube (3),
Mask 1tl with tape. Next, a thin film of titanium dioxide is formed by a dipping method. FIG. 5 shows a conceptual diagram of the Ditzbinog method V. A solution for forming a thin film of titanium dioxide (2 contains 34 titanium isoprokoxide (Ti-i-(QC,H,)4) as a solute, and the solvents are ethanol and ethyl acetate (ethanol and ethyl acetate). The ratio of ethyl acetate is 9:1).The required titanium dioxide film thickness is approximately 400X, and this film thickness is controlled by the rate of withdrawal from the solution.6.
The figure shows the relationship between film thickness and pulling speed after heat treatment at 500°C in the air. It turns out that you can raise it by 2 ho/seC. After forming a coating film of titanium dioxide by dipping, the tape is removed and the masking is removed.
Heat treatment is performed in an oxidizing atmosphere, such as air. The conditions are, for example, 500°C for 20 minutes.

以上の如く第1のガラス管(3)の内側表面に二酸化チ
タンの薄膜を形成した後、前記第1のガラス管(3)を
感受性賦与液(センシタイザ−)に常温にて約3分間浸
漬する。センシタイザーとして辻例えば次に示す組成の
溶液を用いた。
After forming a thin film of titanium dioxide on the inner surface of the first glass tube (3) as described above, the first glass tube (3) is immersed in a sensitizer for about 3 minutes at room temperature. . For example, a solution having the following composition was used as a sensitizer.

塩化第二スズ(Sn CIJt ・2H,O)    
 2g塩酸 (HCl)    0.5ml!純水 (
HtO)    ・・・11 次に純水で水洗した後、約40″Oの活性化処理液(ア
クチベーター)に約30秒間浸漬する。アクチベーター
としては、例えば次に示す組成の溶液を用いた。
Stannic chloride (Sn CIJt ・2H,O)
2g hydrochloric acid (HCl) 0.5ml! Pure water (
HtO)...11 Next, after washing with pure water, it is immersed in an activation treatment solution (activator) of about 40"O for about 30 seconds.As the activator, for example, a solution having the following composition was used. .

塩化パラジウム(P(I C4)        0.
251塩酸(llCl)“2.5ml 純水  (II20)11 次に純水で水洗した後、約45°0に加熱された無電解
ニッケル・メッキ用溶液に約10秒間浸漬する。;1.
l川:、に解ニッケル メッキ用溶液の組成としては次
の如くである。
Palladium chloride (P(IC4) 0.
251 Hydrochloric acid (llCl) "2.5ml Pure water (II20) 11 Next, after washing with pure water, immerse it in an electroless nickel plating solution heated to about 45°0 for about 10 seconds.;1.
The composition of the nickel plating solution is as follows.

塩化ニッケル(NiC’/?2)         4
5g次亜り71’it ナトリウム(NaPI]20−
11.O) −11,9クエン酸ナトリウh (C,H
,(OH) (Co、Na)s −21(20)00g 塩化アンモニウム           50.!i+
純水        11 (P H= 8.5〜90) 同、メッキ液のP l−1は、アンモニア水で制御し、
前記ガラス管(3)の外側表面は、ニッケルがメッキさ
れないようにマスキングテープをはっておる。
Nickel chloride (NiC'/?2) 4
5g hypochlorite 71'it sodium (NaPI) 20-
11. O) -11,9 Sodium citrate h (C,H
, (OH) (Co, Na)s -21(20)00g Ammonium chloride 50. ! i+
Pure water 11 (PH = 8.5 to 90) Similarly, P l-1 of the plating solution was controlled with ammonia water,
Masking tape was applied to the outer surface of the glass tube (3) to prevent nickel from being plated.

マスキングテープをはる時は、メッキ液に、前記第一の
ガラス管(3)を浸漬する前ならいつでも良い。
The masking tape may be applied at any time before the first glass tube (3) is immersed in the plating solution.

以上の工程により、内側表面に二酸化チタンの薄膜が形
成された前記第1のガラス管(3)の二酸化チタン膜上
に膜厚が約10OAのニッケルの薄膜が形成される。次
にマスキングテープをはずし約60℃の湯にて洗浄後乾
燥する。
Through the above steps, a thin nickel film having a thickness of about 10 OA is formed on the titanium dioxide film of the first glass tube (3), which has a thin titanium dioxide film formed on its inner surface. Next, remove the masking tape, wash with hot water at about 60°C, and dry.

次に二酸化チタンとニッケルの薄膜が形成さitた前記
第1のガラス管(3)のニッケル膜上に再び二酸化チタ
ンの薄膜を形成する。形成方法は前述の如くガラス管の
外側をテープでマスキングして、金属アルコキシドを溶
黄とした溶液からディッピングにより塗布膜を形成後、
テープをはずして大気中にて500℃20分の熱処理を
施し、約40OAの二酸化チタンの薄膜を形成する。
Next, a thin film of titanium dioxide is again formed on the nickel film of the first glass tube (3) on which the thin film of titanium dioxide and nickel has been formed. The formation method is as described above, after masking the outside of the glass tube with tape and forming a coating film by dipping from a solution of metal alkoxide in melted yellow.
The tape was removed and a heat treatment was performed at 500° C. for 20 minutes in the atmosphere to form a titanium dioxide thin film of about 40 OA.

以上の方法で形成した空気(真空) 1TiO,1Nt
l’1’i0.lガラス基板の構成の分光透過率(破;
礫)、分光反射率(実線)の測定結果を第7図に示す。
Air (vacuum) formed by the above method 1TiO, 1Nt
l'1'i0. l Spectral transmittance of glass substrate structure (broken;
Fig. 7 shows the measurement results of spectral reflectance (solid line).

また以上の方法によシ選択透過膜(4)が形成された第
1のガラス管(3)を太陽熱コレクターとするには、第
2のガラス管(力と封yFt s真空排気の工程を経、
放物面鏡(2)を設置すれば良い。
In addition, in order to use the first glass tube (3) on which the selectively permeable membrane (4) is formed by the above method as a solar heat collector, the second glass tube (through the process of force and sealing yFts evacuation) is used. ,
All you need to do is install a parabolic mirror (2).

以上は訪螺体薄膜の塗布法としてディッピング法につい
て説明したがスプレー法であってもよい。
Although the dipping method has been described above as the coating method for the thread-viscosity thin film, a spray method may also be used.

ディッピング法ではアセトンでふき取る工程やマスキン
グ等の工程が必要であったが、スプレー法では上記工程
が不要である。
The dipping method requires steps such as wiping with acetone and masking, but the spray method does not require the above steps.

(発明の効果) 本発明によ4Lば下記の効果が得られる。(Effect of the invention) According to the present invention, the following effects can be obtained with 4L.

(11大規模な設備が不要である。(11 Large-scale equipment is not required.

(2)表面積が大きい円筒状基板に低コストで高性能な
選択透礪Vを形成することができる。
(2) A high-performance selectively transparent trench V can be formed at low cost on a cylindrical substrate with a large surface area.

(3)  作業性が良い。(3) Good workability.

(i)  fV2化性界囲気中500°0以上で熱処1
.!Iを施しているため、1誹屯体薄層の耐熱性が良く
、さらに金縞層の付着力も強1八。
(i) Heat treatment 1 at 500°0 or more in fV2-forming ambient air
.. ! Because it is coated with I, the heat resistance of the thin layer is good, and the adhesion of the gold striped layer is also strong.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、それぞれ太陽熱コレクターの見取
り図及び断面図、第3図は太陽光並びにコレクタからの
発熱による放射エネルギー強度スペクトルを示す図、第
4図は本発明による太陽熱コレクターの製造方法の流れ
を説明する図、第5図はディッピング法の概念図、第6
図は二酸化チタン薄膜の膜厚と引上速度の関係を示す図
、第7図は本発明による太陽熱コレクター用選択透過膜
の分光反射率特性及び分光透過率特性図である。 1・・・太陽光      2 ・放物面鏡3 ・ガラ
ス管     4・・選択透過膜5 真空      
 6・選択吸収膜7 ガラス管または金属管 8 熱媒管 (7317)  代理人 弁理士 則 近 憲 佑 (
ほか1名)jllJ  因 液+(f町 第6図 OJ      /U     /j     /θす
匡水度勿πAec
Figures 1 and 2 are a sketch and cross-sectional view of a solar collector, respectively, Figure 3 is a diagram showing the intensity spectrum of radiant energy due to sunlight and heat generated from the collector, and Figure 4 is a method for manufacturing a solar collector according to the present invention. Figure 5 is a conceptual diagram of the dipping method, Figure 6 is a diagram explaining the flow of
The figure shows the relationship between the film thickness and pulling speed of a titanium dioxide thin film, and FIG. 7 shows the spectral reflectance characteristics and spectral transmittance characteristics of the selective transmission film for a solar heat collector according to the present invention. 1... Sunlight 2 - Parabolic mirror 3 - Glass tube 4... Selective transmission membrane 5 Vacuum
6.Selective absorption membrane 7 Glass tube or metal tube 8 Heat medium tube (7317) Agent Patent attorney Norisuke Chika (
and 1 other person) jllJ causal liquid + (f town Figure 6 OJ /U /j /θsu water level πAec

Claims (3)

【特許請求の範囲】[Claims] (1)内部が中空で真空状態であって外部から太陽光が
入射する第1のガラス管と、この第1のガラス管の真空
を介して内側に設けられ表面に選択吸収膜を具備する第
2のガラス管または金属管とを有し、前記第1のガラス
管の管壁忙はこの管壁に接するように被着される第1の
誘電体薄層とこの第1の銹冠体薄層上に形成される金属
層とこの金属層上に被着される第2の誘電体薄層とで構
成される選択透過膜を有する太陽熱コレクターの製造方
法におりて、前記各誘電体薄層は二酸化チタン、五酸化
タンタル、または五酸化ニオブのうらから選ばれた一種
類、ろるいはそれらの混合物の溶液からの塗布法によシ
塗膜した後、酸化性雰囲気中で500 ’O以上の熱処
理を施すことによ多形成され、1]」記金域層はニッケ
ル、コバルト、銀または銅のうちから選ばれた少なくと
も一種を無電解メッキ法により形成されることを特徴と
する太陽熱コレクターの製造方法。
(1) A first glass tube whose interior is hollow and in a vacuum state and into which sunlight enters from the outside, and a second glass tube which is provided inside through the vacuum of this first glass tube and has a selective absorption film on its surface 2 glass tubes or metal tubes, the tube wall of the first glass tube has a first dielectric thin layer deposited in contact with the tube wall, and a first dielectric thin layer coated in contact with the tube wall. A method for manufacturing a solar collector having a selectively permeable film comprising a metal layer formed on the metal layer and a second dielectric thin layer deposited on the metal layer, wherein each of the dielectric thin layers is one type selected from titanium dioxide, tantalum pentoxide, or niobium pentoxide, or a coating method from a solution of a mixture thereof, and then the coating is applied in an oxidizing atmosphere at a temperature of 500'O or more. 1] The metal recording area layer is formed by electroless plating of at least one selected from nickel, cobalt, silver, or copper. manufacturing method.
(2)  前記各誘電体層の厚さはそれぞれ300A〜
600Aの範囲内にあシ、前記金属層の厚さは100X
〜20OA程度であることを特徴とする特許請求の範囲
第1項記載の太陽熱コレクターの製造方法。
(2) The thickness of each dielectric layer is 300A~
600A, the thickness of the metal layer is 100X
2. The method of manufacturing a solar collector according to claim 1, wherein the solar collector has a current of about 20 OA.
(3)  前記溶液からの塗布法がディピング法である
ことを特徴とする特許請求の範囲第1項記載のyた 太陽壜1コレクターの製造方法。
(3) The method for manufacturing a solar bottle 1 collector according to claim 1, wherein the coating method from the solution is a dipping method.
JP57167700A 1982-09-28 1982-09-28 Manufacture of solar heat collector Pending JPS5960151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57167700A JPS5960151A (en) 1982-09-28 1982-09-28 Manufacture of solar heat collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57167700A JPS5960151A (en) 1982-09-28 1982-09-28 Manufacture of solar heat collector

Publications (1)

Publication Number Publication Date
JPS5960151A true JPS5960151A (en) 1984-04-06

Family

ID=15854593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57167700A Pending JPS5960151A (en) 1982-09-28 1982-09-28 Manufacture of solar heat collector

Country Status (1)

Country Link
JP (1) JPS5960151A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623586U (en) * 1992-08-07 1994-03-29 ライト企画株式会社 Slingshot chair structure
KR20010106062A (en) * 2000-06-22 2001-11-29 장종윤 Vacuum Condensing Solar Boiler

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454346A (en) * 1977-10-11 1979-04-28 Teijin Ltd Window for use in solar heat calorifier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454346A (en) * 1977-10-11 1979-04-28 Teijin Ltd Window for use in solar heat calorifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623586U (en) * 1992-08-07 1994-03-29 ライト企画株式会社 Slingshot chair structure
KR20010106062A (en) * 2000-06-22 2001-11-29 장종윤 Vacuum Condensing Solar Boiler

Similar Documents

Publication Publication Date Title
US4579107A (en) Solar energy collector and method of making same
Nair et al. Chemically deposited SnS-CuxS thin films with high solar absorptance: new approach to all-glass tubular solar collectors
US3957029A (en) Greenhouse window for solar heat absorbing systems derived from Cd2 SnO4
US4233957A (en) Solar energy collector
EP1920199B1 (en) Method for producing nickel-alumina coated solar absorbers
JPS6014983B2 (en) Selective solar absorption coating on aluminum
US4074706A (en) Solar collector having selective film of improved stability to liquid water condensate
US4180056A (en) Laminar solar energy collecting unit having absorber plates consisting of hollow fibers
US3987780A (en) Greenhouse window for solar heat absorbing systems derived from Cd2 SnO4
JPS5960151A (en) Manufacture of solar heat collector
IL47167A (en) Vacuum solar collectors
JPS6347985B2 (en)
JPS5956664A (en) Solar heat collector and manufacture thereof
US4082907A (en) Thin molybdenum coatings on aluminum for solar energy absorption
JPS6367115B2 (en)
WO2012097942A2 (en) Heat receiver tube, method for manufacturing the heat receiver tube, parabolic trough collector with the receiver tube and use of the parabolic trough collector
CN107709893A (en) Solar energy heat collection pipe and device of solar generating
CN208431964U (en) A kind of groove type solar thermal-collecting tube for high temperature
JPS5845135A (en) Manufacture of reflection preventive glass
US4104136A (en) Process for applying thin molybdenum containing coatings on aluminum for solar energy absorption
CN111397231A (en) Graphene-based selective absorption film system and preparation method of absorption layer thereof
JP2015227767A (en) Solar heat collection device and manufacturing method therefor
JPS6081049A (en) Manufacture of heat-ray reflecting film
JPS5855647A (en) Manufacture of solar heat collecting body
CN217606838U (en) High AR membrane photovoltaic glass that passes through of no trompil