JPS5959410A - Spheroidizing device of thermoplastic grain - Google Patents

Spheroidizing device of thermoplastic grain

Info

Publication number
JPS5959410A
JPS5959410A JP57171840A JP17184082A JPS5959410A JP S5959410 A JPS5959410 A JP S5959410A JP 57171840 A JP57171840 A JP 57171840A JP 17184082 A JP17184082 A JP 17184082A JP S5959410 A JPS5959410 A JP S5959410A
Authority
JP
Japan
Prior art keywords
thermoplastic
air flow
granulation tower
particles
thermoplastic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57171840A
Other languages
Japanese (ja)
Other versions
JPH0440169B2 (en
Inventor
Tsutomu Kubo
勉 久保
Masahiro Hosoya
雅弘 細矢
Tsutomu Uehara
上原 勤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57171840A priority Critical patent/JPS5959410A/en
Publication of JPS5959410A publication Critical patent/JPS5959410A/en
Publication of JPH0440169B2 publication Critical patent/JPH0440169B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/02Conditioning or physical treatment of the material to be shaped by heating
    • B29B13/021Heat treatment of powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • B01J2/04Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a gaseous medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/10Making granules by moulding the material, i.e. treating it in the molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B2009/125Micropellets, microgranules, microparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • B29B2009/166Deforming granules to give a special form, e.g. spheroidizing, rounding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Glanulating (AREA)

Abstract

PURPOSE:To form spheroidized thermoplastic resin simply and quickly by a method wherein thermoplastic grain dispersing air flow is blown from the upper wall part of a granulating tower into compressed hot air flow and cold air is supplied into the granulating tower. CONSTITUTION:When heated air 33 is ejected from a supply pipe 14 and thermoplastic grain dispersing air flow 34 is blown from a thermoplastic grain supply device into compressed hot air flow 33 through an introduction pipe 20, a distribution pipe 21, the thermoplastic grain dispersing air flow is heated in collision with the hot zone of the compressed hot air flow 33 near the inlet 25 of the granulating tower 13 shielded from the open air. Accordingly, the thermoplastic grains are softened, fused quickly and uniformly, the softened layer of the grain surfaces receives surface tension and is sent to the exhaust port 26 of the granulating tower 13 formed into uniformly globose grains. Since the side wall 28 of the granulating tower 13 is cooled partially, the grains are not fused or massed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は樹脂粒子、着色樹脂粒子等の熱可塑性粒子を球
型化すゐ装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improvement in an apparatus for spheroidizing thermoplastic particles such as resin particles and colored resin particles.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、この種の球型化方法としては、熱可塑性粒子を熱
雰囲気の流動層に一定時間@燭浮遊ぜしめたシ、熱筒内
に前記粒子を落下させたりする乾式法、或いは水乃至有
機溶媒に分散または溶解させた溶質を熱雰囲気中に霧化
し、溶媒を蒸発せしめた後球型の溶質粒子を得る湿式法
、などが採用されている。
Conventionally, this type of spheroidization method has been carried out by floating thermoplastic particles in a fluidized bed in a hot atmosphere for a certain period of time, by dropping the particles into a heated cylinder, or by using water or organic particles. A wet method is used in which a solute dispersed or dissolved in a solvent is atomized in a hot atmosphere, and after the solvent is evaporated, spherical solute particles are obtained.

しかしながら、上記前者の乾式法にあっては粒子を個々
に分離させた状態で一定時間、定められた空間に保持す
ることが難しく、とシわけ粒子径が100μm以下のも
のを得る場合には、球型化操作中粒子同志の融着による
団塊化や容器壁への付着などを起こすため、球型化度の
不均一化、収率の著しい低下を招く欠点がある。
However, in the former dry method mentioned above, it is difficult to keep the particles individually separated in a predetermined space for a certain period of time, and when obtaining particles with a particle size of 100 μm or less, During the spheroidizing operation, particles may fuse together to form agglomerates and adhere to the container wall, resulting in non-uniformity in the degree of spheroidization and a significant drop in yield.

一方、後者の湿式法、たとえ(・−1:スプt/−ドラ
イヤ法にあっては F、径が戸)tg〜数百μmの広範
囲にわたって均質外球型化オー1゛i子が費らiする利
点を有する。しかしながら、5・′・イ仕し、た粒子を
拙(18するまで、粒子中に含まれる溶〃v、の妬、と
んどを蒸発させ々ければならないことから、広大な乾燥
室が必要であり数1f?、が大型、化すること、蒸発溶
11号が水以外の場合には、溶〃1−2の回収々どのた
めに更に付帯設(iiiiが増加するし、1:かシか、
火災、前件などの危険性を伴なう問題がある。
On the other hand, in the latter wet method, even if the diameter is F in the dryer method (-1:spt/-), homogeneous outer spherical particles are expended over a wide range from tg to several hundred μm. i have the advantage of However, until the treated particles are dried (18), most of the solvate contained in the particles must be evaporated, so a vast drying room is required. If the evaporative melt No. 11 is other than water, the number 1 f?, will increase in size, and if the evaporative melt No. mosquito,
There are issues that involve risks such as fire and antecedents.

このようなことから、第1 tN2+に示ずrjへ司9
′!弓性粒子の球型化装置が開発されている。即ち、第
1図中の1は造粒塔であり、との造粒塔1の上り、(に
は加圧熱気流と熱可塑i4:、邪i子分散気流がbll
For this reason, it is not shown in the first tN2+ that the terminal 9
′! A device for spheroidizing arcuate particles has been developed. That is, 1 in Fig. 1 is a granulation tower, and the upstream of the granulation tower 1, (is a pressurized hot air stream and a thermoplastic i4:, an evil particle dispersion air stream is bll).
.

入される流入口2が開口されていると共に’T’ ?!
liには球!(11化されだ熱可塑+A′、粒子が排出
さ11.る4・f1出口3が形成されている。前り造か
゛7塔1の流入口2の直上には加圧熱気流を該涼、入口
2に向って噴出させる供給管4が配設さilている。神
フ一、前記流入口2周辺の造粒塔1上壁には塾T’iJ
剪1 f1粒子分散気流を前記加圧熱気流に吹き込む分
配??5が設置されており、かつ該分配管5は前記供給
管4との間に断熱のだめの冷却空気を流入する隙間6が
形成されるように該供給g4に対して同心円状に配置さ
れている。また、前記分配管5の内筒下部には熱可塑性
粒子分散気流を加圧熱気流中に吹込むための溝7が切ら
れている。更に前記分配管5には熱可塑性粒子分散気流
を導入するための導入管8が連結されている。
Is the inlet 2 opened and 'T'? !
Ball for li! A 4.f1 outlet 3 is formed from which the particles are discharged. Immediately above the inlet 2 of the prefabricated column 1, a pressurized hot air stream is introduced into the , a supply pipe 4 is installed to eject water toward the inlet 2.In addition, on the upper wall of the granulation tower 1 around the inlet 2, there is a
Shearing 1 Distribution in which f1 particle dispersion airflow is blown into the pressurized hot airflow? ? 5 is installed, and the distribution pipe 5 is arranged concentrically with respect to the supply pipe g4 so that a gap 6 is formed between it and the supply pipe 4 through which the cooling air of the adiabatic reservoir flows. . Furthermore, a groove 7 is cut in the lower part of the inner cylinder of the distribution pipe 5 for blowing the thermoplastic particle dispersion air stream into the pressurized hot air stream. Further, an introduction pipe 8 for introducing a thermoplastic particle dispersion airflow is connected to the distribution pipe 5.

上、述した第1図図示の球型化装置によれば、供給管4
から加圧熱気流9を噴出すると共に導入管8から分配管
5を介して熱可塑性粒子分散気流10を前記加圧熱気流
9に吹き込むと、外気と遮断した造粒塔1の流入口2伺
近で前記加圧熱気流9の高温領域に分散気流1θが衝撃
して混合される。その結果、熱可塑性粒子は迅速かつ均
一に軟化、溶融されてその粒子表面の軟化層が表面張力
作用を受け、均一に球型化された粒子を得ることができ
る。
According to the spheroidizing device shown in FIG. 1 described above, the supply pipe 4
When the pressurized hot air stream 9 is ejected from the inlet pipe 8 and the thermoplastic particle dispersion air stream 10 is blown into the pressurized hot air stream 9 through the distribution pipe 5 from the inlet pipe 8, the inlet 2 of the granulation tower 1 isolated from outside air is blown. Nearby, the dispersed airflow 1θ is impacted and mixed into the high temperature region of the pressurized hot airflow 9. As a result, the thermoplastic particles are quickly and uniformly softened and melted, and the softened layer on the surface of the particles is subjected to the action of surface tension, making it possible to obtain uniformly spherical particles.

しかしながら、第1図図示の球型化装置にあっては、熱
可塑性粒子の球型化過程において造粒塔1内の温度が高
くなるため、球型化された熱可塑性粒子が造粒塔1内壁
面に付着、堆f)gし、熱可塑性粒子の生産収率の1氏
下を招くという欠点力あった。このようなことから、造
粒塔の直径を大きくして球型化され/こ熱可塑性粒子の
造粒塔の側壁内面への伺着、堆積を抑制することが考え
られる。しかしながら、造粒塔の直径を大きくすると、
装置自体が大型化するという新たな欠点を生じる。
However, in the spheroidizing apparatus shown in FIG. This has the disadvantage that it adheres to the inner wall surface and deposits, resulting in a decrease in the production yield of thermoplastic particles by 1 degree. For this reason, it is conceivable to increase the diameter of the granulation tower to suppress the adhesion and accumulation of spherical thermoplastic particles to the inner surface of the side wall of the granulation tower. However, when increasing the diameter of the granulation tower,
A new drawback arises in that the device itself becomes larger.

〔発明の目的〕[Purpose of the invention]

本発明は熱可塑性粒子を極めて111“5便かつ迅)5
11に球型化できると共に、球型化された熱可塑性粒子
を収率よく得ることが可能な小型で簡素化された球型化
装置を提供しようとするものである。
The present invention makes thermoplastic particles extremely
The object of the present invention is to provide a compact and simplified spheronization device that can spheroidize particles into particles with a high yield.

〔発明の概要〕[Summary of the invention]

本発明は造粒塔と、この造粒塔の土壁刊近に。 The present invention relates to a granulation tower and the construction of the earthen walls of this granulation tower.

配設された加圧熱気流供給部Iと、前記造オ・′・」ハ
の土壁付近に配設され、前記供給部+A≠・らのフ11
1圧熱気流に熱可塑性粒子分散気流を吹き込む分散気流
供給部材とを具備し、前記造粒塔に冷却用外気導入口を
設けることによって前記造粒塔の壁面を該導入口からの
空気によシ冷却して、造粒塔の径を大きくせずに球型化
された熱可塑性粒子の該造粒塔側壁内面への付着、堆積
を抑制し、球型化されだ熱可塑性粒子の収率向上、小型
化を図ったものである。
The pressurized hot air flow supply section I is arranged near the earthen wall of the above-mentioned construction O.
and a dispersion air flow supplying member that blows a thermoplastic particle dispersion air flow into the 1-pressure hot air flow, and by providing a cooling outside air inlet in the granulation tower, the wall surface of the granulation tower is covered by the air from the inlet. By cooling, the adhesion and accumulation of spherical thermoplastic particles to the inner surface of the side wall of the granulation tower can be suppressed without increasing the diameter of the granulation tower, and the yield of spherical thermoplastic particles can be increased. The aim is to improve the size and make it more compact.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第2図〜第4図を参照して説明
する。
Embodiments of the present invention will be described below with reference to FIGS. 2 to 4.

第2図は球型化システムを示す概略図であり、図中の1
1は送風ファンであυ、この送風ファン11は風量が0
.1〜5 m3/min 、風圧が100〜2000 
mmp、gの範囲のものであればよい。この送風ファン
11は熱交換器12に連結されている。との熱交換器1
2は直火式加熱型や間接式加熱型いずれでもよいが、温
度コントロールの簡単な電気ヒータが望ましい。−例と
して約600℃の高温を発生する三相、200■、4k
Wの電気ヒータを組込んだ熱交換器12を用いた。この
熱交換器12は造粒塔13の直上に延設された供給管1
4に連結されている。こうした送風ファン11.熱交換
器12及び供給管14により加圧熱気流供給部月が構成
されている。なお、加圧熱気流の温度調節は前記熱交換
器12の出口に熱電対等の温度センサを設け、該センサ
からの温度検知信号に基づいて届、気ヒータの′東方や
前記ファン11の送風量を割引+することにより行なわ
れる。
Figure 2 is a schematic diagram showing the spheroidization system, and 1 in the figure
1 is a blower fan υ, and this blower fan 11 has an air volume of 0.
.. 1-5 m3/min, wind pressure 100-2000
It may be within the range of mmp and g. This blower fan 11 is connected to a heat exchanger 12. Heat exchanger 1 with
2 may be either a direct heating type or an indirect heating type, but an electric heater with easy temperature control is preferable. -For example, three-phase, 200■, 4K that generates high temperature of about 600℃
A heat exchanger 12 incorporating a W electric heater was used. This heat exchanger 12 has a supply pipe 1 extending directly above the granulation tower 13.
It is connected to 4. Such a blower fan 11. The heat exchanger 12 and the supply pipe 14 constitute a pressurized hot air supply section. Note that the temperature of the pressurized hot air stream is adjusted by installing a temperature sensor such as a thermocouple at the outlet of the heat exchanger 12, and adjusting the air flow to the east of the air heater or the fan 11 based on the temperature detection signal from the sensor. This is done by discounting +.

まだ、図中15はコンプレッサであシ、このコンプレッ
サ15は送風量が0.1〜2 m3/ min圧力が0
.05〜5 Kf/au 2の範囲のものであれはよい
。前記コンプレッサ15は熱可塑性粒子供給機構16に
連結されている。この供給4’l:M朴′)16は本体
17と、この本体17に挿置され前6己コングレツザか
らの圧縮空気が導入されるエゼクタ18と、前記本体に
取付けられ、下3;1^開口141(が前記エゼクタ1
8の噴出部伺近に位W1.するホッノぐ19とから構成
されている。前記;]: ]ツ/−?1!J内には熱可
塑性粒子が収納され、コンプレッサ15からの圧縮空気
をエゼクタ18に供給するととによシ前記本体17内で
熱可塑性粒子が懸濁状態となシ、熱可塑性粒子分散気流
が生成される。こうした分散気流中の濃度は粒径100
μm以下の熱可塑性粒子を用いた場合、2 KIIic
nr’以下、好ましくは50〜500y−/Cn13の
範囲がよい。この理由は分散濃度が2 KQ/ n+3
を越えると、加圧熱気流中で球型化せしめる際に、軟化
粒子同志が融着して団塊化し易くなるからであるO また、前記供給機構16は第3図及び第4図に示す如く
導入管20を介して中空環状の分配管21に連結されて
いる。この分配管21は前記供給管14との間に断熱の
だめの冷却空気を流入する隙間22が形成されるように
該供給管14に対して同心円状に配置されている。前記
隙間22は広いことが望ましいかあ1シ広過ぎると、冷
却空気を導入し過ぎて球型化時の温度が下がシ、球型化
の効率が悪くなる。逆に隙間22が狭いと、冷却空気の
導入が不充分となシ、分配管21を加熱してしまい、分
配管2ノ内壁に熱可塑性粒子が融着したり、後記する溝
を寒いでしまう。従って、前記隙間22は前記供給管1
4の外径に対し173〜115程度にす6ることか望ま
しい。
In the figure, 15 is a compressor, and this compressor 15 has an air flow rate of 0.1 to 2 m3/min and a pressure of 0.
.. Anything in the range of 0.05 to 5 Kf/au 2 is fine. The compressor 15 is connected to a thermoplastic particle supply mechanism 16. This supply 4'l: Mpak') 16 is provided with a main body 17, an ejector 18 inserted into this main body 17 and into which compressed air from the front congressor is introduced, and a lower 3;1^ attached to the main body. The opening 141 (is the ejector 1
W1 near the spout of 8. It consists of 19 words. Said;]: ]tsu/-? 1! Thermoplastic particles are stored in the main body 17, and when compressed air from the compressor 15 is supplied to the ejector 18, the thermoplastic particles are suspended in the main body 17, and a thermoplastic particle dispersion airflow is generated. be done. The concentration in such a dispersed air stream is
When using thermoplastic particles of μm or less, 2 KIIic
nr' or less, preferably in the range of 50 to 500y-/Cn13. The reason for this is that the dispersion concentration is 2 KQ/n+3
If the temperature exceeds 0, the softened particles tend to fuse together and form agglomerates when formed into spheres in a pressurized hot air flow. It is connected to a hollow annular distribution pipe 21 via an introduction pipe 20. The distribution pipe 21 is arranged concentrically with respect to the supply pipe 14 so that a gap 22 is formed between the distribution pipe 21 and the supply pipe 14 through which the cooling air from the adiabatic reservoir flows. It is desirable that the gap 22 be wide. If it is too wide, too much cooling air will be introduced and the temperature at the time of spheroidization will drop, resulting in poor spheroidization efficiency. On the other hand, if the gap 22 is narrow, the introduction of cooling air will not be sufficient and the distribution pipe 21 will be heated, causing thermoplastic particles to fuse to the inner wall of the distribution pipe 2 and causing the grooves described later to become cold. . Therefore, the gap 22 is the supply pipe 1
It is preferable that the outer diameter is about 173 to 115 compared to the outer diameter of 4.

また、前記分配管21の内筒下部には熱可塑性粒子分散
気流を前記供給管14からの加圧熱気流に吹き込むため
の溝23・・・が切られている。
Furthermore, grooves 23 are cut in the lower part of the inner cylinder of the distribution pipe 21 for blowing the thermoplastic particle dispersion airflow into the pressurized hot airflow from the supply pipe 14.

これら溝23・・・は熱可塑性粒子分散気流を前記加圧
熱気流に対して15°〜90°の角度、好ましくは30
°〜60°の角度で吹き込むように設計することが望ま
しい。この理由はその吹き込み角度が15°未満になる
と、加圧熱気流中への熱可塑性粒子分散気流の混合比率
が悪くなり、球型化の効率を低下させる。特に1その角
度の下限を30°とすれば加圧熱気流を高温度に設定し
なくとも熱可塑性粒子の球型化が可能となる。一方、そ
の吹き込み角度が90°を越えると、供給管14と分配
管21の溝23・・・との距離が近くした場合、該供給
管14の開口部が熱可塑性粒子の融着により閉塞される
恐れがある。特に、その角度の上限を60°とすれば、
供給管14と分配管21の溝23・・・とが近接しても
該供給、管14の閉塞を防止できる。
These grooves 23... direct the thermoplastic particle dispersion airflow at an angle of 15° to 90°, preferably 30° to the pressurized hot airflow.
It is desirable to design the blowing at an angle of 60° to 60°. The reason for this is that when the blowing angle is less than 15°, the mixing ratio of the thermoplastic particle dispersion air stream into the pressurized hot air stream becomes poor, which reduces the efficiency of spheroidization. In particular, if the lower limit of the angle is set to 30°, it becomes possible to make the thermoplastic particles spherical without setting the pressurized hot air flow to a high temperature. On the other hand, if the blowing angle exceeds 90° and the distance between the supply pipe 14 and the groove 23 of the distribution pipe 21 becomes close, the opening of the supply pipe 14 will be blocked by the fusion of thermoplastic particles. There is a risk of In particular, if the upper limit of the angle is 60°,
Even if the supply pipe 14 and the grooves 23 of the distribution pipe 21 come close to each other, the supply pipe 14 can be prevented from being blocked.

また、前記供給管14と分配管21の溝23・・・との
位置は加圧熱気流及び熱可塑性粒子分散気流の流量によ
って異なるが、供給管14の先端は分配管21の溝23
・・・の位置よシも1〜20mm上方に設定することが
望ましい。この理由は1調未満にすると、供給管14の
開口部に熱可塑性粒子が融着し、閉塞現象を起こし0、
かといって20關を越えると供給管14外側面に熱可塑
性粒子が融着し易くなシ隙間22を閉塞して冷却空気の
流れを阻止され、ひいては分配管21の加熱や溝23・
・・の閉塞等を招くからである。
Further, the positions of the supply pipe 14 and the grooves 23 of the distribution pipe 21 differ depending on the flow rates of the pressurized hot air flow and the thermoplastic particle dispersion air flow, but the tip of the supply pipe 14 is connected to the groove 23 of the distribution pipe 21.
It is desirable to set the position of . . . 1 to 20 mm above. The reason for this is that if the temperature is less than 1, thermoplastic particles will fuse to the opening of the supply pipe 14, causing a blockage phenomenon.
On the other hand, if the temperature exceeds 20 degrees, thermoplastic particles tend to fuse to the outer surface of the supply pipe 14 and close the gap 22, blocking the flow of cooling air.
This is because it may lead to blockage, etc.

なお、上述したコンプレッサ15、熱可塑性粒子供給機
’+416 、導入管20及び分配管2ノによシ熱可塑
性粒子分散供給部材が構成されている。
Note that the above-mentioned compressor 15, thermoplastic particle feeder 416, introduction pipe 20, and distribution pipe 2 constitute a thermoplastic particle dispersion and supply member.

更に、前記造粒塔13は第3図及び第4図に示す如く前
記各供給部材の供給管14及び分配管21が配置される
上壁24に加圧熱気1’T、と熱可塑性粒子分散気流が
流入されるlAi:入口25を有し、かつ下部側がテー
パ状をなすと共に下端に球型化された熱可塑性粒子が排
出される排出口26を有する。前記造粒塔13の土壁2
4周縁には複数、例えば16個の外気を4人するだめの
上部導入口27・・・が穿設されており、かつ同造粒塔
13の側壁28上部には複数、例えば6個の側部導入口
29・・・が穿設されている。前記上部導入口27・・
・の位置は側壁28近傍の上動724部分が最も有効で
あシ、前記分配管21に近い場合には球型化の効率を下
げろため好捷しくない。このため、上部導入口27・・
・の位1ト1′は前記fil壁28内面よシ0〜10m
m程鹿の土壁24部分にすることが望ましい。こうしブ
こ上+”+l;導入口27・・・の大きさは大きい程冷
却効果の点では好ましいが、あまり大きくし過ぎると球
型化の効率を下げるため好ましくない。とのため、造粒
塔13の直径の115〜1/20の大きさにすることが
適当である。また、前記側部導入口29・・・は造粒塔
13全体の温度を下げる目的を有することから、球型化
の効率を悪化させないようにその穿設位置、大きさを選
定することが望ましい。
Furthermore, as shown in FIGS. 3 and 4, the granulation tower 13 is provided with pressurized hot air 1'T and thermoplastic particle dispersion on the upper wall 24 where the supply pipes 14 and distribution pipes 21 of the respective supply members are disposed. It has an inlet 25 through which air flows in, and has a tapered lower side and an outlet 26 at the lower end through which spherical thermoplastic particles are discharged. Earthen wall 2 of the granulation tower 13
A plurality of, for example, 16, upper inlet ports 27 are bored in the periphery of the granulation tower 13, and a plurality of, for example, six upper inlet ports 27 are bored in the upper part of the side wall 28 of the granulation tower 13. A section introduction port 29... is provided. The upper inlet port 27...
The position of . is most effective at the upward movement 724 near the side wall 28, and is not preferred if it is close to the distribution pipe 21 because it lowers the efficiency of spherical formation. For this reason, the upper inlet port 27...
・The digit 1' is 0 to 10 m from the inner surface of the fil wall 28.
It is desirable to have 24 parts of the earthen wall about m in length. The larger the size of the inlet 27, the better the cooling effect, but making it too large is not preferable because it reduces the efficiency of spherical formation. It is appropriate that the size is 115 to 1/20 of the diameter of the granulation tower 13. Also, since the side inlet 29 has the purpose of lowering the temperature of the entire granulation tower 13, It is desirable to select the location and size of the hole so as not to deteriorate the efficiency of molding.

更に1前記造粒塔13の排出口26はリークバルブ30
を介して分離回収部材31に連結され、かつ該分離回収
部材31への送気はブロア32によシ行なわれている。
Furthermore, the discharge port 26 of the granulation tower 13 is connected to a leak valve 30.
The separation and recovery member 31 is connected to the separation and recovery member 31 via a blower 32, and air is supplied to the separation and recovery member 31 by a blower 32.

なお、前記リークパルプ3Qは前記分離回収部材31の
温度を外気温度近くまで下げる働きを有し、これにより
該回収部材31内での熱可塑性粒子の団塊化を防止でき
る。
The leak pulp 3Q has the function of lowering the temperature of the separation and recovery member 31 to near the outside temperature, thereby preventing thermoplastic particles from forming agglomerates within the recovery member 31.

次に、上述した第2図〜第4図図示の球型化装置の作用
を説明する。
Next, the operation of the spheroidizing device shown in FIGS. 2 to 4 will be explained.

まず、ブP’)11を作動して圧縮空気を熱交換器12
を通して加熱し、供給管14から所定圧力、温度の加圧
熱気流33を噴出させる共に、コンプレッサ15を作動
し、熱可塑性粒子供給機構16よシ導入管20.分配管
21を介して熱可塑性粒子分散気流34を前記加圧熱気
流33に吹き込むと、外気を遮断した造粒塔13の流入
口25付近で前記加圧熱気流33の高温領域に熱司り1
9性粒子分散気流が両突して混合される。その結果、熱
可塑性粒子は遅遅かつ均一に軟化、溶融させてその粒子
表面の軟化層が表面張力を受け、均一に球型化された粒
子となって造粒塔13の排出口26側に送られる。こう
した球型化淑程において、造粒塔13の土壁24周縁に
は上部導入口27・・・が設けられているため、前記加
圧熱気流33の造粒塔13への噴出によシ前記上部漣入
口27・・・から外気がt11]壁28内面に沿って導
入される。その結果、ji粒塔13側壁28が局部的に
冷却されるため、球型化された熱可塑性粒子が該側壁2
8にf6・11着、団塊化するのを抑制して熱可塑性粒
子の収率が著しく向上される。しかも、前記球型化過石
!において、造粒塔13の側板28上部にも□+u’l
 +’tl!・ご人口29・・・が設けられているため
、加圧熱気流33によって上昇しだ造粒塔13内全体の
温度を下げ、球型化されゾこ熱可塑性粒子同志の融着を
抑制すると共に、排出口26から熱可塑性粒子が送られ
る分子、5;+:回収部月31内の温度を低減できる。
First, operate the valve P') 11 to transfer compressed air to the heat exchanger 12.
At the same time, the compressor 15 is operated, and the thermoplastic particle supply mechanism 16 is heated through the introduction pipe 20. When a thermoplastic particle dispersion airflow 34 is blown into the pressurized hot airflow 33 through the distribution pipe 21, heat 1 is distributed to the high temperature region of the pressurized hot airflow 33 near the inlet 25 of the granulation tower 13, which is blocked from outside air.
Both of the particle-dispersed air currents collide and mix. As a result, the thermoplastic particles are slowly and uniformly softened and melted, and the softened layer on the particle surface receives surface tension, becoming uniformly spherical particles and being sent to the outlet 26 side of the granulation tower 13. It will be done. In this spheroidization process, the upper inlet 27 is provided at the periphery of the earthen wall 24 of the granulation tower 13, so that the pressurized hot air flow 33 is ejected into the granulation tower 13. Outside air is introduced from the upper air inlet 27 along the inner surface of the wall 28. As a result, the side wall 28 of the JI particle tower 13 is locally cooled, so that the spherical thermoplastic particles
The yield of thermoplastic particles is significantly improved by suppressing agglomeration by f6/11 arrival at F8. Moreover, the spherical overstone! , □+u'l is also applied to the upper part of the side plate 28 of the granulation tower 13.
+'tl!・Since the temperature 29... is provided, the temperature rises due to the pressurized hot air flow 33 and lowers the entire temperature inside the granulation tower 13, suppressing the fusion of the spherical thermoplastic particles with each other. At the same time, the temperature inside the collection unit 31 to which the thermoplastic particles are sent from the discharge port 26 can be reduced.

その結果、側部導入口29・・・を設けることによって
も、球型化された熱可塑t′j:粒イの生成収率が向上
される。
As a result, the production yield of spherical thermoplastic particles t'j is improved also by providing the side introduction ports 29.

しかして、本発明によれば次に列番するような種々な効
果を有する。
Therefore, the present invention has various effects as listed below.

(1)球型化度が著しく高い、J″−J質な熱可塑性粒
子を大量かつ短F1を間に得るととができる。
(1) It is possible to obtain a large amount of J''-J quality thermoplastic particles with a significantly high degree of sphericity and a short F1 between them.

(2)球型化操作時において、粒子同志の融着による団
塊化、造粒塔の側壁内面への付着を抑制できるため、収
率の向上と操県の簡便化を図ることができる。
(2) During the spheroidization operation, it is possible to suppress agglomeration due to fusion of particles and adhesion to the inner surface of the side wall of the granulation tower, so it is possible to improve the yield and simplify the processing.

(3)  ′li1粒塔の側壁内面への熱可塑性粒子の
刺着、団塊化を抑制できるため、第1図図示の球型化装
置に比べて造粒塔を小さくでき、ひいては装置σ自体を
小部化できる。
(3) Since it is possible to suppress the sticking of thermoplastic particles to the inner surface of the side wall of the ``li1 granulation column and agglomeration, the granulation column can be made smaller compared to the spheroidization apparatus shown in Figure 1, and the apparatus σ itself can be made smaller. Can be made into smaller parts.

なお、上記実施例では造粒塔の土壁と側壁の両方に導入
口を設けたが、いずれか一方のみに導入口を設けてもよ
い。但し、造粒塔の側壁内面への熱可塑性粒子の刺着、
団塊化を効果的に抑制する観点から、一方のみに導入口
を設ける場合は造粒塔の土壁に設けることが望ましい。
In the above embodiment, the inlet was provided in both the soil wall and the side wall of the granulation tower, but the inlet may be provided in only one of them. However, sticking of thermoplastic particles to the inner surface of the side wall of the granulation tower,
From the viewpoint of effectively suppressing agglomeration, if an inlet is provided only on one side, it is desirable to provide it on the earthen wall of the granulation tower.

また、上記実施例では造粒塔を単一容器により構成した
が、第5図に示す如く二重栴造にしてもよい。即ち、第
5図中の13′は造粒塔であシ、との造粒塔13′は上
面が開口され下部に球型化されだ熱可塑性粒子の排出口
26′を有する外側容器35を備えている。この外側容
器35の側壁上部には側部導入口29′・・・が穿設さ
れている。また、前記外側容器35の上端には段差を有
する7ランノ部36が設けられてお沙、かつ該外側容器
35内には前記7ラング部36の段差によシ係止される
筒状の内側容器37が着脱自在に収納されている。更に
前記外側容器35の上端には周縁部に上部導入口27′
・・・が開口された蓋体38が冠着されている。このよ
うな嬉5図図示の構成によれば、球型化過程において内
側容器37の内面は蓋体38の上部導入口27′・・・
から導入された外気により冷却されると共に同容器37
の外面は外側容器35の側部導入口29′・・・によシ
導入された外気によシ冷却される。つtb両方から冷却
されるため、球型化された熱可塑性粒子の造粒塔13′
の側壁への刺着をよシ抑制でき、ひいては熱可塑性粒子
の収率を更に向上できる。また、内側容器37は外側容
器35に対して着脱自在に収納されているため、仮に内
側容器37に熱可塑性粒子が付着しても、造粒塔13′
の清掃を第3図及び第4図図示の造粒塔13に比べて簡
単に行なうことができ、操作性を著しく向上できる。
Further, in the above embodiment, the granulation tower was constructed of a single container, but it may be constructed of a double container as shown in FIG. That is, 13' in FIG. 5 is a granulation tower, and the granulation tower 13' has an outer container 35 whose upper surface is open and which has an outlet 26' for spherical thermoplastic particles at its lower part. We are prepared. A side introduction port 29' is formed in the upper part of the side wall of the outer container 35. Further, a seven-rung section 36 having a step is provided at the upper end of the outer container 35, and a cylindrical inner portion is provided inside the outer container 35, which is locked by the step of the seven-rung section 36. A container 37 is removably housed. Further, at the upper end of the outer container 35, an upper inlet 27' is provided at the periphery.
A lid body 38 with openings is attached to the lid body 38. According to the configuration shown in FIG. 5, the inner surface of the inner container 37 is connected to the upper inlet 27' of the lid body 38 during the spheroidizing process.
The container 37 is cooled by outside air introduced from the container 37.
The outer surface of the outer container 35 is cooled by outside air introduced through the side inlet 29' of the outer container 35. The granulation tower 13' for spherical thermoplastic particles is cooled from both the
The sticking to the side wall of the thermoplastic particles can be suppressed, and the yield of thermoplastic particles can be further improved. Moreover, since the inner container 37 is detachably housed in the outer container 35, even if thermoplastic particles adhere to the inner container 37, the granulation tower 13'
The granulation tower 13 can be cleaned more easily than the granulation tower 13 shown in FIGS. 3 and 4, and the operability can be significantly improved.

次に、上記第2図〜第4図図示、及び第5図図示の球型
化装置による熱可塑性粒子の球型化操作を実験例として
具体的に説明する。
Next, the operation of spheroidizing thermoplastic particles using the spheroidizing apparatus shown in FIGS. 2 to 4 and FIG. 5 will be specifically explained as an experimental example.

実施例 まず、第2図〜第4図に示す如く送風ファン1ノで空気
を電気ヒータ式の熱交換器12に送シ、加熱して約50
0℃t 500 mmAy t 1m’Ainめ加圧熱
気流32を供給管(口径23闘φ)14に送如、該供給
管14よυ直径3oornrnφ、長さ5叫の造粒塔1
3に向けて噴出させた。なお、造粒塔13の上壁24に
は5咽φの大きさの上部導入口27・・・が16個、側
壁28には2゜朋φの大きさの側部導入口29・・・が
4個、夫々等間隙で設けられている。
Example First, as shown in FIGS. 2 to 4, air is sent to an electric heater type heat exchanger 12 using a blower fan 1 and heated for approximately 50 minutes.
0℃t 500 mmAy t 1 m'Ain A pressurized hot air stream 32 is sent to the supply pipe (diameter 23mm) 14, and the supply pipe 14 is granulated with a diameter of 3mm and a length of 5mm.
It erupted towards 3. The upper wall 24 of the granulation tower 13 has 16 upper inlets 27 with a size of 5 mm φ, and the side wall 28 has 16 side inlets 29 with a size of 2 mm φ. 4 are provided at equal intervals.

一方、コンプレッサ15を作動し、0.5 Kg/ly
n”の圧縮空気を熱可塑性粒子供給機構16及び導入管
20を通して外径4 Q mm 、内径30關の分配管
21に送シ、該分配管21の溝(間隙2mm)23・・
・よp 0.2 m3/minの流量で圧縮空気を噴出
させた。同時にブロア32を作動させ3 B31’ni
nの流量で送気し、ソー2パルプ3oを調整することに
よシ分離回収部材3ノ内の温度を60℃以下とした。
On the other hand, the compressor 15 is operated to produce 0.5 Kg/ly
n'' of compressed air is sent through the thermoplastic particle supply mechanism 16 and the introduction pipe 20 to a distribution pipe 21 with an outer diameter of 4 Q mm and an inner diameter of 30 mm, and a groove (gap of 2 mm) 23 in the distribution pipe 21.
・Compressed air was blown out at a flow rate of 0.2 m3/min. At the same time, operate the blower 32.
By supplying air at a flow rate of n and adjusting the saw 2 pulp 3o, the temperature inside the separation and recovery member 3 was set to 60° C. or lower.

次に、スチレン−アクリル共重合体樹脂(軟化点140
℃)80重量部とポリエチレンワックス10重量部及び
カーゼンブラノク10 屯%i部を熱混練し、粉砕2分
級して得た粒子径約10μmの黒色トナを熱可塑性粒子
供給機構16のホッノや19に入れ、振動力を与えて2
0%/mInの供給量で本体17のエゼクタ18噴出部
に落下させ、粒子分散濃度100 g−/m3の熱可塑
性粒子分散気流33を分配管21から加圧熱気流32に
吹き込み、トナを球型化せしめた。
Next, styrene-acrylic copolymer resin (softening point 140
80 parts by weight of polyethylene wax, 10 parts by weight of polyethylene wax, and 10 parts by weight of Kazenbranok, and then crushed and classified into 2 parts. A black toner with a particle diameter of about 10 μm obtained by this was put into the thermoplastic particle supply mechanism 16, 19. , giving vibration force 2
The toner is dropped into the ejection part of the ejector 18 of the main body 17 at a supply rate of 0%/mIn, and a thermoplastic particle dispersion air stream 33 with a particle dispersion concentration of 100 g/m3 is blown into the pressurized hot air stream 32 from the distribution pipe 21 to make the toner into a ball. I made it into a model.

得られた黒色トナはほとんど球型化されており、かつ球
型化度も著しく高く、形状係数はほぼ1に近いものであ
った。しかも、球型化トナ相互の団塊化も全く認められ
なかった。
The obtained black toner was almost spherical, and the degree of sphericity was also extremely high, with a shape factor close to 1. Furthermore, no mutual baby booming of spherical tones was observed.

また、造粒塔13の側部28内面へのトナの付着はほと
んど認められず、収率は85チ以上を維持した。これに
対し、上部導入口及び側部導入口を有さない以外、第3
図及び第4図図示の造粒塔と同寸法の造粒塔1を有する
第1図図示の球型装置によシ同条件でトナの球型化を行
なったところ、造粒塔内面へのトナの付着が多く、収率
は最大で70チと低いものであった。
Moreover, almost no toner was observed to adhere to the inner surface of the side part 28 of the granulation tower 13, and the yield was maintained at 85 inches or more. On the other hand, the third
When toner was spheroidized under the same conditions using the spherical device shown in FIG. There was a lot of toner adhesion, and the yield was as low as 70 cm at maximum.

実施例 実験例1と同様、第3図及び第4図図示の造粒塔13を
用いて、熱交換器12の能力を上げて約600℃の加圧
熱気流32を供給管14よシ噴出させて実験例1と同様
に作製した黒色トナを球型化したところ、球型化度は著
しく高くなシ、全ての1・すが形状係数は?Y、 1の
真球トナを得ることができた。
Example Similar to Experimental Example 1, using the granulation tower 13 shown in FIGS. 3 and 4, the capacity of the heat exchanger 12 was increased and a pressurized hot air stream 32 of approximately 600° C. was jetted out through the supply pipe 14. When the black toner prepared in the same manner as in Experimental Example 1 was made into a sphere, the degree of sphericity was extremely high. What is the shape factor of all 1. Y, I was able to obtain 1 true sphere tona.

実施例 第2図及び第5図に示す球型化装置を用いて送風ファン
11で空気を電気ヒータ式の熱交換器12に送シ、加熱
して約600℃、1000mmA4 g 20 m37
 minの加圧熱気流32を口径1゜暉φの供給管14
を通して第5図図示の造わ1塔13′に噴出させた。こ
の造粒塔13′は直径1o。
Example Using the spheroidizing device shown in FIGS. 2 and 5, air was sent to an electric heater type heat exchanger 12 using a blower fan 11 and heated to about 600° C. and 1000 mm A4 g 20 m37.
A pressurized hot air flow 32 of min.
It was injected into the first column 13' shown in FIG. This granulation tower 13' has a diameter of 1o.

mmφ、長さ400wnの外側容器35と直径8゜順φ
 、長さ300咽の内側容器37とを有する。
Outer container 35 with mmφ, length 400wn and diameter 8゜ orderφ
, and an inner container 37 with a length of 300 mm.

また、外側容器35を冠着する器体38には5能φの大
きさの上部導入口27′・・・が16個、外側容器35
の側壁28′上部には36關φの大きさの側部導入口2
9鵠が4個夫々設けている。
In addition, the container body 38 that caps the outer container 35 has 16 upper inlet ports 27' each having a size of 5 mm φ, and the outer container 35
At the top of the side wall 28' is a side inlet 2 with a diameter of 36 mm.
There are 4 pieces each for 9 mice.

一方、コンブレッサノ5を作動し、10 ”9/L:1
n2の圧縮空気を熱可塑性粒子供給機構16及び導入管
20を通して外径30mφ、内径15謔φの分配管21
に送シ、該分配管21の溝(間隙l mm ) 23 
・=よV) 0.5 m”/ndmの流量で圧縮空気を
噴出させた。同時にブロア32を作動させ、5 m37
 minの流量で送気した。この時、分離回収部拐31
内の温度は造粒塔13′に設けた上部導入口27′・・
・及び側部導入口29′・・・によυ冷却空気が導入さ
れ、十分冷却されて50℃以下となった。
On the other hand, operate Combesano 5, 10"9/L:1
n2 compressed air is passed through the thermoplastic particle supply mechanism 16 and the introduction pipe 20 to a distribution pipe 21 with an outer diameter of 30 mφ and an inner diameter of 15 mφ.
The groove of the distribution pipe 21 (gap 1 mm) 23
・=yoV) Compressed air was blown out at a flow rate of 0.5 m"/ndm. At the same time, the blower 32 was operated, and the
Air was supplied at a flow rate of min. At this time, the separation and recovery unit 31
The temperature in the upper inlet 27' provided in the granulation tower 13'...
Cooling air was introduced through the side inlet 29' and was sufficiently cooled to below 50°C.

次いで、ぼりプロピレンワックス(軟化点170℃)3
OZ量部、エチレン−酢酸ビニル共重合体樹脂20重社
部、磁性粉45重量部、及び導電性カー?ンブラック5
重量部とを熱混練し、粉砕2分級して粒子径約15μm
の磁性トナ(熱可塑性粒子)を用意した。つづいて、こ
の磁性トナを熱可塑性粒子供給機構16のホツノぐ19
に入れ、振動力を与えて100 ji’/minの供給
量で本体17のエゼクタ18噴出部に落下させ、粒子分
散濃度200 f/m”の熱可塑性粒子分散気流33を
分配管21からカロ圧熱気流32に吹き込み、磁性トナ
を球型化せしめた。
Next, borri propylene wax (softening point 170°C) 3
20 parts by weight of ethylene-vinyl acetate copolymer resin, 45 parts by weight of magnetic powder, and conductive car? black 5
Parts by weight are heat-kneaded, pulverized and classified into 2 parts to obtain a particle size of approximately 15 μm.
A magnetic toner (thermoplastic particles) was prepared. Next, this magnetic toner is transferred to the hot spring 19 of the thermoplastic particle supply mechanism 16.
The thermoplastic particle dispersion airflow 33 with a particle dispersion concentration of 200 f/m" is sent from the distribution pipe 21 to the Calo pressure The magnetic toner was blown into a hot air stream 32 to form a spherical shape.

得られた磁性トナはにとんどが球型化されておシ、かつ
球型化度も著しく高く、形状係数がほぼ1に近いもので
あった。また、球型化処理の前後における磁性トナの流
動性を安息角ψγを測定することによシ調ぺたところ、
球型化別前には安息角ψγ=56°であシ、流動性の乏
しいものであったのに対し、本装置によυ球型化処理し
た磁性トナは安息角ψγ−37°で著しい151f、・
[(す性の改善が認められた。
The obtained magnetic toner was mostly spherical, and the degree of sphericity was also extremely high, with a shape factor close to 1. In addition, we investigated the fluidity of the magnetic toner before and after the spheroidization process by measuring the angle of repose ψγ.
Before spheroidization, the toner had an angle of repose ψγ = 56° and had poor fluidity, whereas the magnetic toner processed to spherical shape by this device had a remarkable angle of repose ψγ -37°. 151f,・
[(Improvement in health was observed.

更に、第5図図示の造粒塔13′を用いた場合、球型化
された磁性トナの造粒塔13′の内面(内側容器37の
内面)の付着が僅少となり、収率を92チと著しく向上
できた。
Furthermore, when the granulation tower 13' shown in FIG. was able to improve significantly.

実施例 スチレン樹脂(軟化点150℃)を粉砕2分級し1.約
20伽の熱可塑性粒子を作製し、これに顔料を加えて該
粒子表面に付着させた。次いで、この粒子を実験例3と
同様な装買、操作により球型化せしめたところ、該粒子
表面に顔料が球型化と同時に融着して球形の着色粒子が
得られた。
Example Styrene resin (softening point: 150°C) was crushed and classified into 2 parts. Approximately 20 thermoplastic particles were prepared, and a pigment was added to the particles and adhered to the surface of the particles. Next, when these particles were made into spheres by the same loading and operation as in Experimental Example 3, the pigment was fused to the particle surface at the same time as the particles were made into spheres, and spherical colored particles were obtained.

実施例 エフ+?キシ樹脂(軟化点130℃)を粉砕2分級し約
30μmの熱可塑性粒子を作製し、これに導電性粉末(
カーボンブラック)を加えて十分混合し、該粒子表面に
付着させた。次いで、この粒子を実験例3と同様な装置
、操作によ9球型化せしめたところ、該粒子表面にカー
ボンブラックが球型化と同時に融着して球型の導電性粒
子が得られた。
Example F+? A resin (softening point: 130°C) was crushed and classified into two to produce thermoplastic particles of approximately 30 μm, and conductive powder (
Carbon black) was added and thoroughly mixed to adhere to the particle surface. Next, when these particles were made into nine spheres using the same equipment and operation as in Experimental Example 3, carbon black was fused to the particle surface at the same time as the particles were made into spheres, yielding spherical conductive particles. .

実施例 ポリアミド樹脂(軟化点117℃)を粉砕。Example Grind polyamide resin (softening point 117℃).

分級し約50μmの熱可塑性粒子を作製し、これに磁性
粉末(四三酸化鉄粉末)を加え、充分混合して該粒子表
面に付着させた。次いで、この粒子を実験例3と同様な
装置、操作により球型化せしめたところ、該粒子表面に
四三酸化鉄粉末が球型化と同時に融着して球形の磁性粒
子が得られた。
The particles were classified to produce thermoplastic particles of about 50 μm, to which magnetic powder (triiron tetroxide powder) was added, thoroughly mixed, and adhered to the surface of the particles. Next, the particles were sphericalized using the same equipment and operation as in Experimental Example 3, and the triiron tetroxide powder was simultaneously fused to the surface of the particles to obtain spherical magnetic particles.

なお、本発明の球型装置により球型化される熱可塑性粒
子は上記実験例で用いたものに限らない。例えばロジン
、コパール、−7エラフなどの天然樹脂、或いは固型パ
ラフィン2各種アクリルhiIDM tポリエチレン、
ポリエステル、マレイン酸樹脂、クマロン樹脂、ポリウ
レタン樹脂。
Note that the thermoplastic particles sphericalized by the spherical device of the present invention are not limited to those used in the above experimental examples. For example, natural resins such as rosin, copal, -7 Elaf, or solid paraffin 2 various types of acrylic hiIDM t polyethylene,
Polyester, maleic acid resin, coumaron resin, polyurethane resin.

フェノール樹脂、ポリカーボネート<itJ脂、酢酸ビ
ニル樹脂、塩化ビニル樹脂、7j?り塩化ビニリデン樹
脂、ポリビニルブチラール、醪すエーテル樹脂などの合
成樹脂、又はこれら樹脂の混合物、共1合物等を用いる
ことができる。こうした’#L:l脂には実験例に示す
顔料、各種フィラーの他染料等を添加してもよい。
Phenol resin, polycarbonate <itJ resin, vinyl acetate resin, vinyl chloride resin, 7j? Synthetic resins such as polyvinylidene chloride resin, polyvinyl butyral, and mortar ether resin, or mixtures or combinations of these resins can be used. Pigments, various fillers, dyes, etc. shown in the experimental examples may be added to such '#L:l fat.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば粒子同志の融着によ
る団塊化を防止でき、かつ球形化度の著しく高い均質な
球型化粒子を多量かつ短時間で得ることができることは
勿論、造粒塔の側壁内面への球型化粒子の付着を抑制乃
至防止して生成収率を大巾に向上し得る球1i(ヒ装置
を提供できるものである。
As described in detail above, according to the present invention, it is possible to prevent agglomeration due to fusion of particles, and it is possible to obtain homogeneous spherical particles with an extremely high degree of sphericity in a large amount and in a short time. It is possible to provide a sphere 1i device that can suppress or prevent adhesion of spherical particles to the inner surface of the side wall of a particle column and greatly improve the production yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の球型化装置の要部断面図、第2図は本発
明の一実施例を示す球型イし装置の概略図、第3図は第
2図の球型化装置の要@昏を示す平面図、第4図は第3
図の■−■線に沿う断面図、第5図は本発明の他の実施
例を示す球型化装置の要部断面図である。 11・・・送風ファン、12・・・熱交換暑冷、13゜
13′・・・造粒塔、14・・・供給管、15・・・コ
ンプレッサ、16・・・熱可塑性粒子供給機構、21・
・・分配管1.? $j’tl)’出口、27,27’
・・・上“入口、29 、29’・・・側部導入口、3
1・・・分離回収部胴゛、32・・・加圧熱気流、33
・・・熱”1t!J/J、Els %を子分散気流、3
5・・・外側容器、37・・・内側容器、38・・・蓋
体・ 出願人代理人  弁理士 鈴 江 武 彦第1図 第 3 図 272227 第4図
Fig. 1 is a sectional view of the main parts of a conventional spheroidizing device, Fig. 2 is a schematic diagram of a spherical forming device showing an embodiment of the present invention, and Fig. 3 is a sectional view of the spheroidizing device shown in Fig. 2. A plan view showing the key@coma, Figure 4 is the 3rd
FIG. 5 is a cross-sectional view of a main part of a spheroidizing device showing another embodiment of the present invention. DESCRIPTION OF SYMBOLS 11...Blower fan, 12...Heat exchange heating/cooling, 13° 13'... Granulation tower, 14... Supply pipe, 15... Compressor, 16... Thermoplastic particle supply mechanism, 21・
...Distribution pipe 1. ? $j'tl)'Exit, 27, 27'
...Top "inlet, 29, 29'...Side inlet, 3
1... Separation and recovery section body, 32... Pressurized hot air flow, 33
...Heat"1t! J/J, Els % child dispersion airflow, 3
5... Outer container, 37... Inner container, 38... Lid body・ Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 3 Figure 272227 Figure 4

Claims (5)

【特許請求の範囲】[Claims] (1)土壁の中央付近に加圧熱気流と熱可塑性粒子分散
気流が流入される流入口を有すると共に下部に球型化さ
れた熱可塑性粒子を排出する排出口を有する造粒塔と、
との造粒塔の土壁付近に配設された加圧熱気流を噴出さ
せる加圧熱気流供給部材と、前記造粒塔の」〕壁付近に
配設され、前記供給部材からの加圧熱気流に熱可塑性粒
子分散気流を吹き込む分散気流供給部拐とを具備し、前
記造粒塔に冷却用外気導入口を設けたことを特徴とする
熱可塑性粒子の球型化装置。
(1) A granulation tower having an inlet near the center of the earthen wall through which the pressurized hot air flow and the thermoplastic particle dispersion air flow are introduced, and an outlet at the bottom from which the spherical thermoplastic particles are discharged;
a pressurized hot air flow supplying member disposed near the earthen wall of the granulation tower that blows out a pressurized hot airflow; 1. A device for spheroidizing thermoplastic particles, comprising: a dispersion air flow supply section for blowing a thermoplastic particle dispersion air flow into a hot air flow, and an outside air inlet for cooling provided in the granulation tower.
(2)加圧熱気流供給部材が造粒塔の中心軸方向に延び
る供給管から構成され、かつ熱可塑性粒子分散気流供給
部材が前記供給管に対して同心円状に配置された分配管
から構成され、前記供給管と分配管との間に冷却空気が
流入する間隙を形成したことを特徴とする特許請求の範
囲幀1項記載の熱可塑性粒子の紋型化装置。
(2) The pressurized hot air flow supply member is composed of a supply pipe extending in the central axis direction of the granulation tower, and the thermoplastic particle dispersion air flow supply member is composed of distribution pipes arranged concentrically with respect to the supply pipe. 2. The device for patterning thermoplastic particles according to claim 1, wherein a gap is formed between the supply pipe and the distribution pipe through which cooling air flows.
(3)冷却用外気導入口を造粒塔の土壁周縁に複数設け
たことを特徴とする特許請求の範囲第1項又は第2項記
載の熱可塑性粒子の球型化装置i 。
(3) The apparatus for spheroidizing thermoplastic particles according to claim 1 or 2, characterized in that a plurality of outside air inlets for cooling are provided at the periphery of the earthen wall of the granulation tower.
(4)冷却用外気導入口を造粒塔の土壁周縁に複数設け
ると共に該造粒塔の上部11.llF、(に複斂設けた
ことを特徴とする特訂酊j求の範囲第1項又は第2項記
載の熱可塑性粒子の球型化装置。
(4) A plurality of outside air inlets for cooling are provided on the periphery of the soil wall of the granulation tower, and the upper part 11 of the granulation tower is provided with a plurality of outside air inlets for cooling. The device for spheroidizing thermoplastic particles as set forth in item 1 or 2 of the scope of the special edition, characterized in that a double cone is provided in llF.
(5)造粒塔は上面が開口され下部に球型化された熱可
塑性粒子の排出口を有する外側容器と、この外側容器内
に着脱自在に収納される筒状の内側容器と、前記外側容
器の上端に着脱自在に冠着され中央付近に加圧熱気流と
熱可塑性粒子分散気流が流入される流入口を有する蓋体
とから構成され、かつ前記外側容器の上部側壁ど前記蓋
体の周縁とに冷却用外気導入口を夫々p7 iH’Q設
けたことを特徴とする特許請求の範囲第1J()又は第
2項記載の熱可塑性粒子の球型化装fl”i)。
(5) The granulation tower includes an outer container having an open upper surface and an outlet for spherical thermoplastic particles at the lower part, a cylindrical inner container that is removably housed in the outer container, and the outer container. a lid that is removably attached to the upper end of the container and has an inlet near the center through which pressurized hot air and thermoplastic particle dispersion air flow; The device for spheroidizing thermoplastic particles fl"i) according to claim 1J() or claim 2, characterized in that external air inlets for cooling are provided at the periphery and the peripheral edge, respectively.
JP57171840A 1982-09-30 1982-09-30 Spheroidizing device of thermoplastic grain Granted JPS5959410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57171840A JPS5959410A (en) 1982-09-30 1982-09-30 Spheroidizing device of thermoplastic grain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57171840A JPS5959410A (en) 1982-09-30 1982-09-30 Spheroidizing device of thermoplastic grain

Publications (2)

Publication Number Publication Date
JPS5959410A true JPS5959410A (en) 1984-04-05
JPH0440169B2 JPH0440169B2 (en) 1992-07-02

Family

ID=15930728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57171840A Granted JPS5959410A (en) 1982-09-30 1982-09-30 Spheroidizing device of thermoplastic grain

Country Status (1)

Country Link
JP (1) JPS5959410A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010075810A (en) * 2008-09-25 2010-04-08 Chugai Ro Co Ltd Apparatus for producing spherical particle
JP2014240077A (en) * 2007-05-11 2014-12-25 エスディーシーマテリアルズ, インコーポレイテッド Compression chamber, particle production system and adjustment method
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
CN106926402A (en) * 2015-12-31 2017-07-07 天津市多彩塑料色母有限公司 Color masterbatch cooling tank with tripper
WO2019052806A1 (en) * 2017-09-12 2019-03-21 Dressler Group GmbH & Co. KG Method and device for thermal rounding or spheronisation of powdered plastic particles
CN114013039A (en) * 2021-12-09 2022-02-08 万华化学集团股份有限公司 Resin powder fluidity enhancing device and preparation method of high-fluidity powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137258A (en) * 1977-05-04 1978-11-30 Toshiba Corp Forming thermoplastic resin particles into spherical shape
JPS5620641U (en) * 1979-07-27 1981-02-24

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551065A (en) * 1979-02-16 1980-01-07 Yamada Shadowless Lamp Co Medical illuminator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137258A (en) * 1977-05-04 1978-11-30 Toshiba Corp Forming thermoplastic resin particles into spherical shape
JPS5620641U (en) * 1979-07-27 1981-02-24

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9719727B2 (en) 2005-04-19 2017-08-01 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
JP2014240077A (en) * 2007-05-11 2014-12-25 エスディーシーマテリアルズ, インコーポレイテッド Compression chamber, particle production system and adjustment method
US9737878B2 (en) 2007-10-15 2017-08-22 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9597662B2 (en) 2007-10-15 2017-03-21 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
JP2010075810A (en) * 2008-09-25 2010-04-08 Chugai Ro Co Ltd Apparatus for producing spherical particle
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9566568B2 (en) 2013-10-22 2017-02-14 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9950316B2 (en) 2013-10-22 2018-04-24 Umicore Ag & Co. Kg Catalyst design for heavy-duty diesel combustion engines
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10086356B2 (en) 2014-03-21 2018-10-02 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10413880B2 (en) 2014-03-21 2019-09-17 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
CN106926402A (en) * 2015-12-31 2017-07-07 天津市多彩塑料色母有限公司 Color masterbatch cooling tank with tripper
WO2019052806A1 (en) * 2017-09-12 2019-03-21 Dressler Group GmbH & Co. KG Method and device for thermal rounding or spheronisation of powdered plastic particles
CN114013039A (en) * 2021-12-09 2022-02-08 万华化学集团股份有限公司 Resin powder fluidity enhancing device and preparation method of high-fluidity powder
CN114013039B (en) * 2021-12-09 2024-05-03 万华化学集团股份有限公司 Resin powder fluidity enhancing device and preparation method of high fluidity powder

Also Published As

Publication number Publication date
JPH0440169B2 (en) 1992-07-02

Similar Documents

Publication Publication Date Title
JPS5959410A (en) Spheroidizing device of thermoplastic grain
US4221554A (en) Method and apparatus for forming spherical particles of thermoplastic material
EP0125516B1 (en) Granulating apparatus
GB2187972A (en) Apparatus and process for pelletising or similar treatment of particles
US5165549A (en) Gas current classifying separator
US2494153A (en) Drying and pulverizing method and apparatus
JPS59127662A (en) Method and apparatus for treating powder or particles
CN206897343U (en) A kind of low tower spray-cooling granulating device
JPS59125742A (en) Heat treating equipment of powder or granular
JPS6031856B2 (en) Method for spheroidizing thermoplastic particles
CN209049682U (en) Revolution classifying screen for high security Feed Manufacturing
JPS5941844B2 (en) Method for spheroidizing thermoplastic particles
JPH0566173B2 (en)
CN205398560U (en) Fluidized bed and for catalytic gasification raw materials coal preparation system
JPS5814815B2 (en) Method for spheronizing powder and granules containing thermoplastic resin
JPS5973036A (en) Granulation coating apparatus
US2605971A (en) Combination pulverizing and classifying machine
JPH1020556A (en) Extruding machine for toner for preparation of toner resin and preparation of toner resin
JP2007209924A (en) Crushing equipment and conglobation treatment method of powder
JP3100257B2 (en) Granulation apparatus and granulation system provided with the same
JPH0352858B2 (en)
JPS6115515Y2 (en)
JPS59125741A (en) Heat treating equipment of powder or granular
JPH0251664B2 (en)
JPS6140631B2 (en)