JPH0251664B2 - - Google Patents
Info
- Publication number
- JPH0251664B2 JPH0251664B2 JP21906982A JP21906982A JPH0251664B2 JP H0251664 B2 JPH0251664 B2 JP H0251664B2 JP 21906982 A JP21906982 A JP 21906982A JP 21906982 A JP21906982 A JP 21906982A JP H0251664 B2 JPH0251664 B2 JP H0251664B2
- Authority
- JP
- Japan
- Prior art keywords
- heat treatment
- nozzle
- powder
- air
- thermoplastic particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002245 particle Substances 0.000 claims description 46
- 229920001169 thermoplastic Polymers 0.000 claims description 35
- 239000004416 thermosoftening plastic Substances 0.000 claims description 35
- 238000010438 heat treatment Methods 0.000 claims description 25
- 238000001816 cooling Methods 0.000 claims description 22
- 239000006185 dispersion Substances 0.000 claims description 14
- 239000000843 powder Substances 0.000 claims description 10
- 239000011800 void material Substances 0.000 claims 1
- 238000000034 method Methods 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000002826 coolant Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000007664 blowing Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Landscapes
- Glanulating (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
Description
【発明の詳細な説明】
本発明は粉体の熱処理装置に関するものであ
る。更に詳しくは熱可塑性粒子を気流中で溶融・
球形化させる熱処理装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a powder heat treatment apparatus. More specifically, thermoplastic particles are melted and
The present invention relates to a heat treatment device for spheroidizing.
従来、熱可塑性粒子の球形化装置としては、水
ないし有機溶媒に溶解・分散させた懸濁液を二流
体ノズルあるいは回転円盤法により微粒化させ
て、熱風中で乾燥させて球径の粒子を得るいわゆ
るスプレードライヤー法等の湿式法、あるいは熱
気流中に熱可塑性粒子を分散させ球形化を達成さ
せる乾式法等が採用されている。 Conventionally, thermoplastic particle spheronizing equipment atomizes a suspension dissolved or dispersed in water or an organic solvent using a two-fluid nozzle or rotating disk method, and then dries it in hot air to form particles with a spherical diameter. A wet method such as the so-called spray dryer method, or a dry method in which thermoplastic particles are dispersed in a hot air stream to achieve spheroidization, is employed.
しかしながら、これまでの湿式法においては、
球形粒子を得るまでに溶媒を除去しなければなら
ず、大型の乾燥室、溶剤回収設備、爆発防止安全
対策等の付帯設備の増設が避けられないものであ
つた。また、乾式法では粒径が100μm以下の微粉
体を処理する場合には、熱可塑性粒子どうしの熱
融着による、粗大粒子の発生、噴出ノズルや容器
壁面への熱可塑性粒子の付着が起り易く、これら
を原因とする収率及び生産性の低下あるいは熱処
理状態の不均一をきさす場合が多かつた。 However, in the conventional wet method,
The solvent had to be removed before spherical particles were obtained, making it inevitable to add additional equipment such as a large drying room, solvent recovery equipment, and explosion prevention safety measures. In addition, when using the dry method to process fine powder with a particle size of 100 μm or less, thermal fusion of thermoplastic particles tends to generate coarse particles and adhesion of thermoplastic particles to the jet nozzle and container wall. These factors often led to a decrease in yield and productivity or non-uniform heat treatment conditions.
従来、熱可塑性粒子分散気流の噴出ノズル壁面
への熱可塑性粒子の熱融着を防ぐ目的で、噴出ノ
ズル外周に流通路を設け、この流通路に水、冷風
等の冷却媒を流すことによつて、前記噴出ノズル
部を冷却する方法が、特開昭53−60379号公報に
記載されているが、この方法では噴出ノズル内壁
が露点以下に下がりノズル内壁表面に水滴が発生
してしまい、熱可塑性粒子の付着を起こし、安定
に大量な粉体処理をさまたげる原因となつてい
た。 Conventionally, in order to prevent the thermoplastic particles from being thermally fused to the wall surface of the jet nozzle in the thermoplastic particle dispersion airflow, a flow path was provided around the outer periphery of the jet nozzle, and a cooling medium such as water or cold air was flowed through the flow path. A method for cooling the jet nozzle part is described in Japanese Patent Application Laid-Open No. 53-60379, but in this method, the inner wall of the jet nozzle drops below the dew point and water droplets are generated on the surface of the inner wall of the nozzle, resulting in heat generation. This caused the adhesion of plastic particles, which hindered the stable processing of large amounts of powder.
また、特公昭55−2165号公報には分散気流噴出
ノズル口への粒子の融着の防止を目的とした、分
散気流と熱気流の間への冷却空気の導入が述べら
れているが、この方法では分散気流と熱気流とが
混合する熱会合部周辺の温度が、冷却空気の導入
によつて下がり、熱効率を著しく低下させてしま
つたり、冷却空気導入によつて起こる熱会合部で
の気流の乱れによる粒子の舞い上りは避けられ
ず、噴出ノズル口及び同壁面への熱可塑性粒子の
付着あるいは熱融着を完全に防ぐことは不可能で
あつた。 Furthermore, Japanese Patent Publication No. 55-2165 describes the introduction of cooling air between the dispersion airflow and the hot airflow for the purpose of preventing particles from adhering to the dispersion airflow jet nozzle opening. In this method, the temperature around the thermal meeting area where the dispersed air flow and the hot air flow mix decreases due to the introduction of cooling air, resulting in a significant decrease in thermal efficiency. The flying up of particles due to airflow turbulence is unavoidable, and it has been impossible to completely prevent thermoplastic particles from adhering or thermally adhering to the nozzle opening and its wall surface.
本発明は上記の欠点を全て解消するためになさ
れたものである。即ち、本発明の第1の目的は熱
可塑性粒子が、該粒子の分散気流噴出ノズル内壁
面へ付着あるいは熱融着することのない生産性の
高い熱可塑性粒子の熱処理装置を提供しようとす
るものであり、本発明の第2の目的は熱可塑性粒
子が、該粒子の分散気流噴出ノズル内壁面及び先
端部周辺に付着あるいは熱融着することのない高
収率で高い生産性を有する、長時間連続運転が可
能な熱可塑性粒子の熱処理装置を提供しようとす
るものである。 The present invention has been made to eliminate all of the above-mentioned drawbacks. That is, the first object of the present invention is to provide a highly productive heat treatment apparatus for thermoplastic particles in which the thermoplastic particles do not adhere to or are thermally fused to the inner wall surface of a dispersion air jet jetting nozzle. The second object of the present invention is to provide a long-lasting, high-yield, high-productivity method in which thermoplastic particles do not adhere or heat-fuse to the inner wall surface and around the tip of a dispersion air jet nozzle. The present invention aims to provide a heat treatment apparatus for thermoplastic particles that can be operated continuously for hours.
本発明の前記目的のうち、第1の目的は、熱可
塑性粒子を気流中で溶融、球形化させる熱処理装
置において、熱可塑性粒子の分散気流の噴出ノズ
ル外周部に冷却用ジヤケツトを設け、該噴出ノズ
ルと該冷却用ジヤケツトの間に空隙を設けたこと
を特徴とする熱可塑性粒子の熱処理装置によつて
達成される。 Among the above-mentioned objects of the present invention, the first object is to provide a heat treatment apparatus for melting and spheroidizing thermoplastic particles in an air stream, by providing a cooling jacket on the outer periphery of a jetting nozzle for dispersing the thermoplastic particles; This is achieved by an apparatus for heat treatment of thermoplastic particles characterized in that an air gap is provided between the nozzle and the cooling jacket.
また、本発明の前記目的のうち、第2の目的は
熱可塑性粒子を気流中で溶融、球形化させる熱処
理装置において、熱可塑性粒子の分散気流の噴出
ノズル外周部に冷却用ジヤケツトを設け、該噴出
ノズルと該冷却用ジヤケツトの間に空隙を設け、
さらに該噴出ノズル先端外周部にエアーカーテン
を形成させるスリツトを設けたことを特徴とする
熱可塑性粒子の熱処理装置によつて達成される。 Among the above objects of the present invention, the second object is to provide a heat treatment apparatus for melting and spheroidizing thermoplastic particles in an air flow, by providing a cooling jacket on the outer periphery of a jetting nozzle for dispersing the thermoplastic particles. providing a gap between the jet nozzle and the cooling jacket;
Furthermore, the present invention is achieved by a thermoplastic particle heat treatment apparatus characterized in that a slit for forming an air curtain is provided at the outer periphery of the tip of the ejection nozzle.
以下本発明に係る装置を図面を参照しながら詳
細に説明するが、これにより本発明の態様が限定
されるものではない。 The apparatus according to the present invention will be described in detail below with reference to the drawings, but the embodiments of the present invention are not limited thereby.
第1図は本発明の熱可塑性粒子を含む分散気流
を噴出させるための装置の1例を示したものであ
る。 FIG. 1 shows an example of an apparatus for ejecting a dispersed air stream containing thermoplastic particles according to the present invention.
図1中、15は上部にポツパー18が連結さ
れ、側壁を貫通して水平方向から加圧気流導入管
17が連結されたエゼクター混合室であり、17
の連結された壁部の反体の側壁にエゼクタースロ
ート部16が連結している。16はさらに分散気
流供給管2に連結し、2は旋回室3の側壁に3の
水平な接線方向から接続しており、旋回室3の底
面中央には下方に向かつて分散気流噴出ノズル4
が連結している。噴出ノズル4外周部には内部が
中空の冷却用ジヤケツト5が、ノズル4とジヤケ
ツト5の間に空隙19を形成しかつノズル4先端
外周部にスリツト9を形成させる位置に、ノズル
4外周を取り囲んで設置されている。さらに冷却
用ジヤケツト5の上壁部には、該上壁部を貫通し
て冷却媒導入管6及び冷却媒排出管7が連結され
ており、空隙19上壁には圧縮空気導入管8が連
結されている。 In FIG. 1, 15 is an ejector mixing chamber to which a popper 18 is connected to the upper part and a pressurized air flow introduction pipe 17 is connected from the horizontal direction through the side wall.
An ejector throat portion 16 is connected to the opposite side wall of the connected wall portion. 16 is further connected to a dispersion airflow supply pipe 2, which is connected to the side wall of the swirling chamber 3 from a horizontal tangential direction of 3, and a dispersion airflow jetting nozzle 4 directed downward is provided at the center of the bottom of the swirling chamber 3.
are connected. A cooling jacket 5 having a hollow interior surrounds the outer periphery of the nozzle 4 at a position where a gap 19 is formed between the nozzle 4 and the jacket 5 and a slit 9 is formed at the outer periphery of the tip of the nozzle 4. It is installed in Further, a coolant inlet pipe 6 and a coolant discharge pipe 7 are connected to the upper wall of the cooling jacket 5 by penetrating the upper wall, and a compressed air inlet pipe 8 is connected to the upper wall of the cavity 19. has been done.
図1に示す装置では、圧縮空気13が圧縮空気
導入管17を通つてエゼクター混合室15内に噴
出する時、熱可塑性粒子14がホツパより空気と
ともに吸い込まれて、スロート部16内で強力な
剪断作用を受け凝集粒子は解砕されて均一分散さ
れる。さらに熱可塑性粒子の分散気流1は旋回室
3内で旋回され、下部噴出ノズル部4内に導か
れ、遠心力によつてノズル内壁面近傍を旋回、下
降し、ノズル4先端部周辺より、一定の噴出角を
保ちかつ一定の線速度及び均一な粒子濃度で、空
円錐流れ(Hollow Cone Flow)12となつて
噴出される。この分散気流の空円錐流れ12に1
2の外周から熱気流11を導入・混合し、熱会合
させれば、個々の熱可塑性粒子は分散性良く、一
定濃度で円錐状に広がつていくため、均一な条件
下で熱処理を行なうことができ、熱可塑性粒子の
均一かつ良質な球形化を行なうことができる。こ
の時、圧縮空気を8から導入することにより、ス
リツト9から空気が噴出し、エアーカーテンを形
成する。さらにスリツト9外周部に設けた冷却用
ジヤケツトに冷水又は冷風などの冷却媒を流通さ
せることにより、噴出ノズル部4及びノズル部4
内部は、冷却用ジヤケツト5の外周部の熱気流1
1の温度の影響を受けることなく常に室温に近い
状態に保つことができ、噴出ノズル内壁での熱融
着を防ぐと同時に、空隙19を設けたことにより
噴出ノズル部4と冷却用ジヤケツト5との直接の
接触がないことから、噴出ノズル内壁温度が露点
以下になることを防ぎ、水滴の発生による熱可塑
性粒子の付着をも防止することができる。 In the device shown in FIG. 1, when compressed air 13 is ejected into the ejector mixing chamber 15 through the compressed air introduction pipe 17, thermoplastic particles 14 are sucked together with the air from the hopper and are subjected to strong shearing within the throat section 16. Under the action, the agglomerated particles are crushed and uniformly dispersed. Further, the dispersion airflow 1 of thermoplastic particles is swirled in the swirling chamber 3, guided into the lower jet nozzle part 4, swirled near the inner wall surface of the nozzle by centrifugal force, descended, and then started from around the tip of the nozzle 4 at a constant rate. The particles are ejected as a Hollow Cone Flow 12 at a constant ejection angle, constant linear velocity, and uniform particle concentration. 1 in the empty cone flow 12 of this dispersed air flow
If hot air flow 11 is introduced from the outer periphery of 2 and mixed to cause thermal association, the individual thermoplastic particles have good dispersibility and spread in a conical shape at a constant concentration, so heat treatment can be performed under uniform conditions. This makes it possible to form thermoplastic particles into uniform and high-quality spheres. At this time, by introducing compressed air from 8, air is blown out from slit 9, forming an air curtain. Furthermore, by circulating a coolant such as cold water or cold air through a cooling jacket provided on the outer circumference of the slit 9, the jet nozzle portion 4 and the nozzle portion 4 are cooled.
Inside, there is a hot air flow 1 around the outer periphery of the cooling jacket 5.
It is possible to maintain a state close to room temperature at all times without being affected by the temperature of the jet nozzle part 4, prevent thermal fusion on the inner wall of the jet nozzle, and at the same time, by providing the gap 19, the jet nozzle part 4 and the cooling jacket 5 can be connected to each other. Since there is no direct contact with the spray nozzle, it is possible to prevent the temperature of the inner wall of the ejection nozzle from dropping below the dew point, and it is also possible to prevent the adhesion of thermoplastic particles due to the generation of water droplets.
また、スリツト部よりエアーカーテン10を吹
き出させることにより噴出ノズル部4先端への熱
可塑性粒子の付着を防止し、かつノズル部先端部
での粒子付着物のつらら状の堆積物の発生をも防
止することができる。 In addition, by blowing out the air curtain 10 from the slit part, it is possible to prevent thermoplastic particles from adhering to the tip of the jet nozzle part 4, and also to prevent the formation of icicle-like deposits of particle deposits at the tip of the nozzle part. can do.
図1に示した装置のように、熱可塑性粒子の分
散気流は均一な空円錐流れとして噴出させて熱処
理を行なうことが好ましいが、本発明の目的を達
成するうえでは、熱可塑性粒子の分散気流は、空
円錐流れとしなくても、外周部に空隙を介して冷
却用ジヤケツトを設けた噴出ノズルまたは外周部
に空隙を介して冷却用ジヤケツトを設け、かつ先
端にスリツトを設けた噴出ノズルから噴出される
熱可塑性粒子の分散気流を熱処理する装置であれ
ば効果がある。より好ましくは熱可塑性粒子の分
散気流を噴出ノズル内壁近傍を旋回されながら、
噴出ノズル先端より均一な空円錐流れとして噴出
させる手段を有する熱処理装置を用いることがよ
り好ましい。これは、噴出される空円錐流れの粒
子濃度の分布が均一であるため、熱会合部での熱
処理状態を均一にすることができるためと考えら
れる。 As in the apparatus shown in FIG. Even if it is not an empty conical flow, it can be ejected from a jet nozzle with a cooling jacket provided on the outer periphery through a gap, or from a jet nozzle with a cooling jacket provided on the outer periphery with a gap and a slit at the tip. It is effective if the device heat-treats the dispersed airflow of thermoplastic particles. More preferably, the dispersed airflow of thermoplastic particles is spun around near the inner wall of the nozzle, while
It is more preferable to use a heat treatment apparatus having means for ejecting a uniform empty conical flow from the tip of the ejection nozzle. This is considered to be because the particle concentration distribution of the ejected empty conical flow is uniform, so that the heat treatment state at the thermal meeting part can be made uniform.
図1の装置では空円錐流れ12の噴出角はノズ
ル内壁先端部の接線と水平線とのなす角θにほぼ
一致するが、θの好ましい範囲としては30゜≦
θ70゜が挙げられる。また冷却用ジヤケツトを流通
させる冷却媒は、50℃以下の水ないしその他の冷
媒であれば良い。またスリツト9から噴出する圧
縮空気は温度50℃以下、噴出流は線速度10〜
40m/S、スリツトの間隙が0.3〜2.0mmのものが
好ましく、エアーカーテンの風量を分散気流1に
対し極く少なくし、熱会合部周辺の温度分布の乱
れや熱効率の低下をきたすことなく、ノズル4先
端部の熱可塑性粒子の付着及び融着を防ぐことが
できる。 In the device shown in Fig. 1, the ejection angle of the empty conical flow 12 almost matches the angle θ between the tangent to the tip of the inner wall of the nozzle and the horizontal line, but the preferred range of θ is 30°≦
An example is θ70°. Further, the coolant flowing through the cooling jacket may be water or other coolant having a temperature of 50° C. or lower. In addition, the temperature of the compressed air jetting out from the slit 9 is below 50℃, and the jetting flow has a linear velocity of 10~
40m/S, preferably with a slit gap of 0.3 to 2.0mm, so that the air volume of the air curtain is extremely small compared to the dispersed airflow 1, without disturbing the temperature distribution around the thermal meeting area or reducing thermal efficiency. Adhesion and fusion of thermoplastic particles at the tip of the nozzle 4 can be prevented.
第2図は第1図に示す装置の上から見た平面図
であり、エゼクターで分散された熱可塑粒子の分
散気流が旋回室3内へ接線方向より吹き込まれ旋
回される様子を示したものである。 FIG. 2 is a top plan view of the apparatus shown in FIG. 1, showing how the dispersed airflow of thermoplastic particles dispersed by the ejector is tangentially blown into the swirling chamber 3 and swirled. It is.
また第3図に本発明の熱処理装置の他の一形態
を示す縦断面図を示した。第3図の装置は冷却用
ジヤケツト5の先端を鋭角状にしたもので、この
角度を熱気流の吹き込み角度と平行にしたもので
ある。このようにすれば熱気流の乱れを防止し、
熱処理効果も改良され、ジヤケツト5先端への粒
子の付着は階無となる。 Further, FIG. 3 shows a longitudinal sectional view showing another form of the heat treatment apparatus of the present invention. In the apparatus shown in FIG. 3, the tip of the cooling jacket 5 has an acute angle, and this angle is parallel to the blowing angle of the hot air stream. This will prevent turbulence in the hot air flow,
The heat treatment effect is also improved, and there is no particle adhesion to the tip of the jacket 5.
第4図は、本発明の熱可塑性粒子の熱処理装置
を使用した場合の代表的なフロー図である。エゼ
クター15,16で作られた熱可塑性粒子の分散
気流は旋回室3内で旋回され、下部旋回ノズル4
より噴出され空円錐流れ12を形成する。この分
散気流12にヒーター20で熱せられた熱気流1
1が矢印方向から吹き込み、熱会合が行なわれ
る。この時冷却用ジヤケツト5に冷却水を流し、
スリツト9からエアーカーテン10を形成してお
く。熱処理室21の側壁近傍には側壁上部より冷
却風22が導入されており、球形化された熱可塑
性粒子はこの冷却風22により冷却され排出口2
3を径てサイクロン24、集塵機25で捕集され
る。 FIG. 4 is a typical flow diagram when using the thermoplastic particle heat treatment apparatus of the present invention. The dispersion airflow of thermoplastic particles created by the ejectors 15 and 16 is swirled in the swirling chamber 3, and the lower swirling nozzle 4
It is ejected from the air to form an empty conical flow 12. A hot air stream 1 heated by a heater 20 is added to this dispersed air stream 12.
1 is blown from the direction of the arrow, and thermal association takes place. At this time, pour cooling water into the cooling jacket 5,
An air curtain 10 is formed from the slit 9. Cooling air 22 is introduced into the vicinity of the side wall of the heat treatment chamber 21 from the upper part of the side wall, and the spherical thermoplastic particles are cooled by this cooling air 22 and are discharged from the exhaust port 2.
3 and is collected by a cyclone 24 and a dust collector 25.
以上詳述したように、本発明の熱処理装置によ
れば、熱可塑性粒子の分散ノズル部内壁面、同先
端部への付着あるいは熱融着を完全に防止し、長
時間連続運転、及び高収率、高生産性を達成する
ことができる。 As detailed above, according to the heat treatment apparatus of the present invention, it is possible to completely prevent thermoplastic particles from adhering or thermally adhering to the inner wall surface of the dispersion nozzle part and the dispersion nozzle tip, and to achieve long-term continuous operation and high yield. , high productivity can be achieved.
第1図は本発明の熱可塑性粒子を含む分散気流
を噴出させるための装置の1例を示した縦断面
図、第2図は第1図の装置を上から見た平面図、
第3図は本発明の熱処理装置の他の一形態を示す
縦断面図、第4図は本発明の熱処理装置を使用し
た場合のフロー図の一例である。
3……旋回室、4……噴出ノズル、5……冷却
用ジヤケツト、9……スリツト、15……エゼク
ター混合室、16……エゼクタースロート部、2
0……ヒーター、21……熱処理室、23……排
出口、24……サイクロン、25……集塵機、2
6……送水装置、27……圧縮空気発生装置、2
8,29,30……ブロワー。
FIG. 1 is a longitudinal sectional view showing an example of a device for ejecting a dispersion air stream containing thermoplastic particles of the present invention, and FIG. 2 is a plan view of the device shown in FIG. 1 viewed from above.
FIG. 3 is a longitudinal sectional view showing another form of the heat treatment apparatus of the present invention, and FIG. 4 is an example of a flow diagram when the heat treatment apparatus of the present invention is used. 3...Swirling chamber, 4...Ejection nozzle, 5...Cooling jacket, 9...Slit, 15...Ejector mixing chamber, 16...Ejector throat section, 2
0... Heater, 21... Heat treatment chamber, 23... Discharge port, 24... Cyclone, 25... Dust collector, 2
6...Water supply device, 27...Compressed air generator, 2
8, 29, 30...Blower.
Claims (1)
て、粉体の分散気流の噴出ノズル外周部に冷却用
ジヤケツトを設け、該噴出ノズルと該冷却用ジヤ
ケツトの間に空隙を設けたことを特徴とする粉体
の熱処理装置。 2 該空隙が粉体の分散気流の噴出ノズル先端外
周部にエアーカーテンを形成させるスリツトとし
て用いられることを特徴とする特許請求の範囲第
1項記載の粉体の熱処理装置。 3 該熱処理が粉体の分散気流を均一な空円錐流
れとする手段と、該流れの外周から加熱気流を導
入し、該熱可塑性粒子を熱処理する手段を有する
ことを特徴とする特許請求の範囲第1項または第
2項記載の粉体の熱処理装置。[Claims] 1. In a heat treatment apparatus for heat-treating powder in an air stream, a cooling jacket is provided on the outer periphery of a jetting nozzle for dispersing the powder, and a gap is provided between the jetting nozzle and the cooling jacket. A powder heat treatment device characterized by: 2. The powder heat treatment apparatus according to claim 1, wherein the void is used as a slit for forming an air curtain around the outer periphery of the dispersion nozzle tip of the powder dispersion air stream. 3. Claims characterized in that the heat treatment includes means for making the dispersed air flow of the powder into a uniform empty conical flow, and means for introducing a heated air flow from the outer periphery of the flow to heat treat the thermoplastic particles. The powder heat treatment apparatus according to item 1 or 2.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21906982A JPS59196729A (en) | 1982-12-13 | 1982-12-13 | Heat treatment apparatus of powder |
US06/822,678 US4736527A (en) | 1982-12-13 | 1986-01-23 | Apparatus for the heat treatment of powdery material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21906982A JPS59196729A (en) | 1982-12-13 | 1982-12-13 | Heat treatment apparatus of powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59196729A JPS59196729A (en) | 1984-11-08 |
JPH0251664B2 true JPH0251664B2 (en) | 1990-11-08 |
Family
ID=16729776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21906982A Granted JPS59196729A (en) | 1982-12-13 | 1982-12-13 | Heat treatment apparatus of powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59196729A (en) |
-
1982
- 1982-12-13 JP JP21906982A patent/JPS59196729A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59196729A (en) | 1984-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5632100A (en) | Process and a spray drying apparatus for producing an agglomerated powder | |
JPS626634A (en) | Method and apparatus for treating water soluble fine particulate material | |
JPS6257601A (en) | Method and apparatus for drying liquid stock material | |
US4736527A (en) | Apparatus for the heat treatment of powdery material | |
JPH0440169B2 (en) | ||
JP4668751B2 (en) | Powder manufacturing method | |
US4935173A (en) | Process for producing prills | |
JPS59127662A (en) | Method and apparatus for treating powder or particles | |
JPH0330860B2 (en) | ||
JPH0251664B2 (en) | ||
JPH0427897B2 (en) | ||
CN114082969A (en) | Plasma remelting system and process for thermal spraying of ultrafine powder | |
JPS59160525A (en) | Granulating method of molten slag | |
JPS59125745A (en) | Heat treatment equipment of powder or granular | |
JPH0256667B2 (en) | ||
JPH0352858B2 (en) | ||
JPS59125744A (en) | Heat treatment equipment of powder or granular | |
JP2007209924A (en) | Crushing equipment and conglobation treatment method of powder | |
JPH0663301A (en) | Spray drying method and spray dryer | |
US2072263A (en) | Process and apparatus for producing comminuted sulphur | |
CN210080718U (en) | Plasma powder balling device | |
JPS59127640A (en) | Apparatus for heat treatment of powder or particles | |
JPH08983Y2 (en) | Powder surface modification device | |
JPS6031856B2 (en) | Method for spheroidizing thermoplastic particles | |
SU1494897A1 (en) | Method and apparatus for producing granulated egg product |