JPS5959260A - Sorter for powdery body - Google Patents

Sorter for powdery body

Info

Publication number
JPS5959260A
JPS5959260A JP16927382A JP16927382A JPS5959260A JP S5959260 A JPS5959260 A JP S5959260A JP 16927382 A JP16927382 A JP 16927382A JP 16927382 A JP16927382 A JP 16927382A JP S5959260 A JPS5959260 A JP S5959260A
Authority
JP
Japan
Prior art keywords
powder
coal
particles
rotating body
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16927382A
Other languages
Japanese (ja)
Inventor
Makoto Koguchi
虎口 信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP16927382A priority Critical patent/JPS5959260A/en
Publication of JPS5959260A publication Critical patent/JPS5959260A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To separate a powdery body in response to its charged electricity, by supplying the powdery body to be sorted to a rotary charger, forming frictional charging by the collision of particles against the rotary body, and introducing the charged powdery body into a sorting chamber in which a DC electric field is formed by a couple of parallel-plate electrodes. CONSTITUTION:In the apparatus for separately sorting a mixed powdery body comprising two or more different kinds of components into every specified component, the amount of a powdery body sent out from a quantitative feeder 4 is held at a predetermined value corresponding to the number of rotation of the rotary body of a charger 5. At said charger 5, a rotary body 52 to be rotated at a high speed and a powdery body-supplying means 53 for bringing the particles of the powdery body to be sorted into collision with the surface of said rotary body to provide said particles with frictional electricity are provided. In addition, at an electrostatic separating part 9, a couple of electrodes 901, 902 on which DC voltage is impressed are provided, so that charged particles supplied from the charger 5 to a space between said electrodes is separated in response to their charged polarity. By this method, the step of treating, dehydrating or drying sludge can be omitted or simplified.

Description

【発明の詳細な説明】 本発明は、成分の異なる2種類以上の粉体(粒子)の混
合物から特定の成分のみを選別分離する粉体選別装置に
関する。この棟の装置は、例えば鉱石の精製や粉体原料
のIII製等に利用されるものであり、従来から物質の
持つ物理的性質の中で比重、親水性、磁性等を利用した
本選、浮選、a選が実用化されでいる。しかしながら、
比重差が小さく、磁気的特性差の小さいものの選別には
従来方法は可動な手段とは言えなかった。例えば石炭利
用の場合、輸送、燃焼、コークス化等各プロセスを通し
て、脱灰、脱水、脱硫等は重要な課題であり、各種の精
製装置が開発・実用化されているが、以下に説明するよ
うに決して充分なものではなかった。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a powder sorting device that selects and separates only a specific component from a mixture of two or more types of powder (particles) having different components. The equipment in this building is used, for example, for refining ores and making powder raw materials. Option A and Option A have been put into practical use. however,
Conventional methods cannot be said to be effective means for selecting materials with small differences in specific gravity and small differences in magnetic properties. For example, when using coal, deashing, dehydration, desulfurization, etc. are important issues through various processes such as transportation, combustion, and coking, and various refining equipment has been developed and put into practical use. It was never enough.

従来の選炭に関しでは、重液選炭を始めジグ選炭、テー
ブル選炭、レオ選炭、浮選など多くの方法が開発されで
おり、また最近ではオイルアグロメレーション法なども
開発されている。重液選炭法は、水に磁鉄鉱や砂鉄等の
重液材を懸濁させた擬重液を用い、これに原炭を浮遊あ
るいは沈降させで炭質分と泥・石質分とに選別するもの
である。
Regarding conventional coal preparation, many methods have been developed, including heavy liquid coal preparation, jig coal preparation, table coal preparation, rheo coal preparation, and flotation, and recently, oil agglomeration methods have also been developed. The heavy liquid coal separation method uses a pseudo-heavy liquid in which heavy liquid materials such as magnetite and iron sand are suspended in water, and raw coal is suspended or sedimented in this liquid to separate it into carbonaceous components and mud/stone components. It is.

こうした重液選炭法は、通常7,5〜50wnの原炭の
選別に利用され、少なくとも3m以上の粒度のものに限
られる。このため、楓炭中に貝雑物として賦存する灰分
の除去ができないという問題がある。また装置としでは
重液材の回収系統が不可欠で、装置が複雑化し、洗炭後
の脱水乾燥工程を必要とする。さらに最近のように微粉
炭燃焼や微粉00M原料用の粉炭の需要には再度の粉砕
を必要とし、非能率的、非経済的になる。
Such a heavy liquid coal selection method is usually used to select raw coal of 7.5 to 50 wn, and is limited to coal with a particle size of at least 3 m or more. For this reason, there is a problem in that it is not possible to remove the ash present in the maple charcoal as shell material. Additionally, the equipment requires a recovery system for heavy liquid materials, which complicates the equipment and requires a dehydration and drying process after coal washing. Furthermore, recently, the demand for pulverized coal for pulverized coal combustion and pulverized 00M raw material requires pulverization again, which becomes inefficient and uneconomical.

他の従来選炭方法としてのジグ選炭法は、密閉構造の水
槽内に水平に網を配置し、網の上層部を気空、下層部を
氷室とし、一方の端から網上に原炭を投入すると同時に
氷室下部に連通ずる加圧室の圧力を断;読的に変化させ
、これにより水面を上下振動させるものである。この操
作により、他端に達するまでに、原炭中の低比重のもの
は上層に、高比重のものは大層部すことノー別され、比
重(こ匠って選択的に上層部を取り出しで選炭がなされ
る。
Another conventional coal preparation method, the jig coal separation method, involves placing a net horizontally in a closed water tank, with the upper layer of the net serving as air and the lower layer serving as an ice chamber, and raw coal being poured onto the net from one end. At the same time, the pressure in the pressurized chamber communicating with the lower part of the ice chamber is cut off and the pressure is changed in an arbitrary manner, thereby causing the water surface to vibrate up and down. By this operation, by the time the raw coal reaches the other end, the low specific gravity in the raw coal is separated into the upper layer, and the high specific gravity is in the large layer. Coal selection is done.

このジグ選炭は通常数10+nmの原炭を対象としで数
多く使用されでおり、最近では粒径1wl程度の細粒炭
までの選炭ができるように種々の改良がなされでいる。
This jig coal preparation is commonly used for raw coal of several tens of nanometers, and recently various improvements have been made to enable coal preparation down to fine coal with a particle size of about 1 wl.

しかし、この方法にあっても、排水に含まれる汚泥の処
理を始めとして重液選炭と同様の問題がある。
However, this method also has the same problems as heavy liquid coal preparation, including the treatment of sludge contained in wastewater.

次に、テーブル選炭法、レオ選炭法は共に水を選別媒体
とするもので、前者は処理能力に対する設置面積が大き
くなる問題、後者は選別梢度が悪く限られた炭種にしか
利用できないという固有の問題があり、両者共に重液選
炭やジグ選炭と同様の問題を持つ。また、浮遊選炭は0
.3 m径以下の微粉炭を対象とするもので、原炭を水
性孜に懸濁させ、水槽底部より窒気を圧送攪拌し、水に
儒れ(こくい石炭粒子を気泡表面に捕集しで水1nj上
に表出させ、泥や石、内分を水中に残して選炭する。こ
の方法は微粉状で取り汲いできる利点を有し、数多くイ
υ用され始めで−はいるが、汚v1処理1選戻後脱水・
乾燥等の付m i反備の問題を残している。
Next, both the table coal separation method and the rheo coal separation method use water as a sorting medium, and the former has the problem of requiring a large installation area relative to its processing capacity, while the latter has poor screening efficiency and can only be used for a limited number of coal types. Both have their own problems, similar to heavy liquid coal preparation and jig coal preparation. In addition, flotation coal is 0
.. This method targets pulverized coal with a diameter of 3 m or less. Raw coal is suspended in an aqueous solution, nitrogen is pumped in from the bottom of the water tank, and the water is immersed (thick coal particles are collected on the surface of the bubbles). The coal is exposed above 1nj of water, and the mud, stones, and internal parts are left in the water to prepare the coal.This method has the advantage of being able to be collected in fine powder form, and is beginning to be used in many cases. Dirt V1 treatment 1 Dehydration after re-selection
Problems with preparation such as drying remain.

また、オーrルアグロメレーションは微粉炭を水中に懸
濁させ、これに一定量の重油を混入・攪拌して親油性で
ある石炭粒子を、m?fi1をバインダとして擬巣造粒
し、スクリーンで水および泥・石質分と分離するもので
ある。こ内方法においてもまた、汚排水処理の問題、大
葉の重油の消費の問題、造粒炭のためオリ用上の制限を
受ける等の問題を残している。
In addition, in all agglomeration, pulverized coal is suspended in water, and a certain amount of heavy oil is mixed and stirred to form lipophilic coal particles. Fi1 is used as a binder to form pseudo-foam granules, and is separated from water and mud/stone components using a screen. This method also has problems such as the problem of wastewater treatment, the problem of consumption of heavy oil from shiso leaves, and the restrictions on the use of charcoal due to the granulated coal.

本発明は、上述の従来装置の欠点を除去し、汚泥処理、
脱水、乾燥工程を省略もしくは開端化することの可能な
粉体選別装置を提供することを目的としでいる。本発明
によれば、微粉状に粉砕された被選別粉体を回転形fi
電装置に供給し、回転体と粒子との衝突による摩擦帯電
を生せしめ、その後帯電した粉粒体を一対の平行平板d
極により直流電界を発生させた選別室に導き、その帯電
屏に応じで分離することによって目的が達成される。
The present invention eliminates the drawbacks of the above-mentioned conventional equipment, and provides sludge treatment,
It is an object of the present invention to provide a powder sorting device that can omit or open-end the dehydration and drying steps. According to the present invention, the powder to be sorted, which has been ground into fine powder, is
The particles are supplied to an electric device to generate frictional electrification due to collision between the rotating body and the particles, and then the charged powder is transferred to a pair of parallel flat plates d.
The purpose is achieved by introducing a direct current electric field into a sorting chamber with poles and separating it according to the charged screen.

以下に本発明の実測例を図面に基づいて説明する。Below, actual measurement examples of the present invention will be explained based on the drawings.

第1図はこの発明の一実施例として石炭を対象とした選
炭工程図を示したものである。この工程では、まず原炭
は破砕機lにより適度の大きさに砕かれ、ホッパ2に貯
留される。この貯留された原炭は粉砕ミル3に入り、こ
こて例えば200メツシユ以下まてに微粉砕される。こ
の粉砕ミル3では必要に応じで、破線31.32に示さ
れる方向(こ乾燥仝気あるいは不燃ガス(粉44発が予
想されるおきに使用される)が流通されて粉体は一定の
乾燥がなされる。粉砕の乾燥された粉体は、矢印41で
示すようIこ定量浜松フィーダ4に導かれる。定量供給
フィーダ4から経路42に送出される粉体の逆出量は、
帯覗装置5の回転体の回転数に対応した一足値に保たれ
る。帯電装置5で、粉体粒子は後述する回転体との相対
速度差に応じて摩擦力を受け、成分に応じた早鰯′成荷
を得た後、静電分離室9に送り込才れる。静電分61f
室9ではそれぞれ粉体が高層質分、炭灰混合分9石質分
に分離され、高層・4分は矢印91て示すようlこ分離
され製品としで、人質分は矢印93て示すように分離さ
れ廃棄物々して処理される。炭・灰混合分は、矢印92
に示すように再選工程(こ入るために定酸供給フィーダ
4に戻されるか、または製品または廃棄物としで処理さ
れる。
FIG. 1 shows a coal selection process diagram for coal as an embodiment of the present invention. In this process, raw coal is first crushed into appropriate sizes by a crusher 1 and stored in a hopper 2. This stored raw coal enters a crushing mill 3, where it is finely crushed into, for example, 200 meshes or less. In this grinding mill 3, if necessary, dry air or non-flammable gas (used every time 44 powder shots are expected) is passed in the direction shown by broken lines 31 and 32 to keep the powder at a constant level of dryness. The pulverized and dried powder is guided to the metering Hamamatsu feeder 4 as shown by the arrow 41.The amount of powder sent back from the metering feeder 4 to the path 42 is:
The value is maintained at a value corresponding to the rotation speed of the rotating body of the band viewing device 5. In the charging device 5, the powder particles are subjected to a frictional force according to the relative speed difference with the rotating body, which will be described later, and after obtaining the early sardine charge according to the component, they are sent to the electrostatic separation chamber 9 where they are separated. . Electrostatic charge 61f
In chamber 9, the powder is separated into a high-grade fraction and a coal ash mixture with 9 mineral fractions.The high-grade fraction is separated into 1 pieces as shown by an arrow 91 and made into a product, and the hostage fraction is divided into 9 parts as shown by an arrow 93. Separated and treated as waste. The charcoal/ash mixture is indicated by arrow 92.
It is either returned to the constant acid supply feeder 4 for re-selection process (as shown in FIG. 1) or disposed of as product or waste.

次に、上記選炭工程において本発明の生体となる帯電装
置5について説明する。第2図は回転体を含む帯電装置
の構成の一実施例を示すもので、回転軸51に、その断
面形状が第3図に示すようにV字状をなす円錐殻52が
取り付けられており、図示していない駆動源により前記
回転軸51を介して矢印54の方向またはその逆方向I
こ回転される。前記円呻殻52の上湾部には被選別粉体
供給口53が突出しており、これより分体が供給される
。円錐殻52の゛回転−こより、その表面近傍lこは矢
印55で示すような回転方向と矢印55で示すような遠
心方向との合成された方向への気流が発生する。通常は
、回転方向の気流速度が遠心方向の気流速度よりはるか
lこ大きい。従がって、粒体供給口53より送出された
粉体粒子Qは、円錐殻52の上表面近傍で、重力による
力57と同時に遠心力58とにより、円錐殻52の表面
半径方向(こ57および58Q〕力を受け、さらに表面
に垂直方向への押し付は力59を受ける。それ故、円錐
殻52の回転数を適当Iことれば、粉体粒子Qは押し付
は力59に比例した摩擦力を受けて、円錐鉄材料と粒子
成分とで決まる摩擦山5荷を得ること(こなり、効果的
な摩擦帯電を行fsイっせることかできる。
Next, the charging device 5 that becomes the living body of the present invention in the coal selection process will be described. FIG. 2 shows an example of the configuration of a charging device including a rotating body, in which a conical shell 52 having a V-shaped cross section is attached to a rotating shaft 51, as shown in FIG. , the direction of arrow 54 or the opposite direction I through the rotating shaft 51 by a drive source (not shown).
This is rotated. A powder supply port 53 to be sorted protrudes from the upper curved portion of the circular shell 52, through which the separated particles are supplied. Due to the rotation of the conical shell 52, an air current is generated in the vicinity of its surface in a direction that is a combination of the rotational direction as shown by the arrow 55 and the centrifugal direction as shown by the arrow 55. Typically, the rotational airflow velocity is much greater than the centrifugal airflow velocity. Therefore, the powder particles Q sent out from the granule supply port 53 are moved near the upper surface of the conical shell 52 in the radial direction of the surface of the conical shell 52 (in this 57 and 58Q], and when pressed in the direction perpendicular to the surface, the force 59 is applied.Therefore, if the rotational speed of the conical shell 52 is set to an appropriate value I, the powder particle Q is pressed under the force 59. By receiving a proportional frictional force, it is possible to obtain five friction peaks determined by the conical iron material and the particle components (by bending, it is possible to perform effective frictional charging).

第4図は他の回転体の実施例を示すもので、図示しない
駆動源に接続するための回転軸501に、接触子となる
金属aJ#502を多数放射状に取りつけるための細惺
取付軸501が取り付けられでいる。この回転体が矢印
510の方向または逆方向に回転すると、回転体の上下
lこは矢印511および512に示す方向の気流が発生
し、回転体の周囲には矢印513で示すように外向きの
気流が発生する。このとき、接触子として細線を用いで
いるので、接触子の回転速度と、接触、子の回転領域を
含む回転転周囲のガスの旋回速度♂の間には大きな速度
差が発生する。従がって、被選別粉体を軸方向から供給
すると、粉体粒子は全て接触子の回転領域を通って矢印
513の方向に飛び出すこ6になるが、粉体粒子はガス
の流線に沿って移動するため、接触子と衝突して充分な
M擦m荷を受けることができる。
FIG. 4 shows an embodiment of another rotating body, in which a narrow mounting shaft 501 is used to radially attach a large number of metal aJ#502 serving as contacts to a rotating shaft 501 for connecting to a drive source (not shown). is attached. When this rotating body rotates in the direction of arrow 510 or in the opposite direction, air currents in the directions shown by arrows 511 and 512 are generated above and below the rotating body, and air currents flow outward as shown by arrow 513 around the rotating body. Airflow occurs. At this time, since a thin wire is used as the contact, a large speed difference occurs between the rotational speed of the contact and the swirling speed ♂ of the gas around the rotation including the rotation area of the contact and the child. Therefore, if the powder to be sorted is fed from the axial direction, all the powder particles will fly out in the direction of the arrow 513 through the rotation area of the contactor, but the powder particles will not follow the flow line of the gas. Since it moves along the same direction, it can collide with the contact and receive a sufficient M friction load.

以上2つの回転体の実施例を示したが、回転体の構造は
説明の中からも明らかなよう(こ、回転体周囲に発生す
る気流に影響されずに確実な摩擦を発生するものであれ
ば良い。また粉体の供給は、中空の回転軸を用いてこの
中を通して行f、Qつでも良い。
The above two embodiments of the rotating body have been shown, but as is clear from the explanation, the structure of the rotating body is one that generates reliable friction without being affected by the airflow generated around the rotating body. The powder may also be supplied by using a hollow rotating shaft and passing it through the shaft in rows f and Q.

第5図および第6図は、前述の円錐殻を持つ帯電装置を
用いた場合の静′成分離室9との関係を示す。靜直分1
1室9は外壁900で密閉され、この中に陰・陽の一対
の平板電極901および902を設けており、静電分離
室9の上方には被選別粉体の定量供給フィーダ4が、ま
゛た静電分離室9の下端部には精製後の粉体の取り出し
用ホッパ904゜905.906が設けられている。i
電装置5は、この選別室の中央部に位1;賀するように
配されており、帯電装R5から飛び出した帯電粒子は、
平板電極901を902によって作られる直流電界の作
用を受け、正に帯電した粒子は陰極側へ、負に帯電した
粒子は11極側/>亡分離選別される。また、充分な摩
擦電荷の得られなかった粒子は、中央のホッパ905へ
と落下する。平板電極901と902に付着した選別後
粉体粒子は、図ボしでいない手段イこより、ホッパ90
4および906にそれぞれ掻き洛される。
5 and 6 show the relationship with the static component separation chamber 9 when the above-mentioned charging device having a conical shell is used. Seizokubu 1
The first chamber 9 is sealed with an outer wall 900, and a pair of negative and positive flat plate electrodes 901 and 902 are installed in the chamber. At the lower end of the electrostatic separation chamber 9, hoppers 904, 905, and 906 for taking out the purified powder are provided. i
The charging device 5 is arranged in the central part of the sorting chamber so that the charged particles flying out from the charging device R5 are
The plate electrode 901 is subjected to the action of a DC electric field created by the plate electrode 902, and positively charged particles are separated and sorted toward the cathode side, and negatively charged particles are separated and sorted toward the 11-electrode side. Particles that have not been sufficiently charged by friction fall into the central hopper 905. The sorted powder particles adhering to the plate electrodes 901 and 902 are removed by means other than the hopper 90.
4 and 906, respectively.

このように帯′亀装置5を両平板ト極の中央部に配する
ことIこより、回転体の回転fこする選別室内の乱気流
の影響で平板電極間9()1と902で形成される直流
電界外へ飛び出す荷電粒子がぽくなり、平板電極901
.902お外壁900の間に作られる電界によって回収
不能部分への帯電粒子の付着を防止できる。
By arranging the band device 5 in the center of both flat plate top electrodes in this way, the rotation of the rotating body causes a turbulent air flow in the sorting chamber to form a gap between the flat plate electrodes 9()1 and 902. Charged particles flying out of the DC electric field become bulky, and the flat electrode 901
.. The electric field created between the outer wall 902 and the outer wall 900 can prevent charged particles from adhering to the unrecoverable portion.

本装置を用いて、200メツシユ以下に砕いた灰分20
6Aの石炭の選別実験を行なったところ、陰極1111
1に灰分9%の精製炭内払また陽極側に灰分45%茜大
分炭が得られた。さらに、木製[3台を用いた多段選別
では、灰分5%の精製炭と、灰分85チの硬で6分と灰
分30%の中間物とを得た。
Using this device, the ash content is 20% crushed to 200 mesh or less.
When we conducted a sorting experiment on 6A coal, we found that the cathode 1111
In No. 1, refined coal with an ash content of 9% was obtained internally, and Akane Oita coal with an ash content of 45% was obtained on the anode side. Furthermore, in multi-stage sorting using three wooden machines, refined coal with an ash content of 5%, and intermediates with a hard ash content of 85 cm and an ash content of 30% were obtained.

なお1帯電装置1を材料としては、銅、ステンレススチ
ールが良い特性を示し、灰分を負極性に、炭分を陽極性
に帯′屯させたが、材料はこの2者に限られるものでは
すく、炭分と灰分の中間の(fl N性向を持つもので
あれば良い。
As for the materials for the charging device 1, copper and stainless steel have shown good characteristics, and the ash content is negatively polarized and the carbon content is positively polarized, but the materials are not limited to these two. , which has a (flN propensity) intermediate between coal content and ash content.

本発明においては、粉体粒子を摩擦により帯電させ、こ
れを直流′亀界内に通しで分離精製するという物質の電
気的性質を利用したものであるため、従来方法と比べて
次のような特徴を有する。すなわち、 ■粉体の処理工程中に水を使用しでいないので、汚泥を
発生せず、灰質分による環境汚染がない。
In the present invention, powder particles are charged by friction and then separated and purified by passing them through a direct current (DC) field, making use of the electrical properties of substances. Has characteristics. That is, (1) Since no water is used during the powder processing process, no sludge is generated and there is no environmental pollution caused by ash content.

また、製品の脱水・乾燥という後処理が不要となり、シ
ステムの簡略化と処理コストの低減ができる。
Additionally, there is no need for post-processing such as dehydration and drying of the product, simplifying the system and reducing processing costs.

(2)鞘製品が既に微粉化されでいるので、製品使用時
の粉砕工程は小製である。
(2) Since the sheath product has already been pulverized, the pulverization process when using the product is small.

(3)静電気を利用しでいるため、比重の差の小さいも
のや磁気特性差の少ないものも含めた面精度の分KIB
、がてきる。
(3) Since static electricity is used, surface accuracy is required, including those with small differences in specific gravity and small differences in magnetic properties.
, comes.

(4)帯電装置が回転体であるので運転コストが小さく
、また静′jに分離室内に配置できスペース効率が高い
(4) Since the charging device is a rotating body, the operating cost is low, and it can be placed quietly in the separation chamber, resulting in high space efficiency.

ちなみに、粉体のM擦帝凧は粉体の加入帽送時。By the way, the M-soldier kite made of powder was sent when the powder was added.

サイクロン捕集時。流動層などでも発生するが、積極的
な帯電装置とし、では消費動力か大きく、例えはサイク
ロンで本発明と同号の1個際亀荷を得るには10倍以上
の動力を要した。また流*b )t4では動力が大きい
だけでなく同一成分粒子間衝突での正負αJr発生があ
るため充分な分配ができなかった。
During cyclone collection. Although it occurs in a fluidized bed, it requires a positive charging device, which consumes a lot of power. For example, in a cyclone, it takes more than 10 times the power to obtain the same charge as in the present invention. In addition, in the flow *b) t4, sufficient distribution was not possible because not only the power was large but also positive and negative αJr were generated due to collisions between particles of the same component.

以上、石炭の精製を実施例としで取り上げて説明を加え
たが、本発明はこれに限定されるものではなく、例えば
粉末薬品の精製、粉末塗料の絹製・P)生、粉末原料か
らの異物除去など二種類以上の粉末混合体から特定の物
質を抽出する装置として利用できる。
The above description has been given using the refining of coal as an example, but the present invention is not limited thereto. It can be used as a device to extract a specific substance from a mixture of two or more types of powder, such as removing foreign substances.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である石IA、を対象とした
選別装置の概略構成図、第2図および第3図は帯電装置
の一構成例を示す概略図と動作説明図、第4図は他の1
つの帯電装置の実施例の概略図、第5図および第6図は
帯電装置を含む静′鵡分離室構成の一実施例の平面図と
A−A11かに沿う断面図である。 l:破砕機、2:ホッパ、3:粉砕ミル、4:定量供給
フィーダ、5:帯電装置、9:靜延分廂室、51.50
1:回転軸、52:円641!殻、503’:細線取付
軸、502:細線、53:粉体供給口、900:外壁、
901,902:平行平板電極、90’4,905.9
06:ホッパ。 ブ1 圀 ヤ2圀 一才3関 才4閃 、312
FIG. 1 is a schematic configuration diagram of a sorting device for stone IA, which is an embodiment of the present invention, and FIGS. Figure 4 is the other 1
5 and 6 are a plan view and a sectional view taken along line A-A11 of one embodiment of the structure of a static parrot separation chamber including a charging device. 1: Crusher, 2: Hopper, 3: Grinding mill, 4: Constant supply feeder, 5: Charging device, 9: Silent branch room, 51.50
1: Rotation axis, 52: Circle 641! shell, 503': thin wire mounting shaft, 502: thin wire, 53: powder supply port, 900: outer wall,
901,902: Parallel plate electrode, 90'4,905.9
06: Hopper. Bu 1 Kuniya 2 Kuniichisai 3 Kansai 4sen, 312

Claims (1)

【特許請求の範囲】 1)2種類以上の異なる成分からなる混合粉体を特定の
成分毎に分離選別するものにおいて、高速回転する回転
体とこの回転体表面に被選別粉体粒子を衝突させ摩擦電
荷を付与するための粉体供給手段とからなる粒子帯電部
と、直流電圧が印加された一対の′α極を有し、この電
極間に前記帯電部より供給される帯電粒子をその帯電極
性に応じて分離する靜′祇分離部とを備えることを特徴
とする粉体選別装置。 2、特許請求の範囲第1項に記載の装置におい虱鉛直方
向に配置された回転軸と、中心を通る断面がV字状をな
す円錐殻と、回転軸を駆動する手段とからなり、前記円
錐殻を少なくとも1つ以上前記回転軸に同軸的に取り付
けて回転体としたことを特徴する粉体選別装置。 3)%許請求の範囲第1項に記載の装置において、鉛直
方向に配置された回転軸とこの軸の周囲に放射状に多数
の金属細線を取り付けて回転体とじたこ七を特徴とする
粉体選別装置。 4)特許請求の範囲第1項lζ記載の装置において、回
転体を直流電界を発生する一対の「毬極の中央部に位置
するように配置したことを特徴とする粉体選別装置。
[Scope of Claims] 1) In a device that separates and sorts a mixed powder consisting of two or more different components into specific components, powder particles to be sorted collide with a rotating body that rotates at high speed and the surface of this rotating body. It has a particle charging section consisting of a powder supply means for imparting a frictional charge, and a pair of 'α poles to which a DC voltage is applied, between which the charged particles supplied from the charging section are charged. What is claimed is: 1. A powder sorting device comprising: a separator that separates according to polarity; 2. The device according to claim 1, comprising: a rotating shaft disposed vertically; a conical shell having a V-shaped cross section passing through the center; and means for driving the rotating shaft; A powder sorting device characterized in that at least one conical shell is coaxially attached to the rotating shaft to form a rotating body. 3) Percentage Percentage The device according to claim 1, characterized by a rotating shaft arranged in the vertical direction and a large number of fine metal wires attached radially around this shaft to form a rotating body. Sorting device. 4) A powder sorting device according to claim 1, characterized in that the rotating body is disposed at the center of a pair of bar poles that generate a DC electric field.
JP16927382A 1982-09-28 1982-09-28 Sorter for powdery body Pending JPS5959260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16927382A JPS5959260A (en) 1982-09-28 1982-09-28 Sorter for powdery body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16927382A JPS5959260A (en) 1982-09-28 1982-09-28 Sorter for powdery body

Publications (1)

Publication Number Publication Date
JPS5959260A true JPS5959260A (en) 1984-04-05

Family

ID=15883446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16927382A Pending JPS5959260A (en) 1982-09-28 1982-09-28 Sorter for powdery body

Country Status (1)

Country Link
JP (1) JPS5959260A (en)

Similar Documents

Publication Publication Date Title
US3086718A (en) Method and apparatus for separating metallic particles
KR101569584B1 (en) Electric charging unit and electroststic separation apparatus using the same
CN1354694A (en) Method and apparatus for sorting particles with electric and magnetic forces
KR101215121B1 (en) Method of separating foreign particle
CN109513521B (en) Mineral processing technology for recovering iron from asbestos tailings
US4778594A (en) Apparatus for magnetic separation of paramagnetic and diamagnetic material
US3031079A (en) Electrostatic separation
JP2012201936A (en) Nickel concentrating apparatus
US3493108A (en) Concentration of asbestos ore
CN108940879B (en) Plasma physical ore sorting processing method and system
JPS5959260A (en) Sorter for powdery body
CN113457851A (en) Rotary friction electrostatic separator
WO2017178979A1 (en) Sillimanite separation process
JPS5949858A (en) Sorting device of powder
JPS59127659A (en) Powder classifying apparatus
JPS58163457A (en) Apparatus for sorting powdery substance
JPS58174253A (en) Screening device for powder
CN219560357U (en) Sorting turntable for sorting equipment
JPS5896695A (en) Process for dry deashing of coal
RU2739980C1 (en) Electrodynamic and magnetic separation method and device for implementation thereof
JPS5851946A (en) Powder sorting apparatus
CN220531874U (en) Ore dressing system of iron ore
JPS5840163A (en) Sorter for powdery body
RU59445U1 (en) ENRICHMENT UNIT
AU645912B2 (en) Solid-solid separations utilizing alkanol amines