JPS595905A - Device for detecting position of body - Google Patents

Device for detecting position of body

Info

Publication number
JPS595905A
JPS595905A JP11644582A JP11644582A JPS595905A JP S595905 A JPS595905 A JP S595905A JP 11644582 A JP11644582 A JP 11644582A JP 11644582 A JP11644582 A JP 11644582A JP S595905 A JPS595905 A JP S595905A
Authority
JP
Japan
Prior art keywords
measured
area
amount
sensor
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11644582A
Other languages
Japanese (ja)
Inventor
Fumio Tanei
多根井 文男
Masaharu Ishida
石田 雅治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP11644582A priority Critical patent/JPS595905A/en
Publication of JPS595905A publication Critical patent/JPS595905A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/028Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring lateral position of a boundary of the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/342Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells the sensed object being the obturating part

Abstract

PURPOSE:To measure the position of a body highly accurately without contact, by detecting the position of a body to be measured in a monitored region between a fixed infrared ray sensor and the surface of a monitored background based on the change in the amount of the infrared rays from the monitored region, which are detected by a sensor. CONSTITUTION:An infrared ray sensor 2, in which the upper surface of a lower plate 1b is made to be a surface S of a monitored background, is provided on the central part of an upper plate 1a of a ?-shaped casing 1. The sensor 2 is connected to an amplifier 6, an operating device 7, and a display device 8 by a connector 4 and a lead wire 5. A body to be measured 3 is brought to a reference position. The difference between the amount of radiated infrared rays from a monitored region V, which are inputted to the sensor 2, and the amount of the radiated infrared rays from the monitored region V, which are inputted to the sensor 2 when the body 3 is displaced from the reference position, is obtained. The position of the body 3 is detected based on said difference. Thus the position of the body 3 can be readily measured with good accuracy without contact and without receiving light.

Description

【発明の詳細な説明】 不発明は、赤外線センサーを利用した全く新規な構成の
物体位置検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an object position detection device having a completely new configuration using an infrared sensor.

例えば写真用フィルム等の製造工程においてフィルムの
エツジ位置を検出する場合等には、フォトトランジスタ
のように通常の光を利用する手段は感光という間頓があ
るために利用することができず、また接触式センサー金
柑りる手段も、フィルムに傷rつけてしまうおそれがあ
るから、やはり不適当である 不発明は、かかる実情に鑑みてなされたものであって、
その目的は、感光という問題を生じることが無く、しか
も、被測定物体に対して非接触状態で、その物体の位置
を容易−こかつ精度良く測定することができるとともに
、極めて簡素な構成で安価に製造可能な物体位置検出装
置を提供せ勺とすることにある。
For example, when detecting the edge position of a film in the manufacturing process of photographic film, etc., means that use normal light, such as phototransistors, cannot be used because of the interruption of exposure. The non-invention, which is also inappropriate since there is a risk of damaging the film due to the possibility of damaging the film, was made in view of the actual situation.
The purpose is to be able to easily and accurately measure the position of an object without contacting it without causing the problem of exposure to light, and to have an extremely simple configuration and low cost. The object of the present invention is to provide an object position detection device that can be manufactured in a number of ways.

上記目的を達成すべく、本発明による物体位置検出装置
は、固定的に設けられた赤外線センサーとその監視背景
面との間の監視域内に被測定物体を配置可能に構成する
とともに、前記被測定物体が基準位置番こあるとき前記
赤外線センサーに入射する前記監視域からの輻射赤外線
量と、前記被測定物体が基準位置から変位したとき前記
赤外線センサーに入射する前記監視域からの輻射赤外線
量との差に基いて前記被測定物体の位11’に検出すべ
く構成しであることを特徴とする。
In order to achieve the above object, an object position detection device according to the present invention is configured to be able to place a measured object within a monitoring area between a fixedly provided infrared sensor and its monitoring background surface, and an amount of infrared radiation from the monitoring area that enters the infrared sensor when the object is at a reference position; and an amount of infrared radiation from the monitoring area that enters the infrared sensor when the object to be measured is displaced from the reference position. The measuring object is characterized in that it is configured to detect the object to be measured based on the difference in position 11'.

上記の構成によれば、被測定物体を赤外線センサーの監
視域内に位置させた状態で、該赤外線センサーによって
検出される監視域からの輻射赤外線量の変化に基いて、
容易かつ高精度で被測定物体の基準位置からの変位、即
ち、位置を測定できるのであり、通常の光音必要とする
フォトトランジスタや接触式のセンサー音用いるのでは
無く、赤外線を利用するものであって、しかも、非接触
式の赤外線センサーを利用するものであるから、たとえ
被測定物体が感光性を有するものであったり柔かいもの
であったりする場合でも、感光や損傷のおそれが無く安
心して利用することができる。
According to the above configuration, when the object to be measured is located within the monitoring area of the infrared sensor, based on the change in the amount of infrared radiation from the monitoring area detected by the infrared sensor,
It is possible to easily and highly accurately measure the displacement of an object from its reference position, that is, its position, and it uses infrared rays instead of using phototransistor or contact sensor sound, which normally requires optical sound. Moreover, since it uses a non-contact infrared sensor, even if the object to be measured is photosensitive or soft, there is no risk of exposure or damage, so you can use it with confidence. can be used.

また、装置の特別な構成としCは赤外線センサーとその
背景面、及び、それらを固設するためのケーシングのみ
で済み、他は汎用のアンプや表示器を接続するだけとい
う極めて簡素な構成であるから、非常に安価なものにで
きる。
In addition, the special configuration of the device C is an extremely simple configuration that only requires an infrared sensor, its background, and a casing for fixing them, and the rest is only connected to a general-purpose amplifier and display. Therefore, it can be made very cheap.

殊に、赤外線上ンリ“−の監視背景面を、同一時点(同
一温度条ff=1において互いIこ異なる量の赤外線が
輻射されるように赤外線輻射率の異なる複数の面積部分
を適宜組合わせて構成すれば、被測定物体の赤外線輻射
率や温度条件に拘わりなく確実に精度良い測定を行なえ
るものにできる。
In particular, the background surface for monitoring infrared rays is suitably combined with a plurality of areas having different infrared emissivity so that different amounts of infrared rays are radiated at the same point in time (same temperature condition ff = 1). With this configuration, accurate measurement can be reliably performed regardless of the infrared emissivity and temperature conditions of the object to be measured.

即ち、監視背景面の温度及び赤外線輻射率が被測定物体
のそれよりも十分に高い場合には、被測定物体からの輻
射赤外線量を測定上無視できるので、上記の構成によっ
て被測定物体の位置を検出できるが、監視背景面と被測
定物体の温度及び赤外線輻射率が同程度である場合には
、監視背景面の単位面積当りの輻射赤外線量と、被測定
物体の単位面積当りの輻射赤外線量がほぼ等しいので、
被測定物体が基準位置から変位しても、赤外線センサー
に入射する赤外線の総量には実質的な変動が生じないこ
と番こなる。この点、監視背景面金、被測定物体と交差
する又は重なる境界線によって分割さt′した赤外線輻
射率の異なる複数の面積部分から構成して、被測定物体
の片側にのみ複数の面積部分が位置するか、あるいけ、
被測定物体の両側に異種の面積部分が位置するように構
成すれば、被測定物体の温度が監視背景面の温度と等し
く、かつ、輻射率がいずれか1つの面積部分の輻射率と
同じであっても、他の面積部分とは輻射率が異なること
になり、換言すれば、被測定物体の単位面積当りの輻射
赤外線量がいずれか1つの面積部分の単位面積当りの輻
射赤外線量と等しくても、他の面積部分とけ単位面積当
りの輻射赤外線量が異なることになり、しかも、被測定
物体が基準位置から変位することにより、前記他の面積
部分の実質的な面積、つまり、被測定物体によって蓮ざ
られていない部分の広さが変化するので、赤外線センサ
ーに入射する赤外線の総量が、被測定物体の変位量に相
当する量だけ変動することになる。
In other words, if the temperature and infrared emissivity of the monitoring background surface are sufficiently higher than those of the object to be measured, the amount of infrared rays radiated from the object to be measured can be ignored in the measurement, so the above configuration can be used to determine the position of the object to be measured. However, if the temperature and infrared emissivity of the monitoring background surface and the measured object are similar, the amount of radiated infrared rays per unit area of the monitoring background surface and the amount of radiated infrared rays per unit area of the measured object can be detected. Since the amounts are almost equal,
Even if the object to be measured is displaced from the reference position, the total amount of infrared rays incident on the infrared sensor does not substantially change. In this respect, the monitoring background surface is composed of a plurality of area parts with different infrared emissivity t' divided by boundary lines that intersect or overlap with the object to be measured, and the plural area parts are only on one side of the object to be measured. To locate or to go;
If the configuration is such that different areas are located on both sides of the object to be measured, the temperature of the object to be measured is equal to the temperature of the monitoring background surface, and the emissivity is the same as that of any one area. Even if there is, the emissivity will be different from other area parts. In other words, the amount of radiated infrared rays per unit area of the object to be measured is equal to the amount of radiated infrared rays per unit area of any one area part. However, the amount of radiated infrared rays per unit area differs depending on the other area, and furthermore, as the measured object is displaced from the reference position, the actual area of the other area, that is, the measured object Since the area of the unobstructed area changes depending on the object, the total amount of infrared rays incident on the infrared sensor changes by an amount corresponding to the amount of displacement of the object to be measured.

従って、被測定物体の赤外線輻射率や温度条件に拘わり
なく、被測定物体の位置を精度よく検出できるのである
Therefore, the position of the object to be measured can be detected with high accuracy regardless of the infrared emissivity and temperature conditions of the object to be measured.

以F1不発明の実施例全図面に基いて説明する。Hereinafter, an embodiment of the F1 invention will be explained based on all the drawings.

第1図は、本発明による物体位置検出装置を示し、コの
字状のケーシングlの上板1a中央部分に、F板1b上
面を監視背景面Sとする赤外線センサー2が固設され、
前記赤外線センサー2とその監視背景面Sの間に形成さ
れる監視域V内に被測定物体3の一縁部を配置可能に構
成するとともに、前記赤外線センサー2をコネクタ4お
よびリード線5ケ介してアンプ6、演算装v17、表示
器8Iこ接続し、前記被測定物体3が基準位置にあると
き赤外線センサー2に入射する前記監視域Vからの輻射
赤外線量と、前記被測定物体3が基準位置から変位した
とき赤外線センサー2に入射する前記監視域Vからの輻
射赤外線量との差に基いて被測定物体の位置全検出すべ
く構成しである。
FIG. 1 shows an object position detection device according to the present invention, in which an infrared sensor 2 is fixedly installed at the center of the upper plate 1a of a U-shaped casing l, with the upper surface of the F plate 1b serving as the monitoring background surface S.
The infrared sensor 2 is configured such that one edge of the object to be measured 3 can be placed within a monitoring area V formed between the infrared sensor 2 and its monitoring background surface S, and the infrared sensor 2 is connected to the infrared sensor 2 via a connector 4 and five lead wires. An amplifier 6, an arithmetic unit V17, and a display 8I are connected to each other. It is configured to detect the entire position of the object to be measured based on the difference between the amount of infrared radiation from the monitoring area V that enters the infrared sensor 2 when the object is displaced from its position.

即ち、第2図に示すよう憂こ、被測定物体3の一縁部が
監視背景面Sに対して、点線で示す基準位置にある状態
から一点鎖線で示す状態に変位したとすると、前記赤外
線センサー2の検出赤外線量が変化する。従って、物体
3の変位と赤外線センサー2の出力との関係を予めキャ
リブレーション等によって求めて前記演算装置7にメモ
リさせておくことによって、前記物体3の変位(即ち、
前記監視域Vへの侵入量の変化)に伴う前記赤外線セン
サー2による赤外線検出量の変化に基いて、物体3の基
準位置からの変位、つまり、位@を測定することができ
るのである。
That is, as shown in FIG. 2, if one edge of the object to be measured 3 is displaced from the reference position shown by the dotted line to the state shown by the dashed line with respect to the monitoring background surface S, the infrared rays The amount of infrared rays detected by sensor 2 changes. Therefore, by determining the relationship between the displacement of the object 3 and the output of the infrared sensor 2 in advance through calibration or the like and storing it in the arithmetic unit 7, the displacement of the object 3 (i.e.,
Based on the change in the amount of infrared rays detected by the infrared sensor 2 due to the change in the amount of intrusion into the monitoring area V, the displacement of the object 3 from the reference position, that is, the position can be measured.

前記監視背景面Sは、第1図に示すように、前記ケーシ
ングlの下板1bに対して例えば引出し式等によって着
脱自在に構成された略正方形のシート状捷たはパネル状
の独立部材9の上面に形成されている。なお、これは、
前記ケーシング1の下板1b上面1bに直接形成しても
よいことは勿論である。
As shown in FIG. 1, the monitoring background surface S is an independent member 9 in the form of a substantially square sheet or panel that is removably attached to the lower plate 1b of the casing l, for example, by a pull-out type. is formed on the top surface of. In addition, this is
Of course, it may be formed directly on the upper surface 1b of the lower plate 1b of the casing 1.

また、この監視背景面Sは、第2図に示すように、ひと
つの対角方向の境界線りにてふたつの面積部分S、、 
S2に分割すると共に、−万の面積部分塗装を施してあ
り、側面積部分S、、 S2が互いに異なる輻射率會有
するよう曇こ、つまり、同一温度条件下(同一時点)に
おいて互いに異なる量の赤外線全輻射するようIこ構成
しである。なお、前記各面積部分s、、 Sz’e、そ
れに塗装する色によって輻射率を変えるのではなく、た
とえ同色であっても輻射率の異なる素材を適宜組み合わ
せて構成するも良い。
Moreover, as shown in FIG. 2, this monitoring background surface S is divided into two area portions S,...
It is divided into S2, and is coated with -10,000 area parts, so that the side area parts S, S2 have different emissivity ratios. It is configured to emit all infrared radiation. Incidentally, instead of changing the emissivity depending on the color applied to each area s, , Sz'e, it is also possible to appropriately combine materials having different emissivities even if they are of the same color.

また、このように対角方向の境界線りによって2つの面
積部分S、、 S、に分割するものに限らず、第3図の
ように分割したものでもよい。要するに、被測定物体3
の一縁部を監視域V内に配置する場合は、監視背景面S
を、被測定物体3に対して交差する方向の境界線りによ
って複数の面積部分S1、S2に分割しておけばよい。
Furthermore, the area is not limited to being divided into two area portions S, , S, by diagonal boundary lines as described above, but may be divided as shown in FIG. 3. In short, the object to be measured 3
When placing one edge within the monitoring area V, the monitoring background surface S
may be divided into a plurality of area portions S1 and S2 by a boundary line in a direction intersecting the object to be measured 3.

また、第4図に示すように、被測定物体3が、その巾方
向全体にわたって監視域V内に配置1される場合は、監
視背景面St−被測定物体3と重なる境界線りによって
2つの面積部分S、、 S2に分割し、被測定物体3の
両側に異種の、つまり、輻射率の異なる面積部分S1゜
S2が位置するように構成してもよい。これらいずれの
実施例においても、被測定物体3の輻射率や温度条件に
拘らず常に確実にその物体変位に伴って赤外線センサー
の検出する輻射赤外線量が変化することとなるので、測
定不可能となることが無い。
Furthermore, as shown in FIG. 4, when the object to be measured 3 is placed within the monitoring area V over its entire width direction, two boundaries are defined by the boundary line that overlaps the monitoring background surface St and the object to be measured 3. The measuring object 3 may be divided into area portions S, . In any of these embodiments, the amount of radiated infrared rays detected by the infrared sensor always changes with the displacement of the object 3 regardless of the emissivity or temperature conditions of the object 3 to be measured, so that measurement is impossible. It will never happen.

また、第5図に示すように、前記境界線りを例えば1m
m毎というように所定間隔でステップ状に変化させてお
けば、そのステップの変り目で前記赤外線セ、ノサー2
の赤外線検出量が特異な変化をするので、こね、によっ
て、略デジタル的に物体3の変位を測定でき、この場合
には、前述のキャリブレーションを不要化できることと
なって、より一層測定を容易にすることができる。
In addition, as shown in FIG.
If the change is made stepwise at a predetermined interval such as every m, the infrared sensor and noser 2
Since the detected amount of infrared rays changes in a peculiar manner, the displacement of the object 3 can be measured almost digitally by kneading, and in this case, the above-mentioned calibration can be made unnecessary, making the measurement even easier. It can be done.

更に、前記監視背景面Sを形成する前記独立部材9ある
いは下板1bを、常時定温槽に浸しておくとか、あるい
は、サーモスタット付加熱器で一定温朋に加熱しておく
というように、前記監視背景面Sk一定温度に維持する
装置を付設しておけば、温度較正を行う面倒が無く、周
囲の温度変化の影響を受けず番こより一層精度の高い測
定を行なうことができる。
Furthermore, the independent member 9 or the lower plate 1b forming the monitoring background surface S may be constantly immersed in a constant temperature bath or heated to a constant temperature with a thermostatic heater. If a device for maintaining the background surface Sk at a constant temperature is attached, there is no need to perform temperature calibration, and the measurement can be performed with higher accuracy than the background surface Sk without being affected by changes in ambient temperature.

また、前記監視背景面Sを形成する面積部分S1、 S
2i同一部材で構成し、−万を冷却水等により冷却する
などして、夫々を異なった温度に保ち、輻射率が異なる
面積部分S、、 S、にすることができる。
Further, area portions S1 and S forming the monitoring background surface S
2i are made of the same material, and by cooling them with cooling water or the like, they can be maintained at different temperatures to form area portions S,, S, with different emissivities.

【図面の簡単な説明】[Brief explanation of drawings]

図は、本発明の実施の態様を例示すると共Iこその作用
全説明するためのものであり、第1図は全体構成図、第
2図は要部平面図、そして第3図乃至第5図は各々別実
施例を示す要部平面図である。 2・・・赤外線センサー、3・・被測定物体、S・・・
監視背景面、S、、 S2・・・面積部分、■・・・監
視域。 の  、 ン  ←
The drawings are for illustrating embodiments of the present invention and for explaining the entire operation of the present invention. FIG. 1 is an overall configuration diagram, FIG. Each figure is a plan view of a main part showing different embodiments. 2... Infrared sensor, 3... Measured object, S...
Monitoring background surface, S2...area part, ■...monitoring area. No, N ←

Claims (1)

【特許請求の範囲】 ■ 固定的に設けられた赤外線センサーとその監視背景
面との間の監視域内に被測定物体を配IW可能に構成す
るとともに、前記被測定物体が基準位置にあるとき前記
赤外線センサーに入射する明記監視域からの輻射赤外線
量と、前記被測定物体が基準位置から変位したとき前記
赤外線センサーに入射する前記監視域からの輻射赤外線
量との差に基いて前記被測定物体の位置を検出すべく構
成しであることを特徴とする物体位置検出装置。 ■ 前記監視背景面を、前記被測定物体と交差する又は
重なる境界線によって分割された赤外線輻射率の異なる
複数の面積部分から構成して、前記被測定物体の片側に
のみ複数の面積部分が位置するか、あるいけ、前記被測
定物体の両側に異種の面積部分が位1uするように構成
しであることを特徴とする特許請求の範囲第■項に記載
の物体位置検出装置。
[Scope of Claims] ■ An object to be measured can be placed in a monitoring area between a fixedly provided infrared sensor and its monitoring background surface, and when the object to be measured is at a reference position, The object to be measured is determined based on the difference between the amount of infrared rays radiated from the specified monitoring area that enters the infrared sensor and the amount of infrared rays radiated from the monitoring area that enters the infrared sensor when the object to be measured is displaced from the reference position. An object position detection device characterized in that it is configured to detect the position of an object. (i) The monitoring background surface is composed of a plurality of area portions having different infrared emissivities divided by boundary lines that intersect or overlap with the object to be measured, and the plurality of area portions are located only on one side of the object to be measured. The object position detecting device according to claim 1, wherein the object position detecting device is configured such that different areas are arranged on both sides of the object to be measured.
JP11644582A 1982-07-03 1982-07-03 Device for detecting position of body Pending JPS595905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11644582A JPS595905A (en) 1982-07-03 1982-07-03 Device for detecting position of body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11644582A JPS595905A (en) 1982-07-03 1982-07-03 Device for detecting position of body

Publications (1)

Publication Number Publication Date
JPS595905A true JPS595905A (en) 1984-01-12

Family

ID=14687283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11644582A Pending JPS595905A (en) 1982-07-03 1982-07-03 Device for detecting position of body

Country Status (1)

Country Link
JP (1) JPS595905A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62173491A (en) * 1986-01-28 1987-07-30 株式会社 アスキ− Display unit
EP0903560A2 (en) * 1997-09-23 1999-03-24 Kai Stapelfeldt Optoelectronic sensor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62173491A (en) * 1986-01-28 1987-07-30 株式会社 アスキ− Display unit
EP0903560A2 (en) * 1997-09-23 1999-03-24 Kai Stapelfeldt Optoelectronic sensor device
EP0903560A3 (en) * 1997-09-23 2000-11-15 Kai Stapelfeldt Optoelectronic sensor device

Similar Documents

Publication Publication Date Title
TW440687B (en) Radiation thermometer and radiation sensor with multiple sensor elements and method for determining a temperature
TW440686B (en) Method for determining a temperature and radiation thermometer with multiple infrared sensor elements
JPH07260579A (en) Infrared detector
JP2008145133A (en) Radiation thermometer
GB2167206A (en) Apertured concave reflector optical system
KR20010079808A (en) Method for determining temperature, radiation thermometer with several infrared sensor elements
JP3208320B2 (en) Non-contact temperature sensor
JPS6112202B2 (en)
JPS595905A (en) Device for detecting position of body
US5007432A (en) Radiation detection method and apparatus
ITMI970505A1 (en) DEVICE FOR DETECTION OF OPTICAL PARAMETERS OF A LASER BEAM
CN214793503U (en) Temperature measuring device
JPS63286729A (en) Thermopile detector
JP3813057B2 (en) Temperature detector and air conditioner using the same
JPS6177728A (en) Thermocouple type infrared detecting element
JP3775034B2 (en) Infrared detector and radiation thermometer using the same
JP4710510B2 (en) Orientation meter
JP2926521B2 (en) Lightwave rangefinder
US20220364930A1 (en) Radiation thermometer, temperature measurement method, and temperature measurement program
JPH09218086A (en) Infrared sensor
JPH06147995A (en) Infrared detecting device
JPH06258144A (en) Temperature sensor
KR0181992B1 (en) Method and apparatus for measuring geometrical distortion of cathode ray tube monitor
JPH0656328B2 (en) Radiation thermometer for textiles
JP2000139849A (en) Infrared detector and radiation clinical thermometer using the same