JPS5959041A - Superconductive rotor - Google Patents

Superconductive rotor

Info

Publication number
JPS5959041A
JPS5959041A JP57167708A JP16770882A JPS5959041A JP S5959041 A JPS5959041 A JP S5959041A JP 57167708 A JP57167708 A JP 57167708A JP 16770882 A JP16770882 A JP 16770882A JP S5959041 A JPS5959041 A JP S5959041A
Authority
JP
Japan
Prior art keywords
layer
shield
radiant heat
heat radiation
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57167708A
Other languages
Japanese (ja)
Inventor
Koichi Inoue
浩一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57167708A priority Critical patent/JPS5959041A/en
Publication of JPS5959041A publication Critical patent/JPS5959041A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • H02K55/04Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To improve the heat insulation of a superconductive rotor by forming a radiation heat radiation suppressing layer on the innermost radius surface of an ambient temperature damper shield for covering a superconductive coil, thereby reducing the radiation heat emitted from the shield into the interior. CONSTITUTION:The ambient temperature damper shield 1 of hollow cylindrical shape is formed of a highly conductive metal layer 1b and reinforced metal layers 1a, 1c. A radiation heat radiation suppressing layer 1d is formed on the bore side of the layer 1c. The layer 1d reduces the radiated heat emitted from the shield 1 to the interior and delays the radiation time of heat emitted abruptly from the layer 1b.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、複数の中空゛円筒を積層し、一体化して構成
されるル磁ダンパーシールドにより超電導巻線が覆われ
る超電導回転子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a superconducting rotor in which superconducting windings are covered by a magnetic damper shield formed by laminating and integrating a plurality of hollow cylinders.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来の超/iY導回転子においては、超rに1界磁巻線
を冷却するために、極低温の冷媒、例えば液体ヘリウム
を回転子内に送り込み冷却してIAる。このような極低
温の冷媒を回転子内に貯蔵し、界磁巻線を効率よく冷却
するために、従来から回転子は、真空層による断熱層、
肉厚の薄い構造物の1更用ンこよる伝導熱侵入の低減、
輻射熱の侵入を防ぐ輻射熱シールド等の熱対策と共に、
液体(気体が混入1−ていてもよい)状態で供給された
冷媒を気体にして排出し、冷媒の気化熱を利用して冷却
効果を向上式せることが行なわルて昨た。又、d(幾子
巻線側から加わる負荷の変動、逆相4流、高利波等によ
る変動磁束をし−やへいするために常温ダンパーシール
ドと低温ダンパーシールドの2つの電磁タンバーシール
ドを設けている。これは、超電導界磁巻線に変動磁界が
加わるのを防ぐと共に、変動磁界により各部に発生する
うす嵯流損を抑制し、又回転子の機、4的振動の制動の
ために設けられている。
In a conventional super/iY conductive rotor, in order to cool one field winding to super r, an extremely low temperature coolant such as liquid helium is pumped into the rotor to cool it and perform IA. In order to store such extremely low-temperature refrigerant in the rotor and efficiently cool the field windings, the rotor has traditionally been equipped with a heat insulating layer made of a vacuum layer,
Reduction of conductive heat penetration due to the first modification of thin-walled structures,
In addition to heat countermeasures such as radiant heat shields that prevent the intrusion of radiant heat,
It has been practiced to discharge a refrigerant supplied in a liquid state (optionally containing gas) as a gas, and to utilize the heat of vaporization of the refrigerant to improve the cooling effect. In addition, two electromagnetic tambour shields, a room-temperature damper shield and a low-temperature damper shield, are provided to protect against fluctuations in the load applied from the d (Ikuko winding side), negative-phase four currents, high-frequency waves, etc. This is provided to prevent fluctuating magnetic fields from being applied to the superconducting field windings, to suppress the thin current loss that occurs in various parts due to fluctuating magnetic fields, and to dampen the mechanical vibration of the rotor. ing.

第1図は従来の超電導回転子の概略横断面図で、中空円
筒状の常温ダンパーシールド(1)は、銅くコアルミニ
ウム、又はそれらの合金等からなる高専4住金属層(1
b)と機械的強度の高(/?金金属らなる補強層(ta
、xc)よりなる3層構造となってbる。
Figure 1 is a schematic cross-sectional view of a conventional superconducting rotor, in which a hollow cylindrical room-temperature damper shield (1) is made of copper, aluminum, or an alloy thereof.
b) and high mechanical strength (/? reinforcing layer made of gold metal (ta
, xc), and has a three-layer structure.

この常温ダンパーシールドは、回転子の最外部1c位置
し、回転子全体をつつむ真空容器の役目もはたしている
。この常温ダンパーシールドの内側ンこは、A空断熱層
flol及び輻射熱シールド(2)が設けられ、内部へ
の熱の侵入を防いでいる。輻射熱シールドは、一般に低
温ダンパーシールドと兼用になっていることが多(,1
00°K(絶対温度)位の温度に冷却されている。そし
て、さらに内側の内部ローター(4)には、極低温の液
体冷媒(5)が貯蔵され、内部口 ターに設けられたス
ロット(6)内に収められている超電導界磁巻線を冷却
している。第1図において、(3)は極低温冷媒容器最
外径部、(7)は液体冷媒通路を持つクサビ、(8a)
は液体冷媒受、(8b)は冷媒受通路部、(9)は液体
冷媒通路である。
This room-temperature damper shield is located at the outermost part 1c of the rotor, and also serves as a vacuum container that encloses the entire rotor. The inner side of this room-temperature damper shield is provided with an A-air insulation layer flol and a radiant heat shield (2) to prevent heat from entering the inside. Radiant heat shields are often used as low-temperature damper shields (1)
It is cooled to a temperature of about 00°K (absolute temperature). Furthermore, in the inner rotor (4), an extremely low temperature liquid refrigerant (5) is stored, and is used to cool the superconducting field windings housed in the slots (6) provided in the inner rotor. ing. In Figure 1, (3) is the outermost diameter part of the cryogenic refrigerant container, (7) is the wedge with the liquid refrigerant passage, and (8a)
is a liquid refrigerant receiver, (8b) is a refrigerant receiving passage, and (9) is a liquid refrigerant passage.

常温ダンパーシールドは、回転子の最外径部に位置する
ため、強大な遠心力が働へ、又、高導電性金属層には強
大なd磁力が働くため、機械的強度の比較的弱−へ高専
゛亀性金属を補強する高強度の支持材と一体化した多層
構造を採っている。この高強度の支持材とじては、ステ
ンレス鋼、インヨネル、チタン合金等の金属が用かられ
ており、爆着や焼きばめといった方法で、高専シ性金属
をはさみ込むようにしCいる。又、高導電性金属には変
動磁束及び回転子振動の減衰の際、Cうず電流によるジ
ュール熱が発生するが、この熱がすみやかに除去される
ようにしなければならない。−ごのため常温ダンパーシ
ールドに冷却用配管を設け、又、回転子の周囲に冷却ガ
スを流し、常温ダンノく−シールドの外径部から熱を除
去するようにしている。
The room temperature damper shield is located at the outermost diameter of the rotor, so a strong centrifugal force acts on it, and a strong d magnetic force acts on the highly conductive metal layer, so it has relatively weak mechanical strength. It has a multi-layered structure that is integrated with a high-strength support material that reinforces the durable metal. This high-strength support material is made of metals such as stainless steel, injonnel, titanium alloy, etc., and is sandwiched with a high-grade metal by a method such as explosion bonding or shrink fitting. Furthermore, Joule heat is generated in highly conductive metals due to C eddy currents when varying magnetic flux and rotor vibrations are attenuated, but this heat must be removed promptly. For this reason, cooling piping is provided in the room-temperature damper shield, and cooling gas is flowed around the rotor to remove heat from the outside diameter of the damper shield at room temperature.

以上のような従来の超心導回転子の常温ダンパーシール
ドでは、高導電性金属層と補強金属層とが機械的、熱的
に強固に一体化しているため、高専1性金属層で発生し
た熱は外径側から放散するだけでなく、内径側の補強金
属層にも云tクシ、輻射熱が回転子内部Vこ向フて伝搬
し易いという欠点がある。
In the conventional room-temperature damper shield of a superconducting rotor as described above, the highly conductive metal layer and the reinforcing metal layer are mechanically and thermally strongly integrated. Not only does heat radiate from the outer diameter side, but also the reinforcing metal layer on the inner diameter side has the disadvantage that radiant heat is easily propagated in the direction of the rotor interior V.

〔発明の目的〕[Purpose of the invention]

本発明は、以上のような従来の超電導回転子の欠点を解
決するためlK、なされたものであり、常温ダンパーン
ールドから内部に放射される輻射熱を低減し断熱性の良
い超電導回転子°を提供することを目的とする。
The present invention was made in order to solve the above-mentioned drawbacks of the conventional superconducting rotor, and it reduces the radiant heat radiated inside from the room temperature damper rotor and creates a superconducting rotor with good heat insulation. The purpose is to provide.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するためて、本発明の超屈導回詠子は
、常温ダンパーシールドの最内径面に輻射熱放射抑制層
を設け1こことを特徴とする。
In order to achieve the above object, the superconducting recirculator of the present invention is characterized in that a radiant heat radiation suppression layer is provided on the innermost surface of the room temperature damper shield.

実施例 以F本発明の一実施列i・こりいて説明す6゜第2図、
第3図は本発明による常温ダンパーシールドの部分断面
図で、従来の構造を示す第1図の常温ダンパーシールド
t1)に対応する。第2図において、高専゛−・電性金
属層(1b)は、補強金属層(1a)及び(IC)には
さまれている。さらにi11強金属層(Ic)の内径側
には輻射熱放射抑制層(1d)が設けである。この輻射
熱放射抑制層は、常温ダンパーシールドから内部に向っ
て放射される輻射Me低減したり、高導電性金属層で急
激に熱が発生した場合に熱の放射を時間的に遅らせ、ま
たゆるやかにする効果を持つ。この輻射熱放射抑制層(
は熱伝導性が低い物質、熱容量の大きい物質、熱を反射
する金属薄層等の単体ある込はこルらを組合す積層した
ものからなり、高導電性金属層で発生した熱が内径部に
向わr外径側へ流ルるようにし、内部に向う熱は熱伝導
性の低い物質層や熱の反射層により極力1氏減し、又事
故等Qこより、熱の発生が多く急激である場合には、熱
容量の大きい層シこより輻射熱の放射を遅延、緩衝させ
、冷却システムk iJ応さ硝る時間的余裕を犬さくす
る効果がある。
Embodiment 6F An embodiment of the present invention is illustrated in Fig. 2.
FIG. 3 is a partial sectional view of the cold damper shield according to the present invention, and corresponds to the cold damper shield t1) of FIG. 1 showing the conventional structure. In FIG. 2, the electrically conductive metal layer (1b) is sandwiched between the reinforcing metal layer (1a) and the (IC). Further, a radiant heat radiation suppression layer (1d) is provided on the inner diameter side of the i11 strong metal layer (Ic). This radiant heat radiation suppression layer reduces the radiant Me radiated inward from the room temperature damper shield, temporally delays the heat radiation when heat is suddenly generated in the highly conductive metal layer, and also gradually slows down the heat radiation. It has the effect of This radiant heat radiation suppression layer (
is made of a combination of single materials such as materials with low thermal conductivity, materials with high heat capacity, and thin metal layers that reflect heat.The heat generated in the highly conductive metal layer is transferred to the inner diameter. The heat flowing towards the inside should be reduced by 1 degree as much as possible by using a material layer with low thermal conductivity and a heat reflecting layer. In this case, the radiation of radiant heat is delayed and buffered by the layer having a large heat capacity, and there is an effect of reducing the amount of time needed to respond to the cooling system.

第3図は、第2図における補強層(1c)を省略し、輻
射熱放射抑制層の強度金、その外周にある高専1ル性金
属層(1b)を支持し得る十分・欠強度にしたもので、
抑制層(1d)が厚くなるため、前述の効果が増強され
乙。又、従来の金属より、する補強層が、比咬的重遍が
軽い高強度の輻射熱放射抑制層に置き変ったために、遠
心力が低減され、1幾械的な支持が容易−こなる効果が
ある。この遠心力の低減の効果は常温ダンパーシールド
が回転子の1最外径部に位置するため非常に大きな効果
となっている。又、輻射熱放射仰fnIJ層は、金属の
補強層に比較しては気抵抗が非常・て高いため心機子か
らの変動磁界によるうす、匡流が低減し、従って、ジュ
ール損の発生が少なく7より、内部への熱放射がさらに
1氏、或さ几る。
In Figure 3, the reinforcing layer (1c) in Figure 2 is omitted, and the radiant heat radiation suppression layer has sufficient strength to support the metal layer (1b) on its outer periphery. in,
Since the suppression layer (1d) becomes thicker, the above-mentioned effect is enhanced. In addition, since the reinforcing layer is replaced with a high-strength radiant heat radiation suppression layer that is lighter in terms of density than the conventional metal reinforcement layer, centrifugal force is reduced and mechanical support is easier. There is. This centrifugal force reduction effect is very significant because the room temperature damper shield is located at the outermost diameter part of the rotor. In addition, the radiant heat radiation height fnIJ layer has a very high air resistance compared to a metal reinforcing layer, so the thinness and torrential flow caused by the fluctuating magnetic field from the core armature are reduced, and therefore, the generation of Joule loss is reduced. As a result, the heat radiation into the interior is further reduced by 1 degree.

以上述べてきたような牝t′射熱放射抑制層の材料とし
ては、合成樹脂、%にガラス繊維、炭素繊維。
The materials for the heat radiation suppression layer as described above include synthetic resin, glass fiber, and carbon fiber.

金属繊維等の繊維により強化された合成樹脂が良い。こ
れは、これらの精細強化合成樹脂が高強度。
Synthetic resins reinforced with fibers such as metal fibers are preferred. This is because these fine reinforced synthetic resins have high strength.

低熱云尋性等の特徴を持つCいるだけでなく、高専ル性
金属層の中空円筒内面に、貼りつけるようにして製造す
ることが出来るためである。
This is because not only does C have characteristics such as low heat resistance, but it can also be manufactured by pasting it onto the inner surface of a hollow cylinder of a technical grade metal layer.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明に分いては常温ダンパーシー
ルドを構成する積層円筒の最内面に輻射熱放射抑制層を
設けたので、常温ダンパーシールドから内部に放射され
る輻射熱が低減され、断熱性の良い超電導回転子を得る
ことができろ。さらに、高強度の輻射熱シールドで高電
導性金属層を支持するよってすルば、遠心力が低減され
機械的支持が容易C1断熱性の良い超電導回転子を得る
ことができる。
As described above, in the present invention, since the radiant heat radiation suppression layer is provided on the innermost surface of the laminated cylinder constituting the room temperature damper shield, the radiant heat radiated inside from the room temperature damper shield is reduced, and the heat insulation property is improved. I wish I could get a good superconducting rotor. Furthermore, by supporting the highly conductive metal layer with a high-strength radiant heat shield, centrifugal force is reduced, mechanical support is easy, and a superconducting rotor with good C1 heat insulation can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の超電導回転子を示す概略横断面図、2g
2図、第3図は本発明一実施例である常温ダンパーシー
ルドを示す部分断面図である。 1 常温ダンパーシールド  la、 lc  補強層
1【)高導電性位属層  1d  ψ112射熱放射抑
fi!I Jtl(7317)  代理人 弁理士 則
 近 憲 佑 (は〃≧1名)第1図 41J 2図 /l)
Figure 1 is a schematic cross-sectional view showing a conventional superconducting rotor, 2g
FIGS. 2 and 3 are partial cross-sectional views showing a room-temperature damper shield according to an embodiment of the present invention. 1 Room temperature damper shield la, lc Reinforcement layer 1 [) Highly conductive metal layer 1d ψ112 heat radiation suppression fi! I Jtl (7317) Agent Patent attorney Kensuke Chika (≧1 person) Figure 1 41J Figure 2/l)

Claims (4)

【特許請求の範囲】[Claims] (1)複数の中空円筒を積層し、一体化して構成される
常温ダンパーシールドにより超電導巻線が覆われる超電
導回転子にお(へて、常温ダンパーシールドの最内径面
に輻射熱放射抑制層を設けたことを特徴とする超電導回
転子。
(1) A superconducting rotor in which a superconducting winding is covered by a room-temperature damper shield constructed by stacking and integrating multiple hollow cylinders (a radiant heat radiation suppression layer is provided on the innermost surface of the room-temperature damper shield) A superconducting rotor characterized by:
(2)常温ダンベーシールドは外径側rす、補強層、高
導電性金属層、補強層、輻射熱放射抑制層の順で1貴層
1F′L、て・βることを特徴とする特許請求の範囲第
1項に記載の超電導回転子。
(2) A patent characterized in that the room-temperature Danbei shield has one noble layer, 1F'L, and β in the order of the outer diameter side, the reinforcing layer, the highly conductive metal layer, the reinforcing layer, and the radiant heat radiation suppression layer. A superconducting rotor according to claim 1.
(3)常温ダシバーシールドは、外径側よシ補強層! 
]L4屯性金属層、高導′4性金14層を支持し得る十
分な強度金有する輻射熱放射抑制層の順で積層されてい
ること全特徴とする特許請求の範囲第1項に記載の超電
導回転子。
(3) Room-temperature dash bar shield has a reinforcing layer on the outer diameter side!
] The L4 tough metal layer is laminated in this order, and the radiant heat radiation suppression layer having sufficient strength to support the 14 high-conductivity gold layers is laminated in this order. Superconducting rotor.
(4)  輻射熱放射抑制A’tは、合成樹脂又はガラ
ス繊維、炭素繊維、金属繊維等で強化さルた合成樹脂に
よシ構成されることを特徴とする特許請求の範囲第1項
に記載の超電導回転子。
(4) Radiant heat radiation suppression A't is made of synthetic resin or synthetic resin reinforced with glass fibers, carbon fibers, metal fibers, etc. as set forth in claim 1. superconducting rotor.
JP57167708A 1982-09-28 1982-09-28 Superconductive rotor Pending JPS5959041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57167708A JPS5959041A (en) 1982-09-28 1982-09-28 Superconductive rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57167708A JPS5959041A (en) 1982-09-28 1982-09-28 Superconductive rotor

Publications (1)

Publication Number Publication Date
JPS5959041A true JPS5959041A (en) 1984-04-04

Family

ID=15854734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57167708A Pending JPS5959041A (en) 1982-09-28 1982-09-28 Superconductive rotor

Country Status (1)

Country Link
JP (1) JPS5959041A (en)

Similar Documents

Publication Publication Date Title
US8319588B2 (en) Hollow cylindrical thermal shield for a tubular cryogenically cooled superconducting magnet
US7053740B1 (en) Low field loss cold mass structure for superconducting magnets
US6140719A (en) High temperature superconducting rotor for a synchronous machine
US5278502A (en) Refrigerated superconducting MR magnet with integrated cryogenic gradient coils
US7616083B2 (en) Resin-impregnated superconducting magnet coil comprising a cooling layer
US20080157771A1 (en) Superconducting magnet configuration with reduced heat input in the low temperature regions
JP2005321404A (en) Thermal shield body
US20100200594A1 (en) Thermal Radiation Shield, a Cryostat Containing a Cooled Magnet and an MRI System Comprising a Radiation Shield
JPH07142241A (en) Superconducting magnet device
US4651117A (en) Superconducting magnet with shielding apparatus
US6323749B1 (en) MRI with superconducting coil
JPS5959041A (en) Superconductive rotor
GB2487813A (en) Cylindrical support for cryoshield
US11703556B2 (en) Self-supporting flexible thermal radiation shield
JP3268047B2 (en) Superconducting magnet device
JP2868936B2 (en) Superconducting magnet
JPH0521227A (en) Superconductive magnet
JPH05198429A (en) Superconductor coil
JP2971660B2 (en) Superconducting magnet device
JP2022108794A (en) Superconducting coil device
JPH0677050A (en) Superconducting magnet device
JP3559659B2 (en) Electron beam cooling device
JPH0746648B2 (en) Superconducting coil
JPH10172796A (en) Superconducting wiggler having dually structured beam chamber
JPH0137841B2 (en)