JPS5959011A - High speed reclosing line system - Google Patents

High speed reclosing line system

Info

Publication number
JPS5959011A
JPS5959011A JP57168881A JP16888182A JPS5959011A JP S5959011 A JPS5959011 A JP S5959011A JP 57168881 A JP57168881 A JP 57168881A JP 16888182 A JP16888182 A JP 16888182A JP S5959011 A JPS5959011 A JP S5959011A
Authority
JP
Japan
Prior art keywords
phase
voltage
transmission line
fault
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57168881A
Other languages
Japanese (ja)
Inventor
津久井 良一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57168881A priority Critical patent/JPS5959011A/en
Publication of JPS5959011A publication Critical patent/JPS5959011A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、電力系統における送電線の高速度再閉路方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for high-speed reclosing of power transmission lines in a power system.

〔発明の技術的背景〕[Technical background of the invention]

電力系統の架空送電線を対象として、電力系統の過度安
定度向上、電力の供給信頼度向上のため、従来より高速
度再閉路方式が保護継電装置と組合せて広く適用されて
いる。これは、一般に架空送電線の事故は雷撃によるも
のが多く、雷の高電圧によって空気絶縁が破壊されて事
故となるため、事故送電線を無電圧状態とし空気絶縁を
向後(消アークとも呼ばれる)させれば事故は消滅し、
再度送電゛が可能である点に着目して適用されているも
のである。
High-speed reclosing methods have been widely applied to overhead power transmission lines in power systems in combination with protective relay devices to improve transient stability of power systems and reliability of power supply. Generally, accidents involving overhead power lines are often caused by lightning strikes, and the high voltage of lightning causes the air insulation to break down, resulting in an accident. If you do, the accident will disappear,
This method has been applied with the focus on the possibility of power transmission again.

次に、1線地絡事故時における再閉路方式について説明
する。第1図(a)〜(c)は、高速度単相再閉路友式
の概要を示す図である。第1図(a)において、Iは2
相(R,S、T相)で構成された送電線を示し、A、B
は同送電線1のつながる両端の電気所、2は電気所Aの
送電線用のしゃ断器、3は電気所Bのしゃ断器、4はT
相送電線の1線地絡事故を夫々示す。
Next, a re-closing method in the event of a one-line ground fault will be described. FIGS. 1(a) to 1(c) are diagrams showing an outline of the high-speed single-phase reclosing method. In Figure 1(a), I is 2
Indicates a power transmission line composed of phases (R, S, T phases), A, B
are electric stations at both ends of the same power transmission line 1, 2 is a breaker for the transmission line at electric station A, 3 is a breaker at electric station B, and 4 is T.
Each line of the phase transmission line has a single-wire ground fault.

この様に、T相の1線地絡事故4が発生すると、電気所
A、Bに設置されている送電線保護継電装置が動作し、
第1図(b)に示す通9事故相であるT相のみのしゃ断
器をしゃ断する。そして、ある一定時間T相を無電圧状
態にして、事故の回復(即ち雷撃による、空気絶縁破壊
の回復−消アーク)を待ち、LL)度T相のしゃ断器を
投入する。
In this way, when the T-phase single-wire ground fault 4 occurs, the transmission line protection relay devices installed at electrical stations A and B operate,
The circuit breaker for only the T phase, which is the 9th fault phase shown in FIG. 1(b), is cut off. Then, the T phase is left in a voltage-free state for a certain period of time, waiting for recovery from the accident (that is, recovery from air insulation breakdown due to lightning strike - arc extinguishment), and then the breaker for the T phase is turned on at LL) degrees.

この場合、故障相をしゃ断しておく時間(無電圧時間と
呼ぶ)は、系統の安定度及び電力供給面からは極力短い
ことが望ましいが、余シ短くすると雷撃による空気の絶
縁回復(消アーク)ができないという問題があシ、再投
入しても事故継続となり、再しゃ断(この場合事故相の
みでなく金相しゃ断を行わせる)せざるを得なくなる。
In this case, it is desirable that the time that the faulty phase is cut off (called the no-voltage time) be as short as possible from the standpoint of system stability and power supply, but if it is shortened, the insulation recovery of the air due to a lightning strike (arc extinction) is desirable. ) is not possible, and even if the power is turned on again, the accident will continue, and there will be no choice but to shut it off again (in this case, cut off not only the accident phase but also the gold phase).

つまり、この再閉路無電圧時間は事故点の空気絶縁回復
を期すという面からは極カ長い方が望ましいが、系統安
定度及び電力供給の面からは極力短い方が良いという相
反する要素がある。
In other words, it is desirable for this reclosing no-voltage time to be as long as possible from the perspective of recovering the air insulation at the fault point, but there are conflicting factors: from the perspective of system stability and power supply, it is better to make it as short as possible. .

但し、再閉路を成功させるには事故点のを気絶縁回街(
消アーク)が絶対の必要条件であ軌この無電圧時間は事
故点の消アーク後、極カ早い時間にしゃ断器を投入でき
る様に設定することが望ましい。この様にすれば、再閉
路が失敗するケースはほとんどなくなり、また空気絶縁
が回復しているにも拘らずしゃ断器を投入しないという
無駄もなくなる。
However, in order to successfully reclose the circuit, it is necessary to insulate the accident point (
Arc extinction) is an absolute requirement, and it is desirable to set this no-voltage time so that the circuit breaker can be turned on very quickly after the arc at the fault point is extinguished. By doing this, there will be almost no cases where the re-closing fails, and there will be no waste of not turning on the circuit breaker even though the air insulation has been restored.

〔背景技術の問題点〕[Problems with background technology]

しかし/1・ら、従来の再閉路方式においては、この無
電圧時間は、経験的な値として一義的に決められており
、特にアーク消滅等の確認はなされておらず、従うて再
投入がアーク消滅していない為に失敗するとか、逆にア
ーク消滅しているのに、しゃ断器が投入されないといっ
だ問題がある。
However, in the conventional re-closing method such as /1, this no-voltage time is uniquely determined as an empirical value, and there is no confirmation of arc extinction, etc. Therefore, re-closing is necessary. There is a serious problem if the circuit fails because the arc has not been extinguished, or conversely, if the breaker is not turned on even though the arc has been extinguished.

〔発明の目的〕[Purpose of the invention]

本発明は、上記の様な従来方式の欠点に鑑みてなされた
もので、その目的は再閉路失敗のケースをほとんどなく
し、電力系統へ与える動揺を軽減して系統の安定度向上
に寄与することが可能な高速度再閉路方式を提供するこ
とにある。
The present invention was made in view of the above-mentioned drawbacks of the conventional system, and its purpose is to almost eliminate cases of reclosing failure, reduce fluctuations in the power system, and contribute to improving the stability of the power system. The purpose of this invention is to provide a high-speed reclosing method that allows for

〔発明の概要〕[Summary of the invention]

上記目的を達成するために本発明では、前述した第1図
に示した様な単相再閉路等において、事故相のしゃ断器
がしゃ断された後のしゃ新組送電線の電圧を検出し、こ
の電圧がある所定の値以上である場合にしゃ新組送電線
の消アークがガされた(空気絶縁が回復した)と判定し
て再閉路を行わせようとするもの、すなわち従来の如く
再閉路の無電圧時間を常に一定とするのではなく、消ア
ークがなされたことを条件に再閉路を行なうことを特徴
とする。
In order to achieve the above object, the present invention detects the voltage of the new transmission line after the breaker of the fault phase is cut off in the single-phase reclosing circuit as shown in FIG. If this voltage exceeds a predetermined value, it is determined that the arc of the new transmission line has been extinguished (the air insulation has been restored), and the circuit is reclosed. It is characterized in that the voltage-free time of the circuit is not always constant, but that the circuit is reclosed on the condition that the arc is extinguished.

〔発明の実施例〕[Embodiments of the invention]

まず、本発明の対象とする現象および、原理につき説明
する。
First, the phenomenon and principle targeted by the present invention will be explained.

一般に高速度再閉路として、単相再開路や多相再閉路と
呼ばれる事故相のみしゃ断して再閉路を行わせる方式は
、系統電圧が187kV〜5001cVの超高圧系統、
更には将来(7)1000kV送電系統等に適用される
。この様な電圧階級の高い送電線てrよ、各線間、各線
対地間の静電容量 量はかなり大きなものとなり、また各線間の相互インダ
クタンスも無視てき々い。従って、例えば1相の送電線
のみがしゃ断された場合を考えると、このしゃ断された
送電線には他の健全相又は健全回線から静電誘導又は電
磁誘導による電圧が発生ずる。第2図及び第3図は、こ
の誘導電圧の発生機構舎簡単に示しだものである。
Generally, as high-speed reclosing, the method of shutting off only the fault phase and reclosing, called single-phase recirculating or multi-phase reclosing, is used for ultra-high voltage systems with a system voltage of 187 kV to 5001 cV,
Furthermore, it will be applied to (7) 1000kV power transmission systems in the future. In such high-voltage power transmission lines, the capacitance between each line and between each line and ground is quite large, and the mutual inductance between each line can be ignored. Therefore, for example, if only one phase of the power transmission line is cut off, a voltage due to electrostatic induction or electromagnetic induction will be generated in the cut off power transmission line from other healthy phases or lines. Figures 2 and 3 briefly illustrate the mechanism for generating this induced voltage.

第2図は、1回線送電線における1相しゃ断時の、しゃ
断器送電糾へ健全相送電線から静電誘導電圧が誘起され
る様相を示している。図において、・5は健全hR相、
6は健全なS相、そして7はしゃ断されているT相であ
り、CRR+C8s、CTT等は、各相送電線の1線対
地漏れ静電容量、cas 、C8T r CTRは各相
間の相互静電容量である。しゃ断器T相7 Vc誘起さ
れる電圧は、健全相の対地電圧をそれぞれへ、bsとす
れば、 となる。ここで1.送電線が完全にねん架されていると
し、CRR−css == CTT ”” csl C
R8”csT== CTR= ’Cmとおけば、と表わ
され、しゃ新組にはかなり大きな電圧的が誘起される。
FIG. 2 shows how an electrostatic induced voltage is induced from a healthy phase power transmission line to a breaker power transmission line when one phase is cut off in a single line power transmission line. In the figure, ・5 is a healthy hR phase,
6 is the healthy S phase, and 7 is the disconnected T phase. CRR+C8s, CTT, etc. are the 1-wire ground leakage capacitance of each phase transmission line, cas, C8T r CTR is the mutual electrostatic capacitance between each phase. capacity. The voltage induced in the circuit breaker T-phase 7 Vc is as follows, where the ground voltage of each healthy phase is set to bs. Here 1. Assuming that the transmission line is completely suspended, CRR-css == CTT ”” csl C
If R8''csT==CTR='Cm, it is expressed as, and a fairly large voltage is induced in the current pair.

なお、このモードはしゃ新組において、事故によるアー
ク等は御坊消滅した状態(しゃ断器送電線に事故が存在
しない状態)でのものである。
In addition, in this mode, the arc, etc. caused by an accident is in a state where the gobo has disappeared (a state where there is no fault on the breaker transmission line).

次に、第3図は同様に電磁誘導により、しゃ新組へ電圧
が誘起される様相を示している。第3図において、8は
しゃ新組であるT相を示す。
Next, FIG. 3 similarly shows a state in which a voltage is induced in the current pair by electromagnetic induction. In FIG. 3, 8 shows the T phase, which is a new set.

この場合には、しゃ新組に誘起される電圧は概略次式に
て示される。
In this case, the voltage induced in the shunt is roughly expressed by the following equation.

#’r=jω貼・(iR+ rs)         
     −(3)ここで、Lmは各相・送電線間の相
互インダクタンスを示す。式(3)よシ分かるように、
電磁誘導による誘起電圧は1相しゃ断時の健全相を流れ
る電流(汐流)の値によって大きく変わり、汐流が大き
い時には高い誘導電圧が、捷だ汐流が小さい時には低い
誘導電圧が発生することになる。
#'r=jω paste・(iR+rs)
-(3) Here, Lm indicates mutual inductance between each phase and power transmission line. As you can see from equation (3),
The induced voltage due to electromagnetic induction varies greatly depending on the value of the current (tidal current) flowing through a healthy phase when one phase is cut off, and when the tidal current is large, a high induced voltage occurs, and when the tidal current is small, a low induced voltage occurs. become.

なお、本発明においてはこれら誘導電圧のうち、汐流等
の影響を受けない静電誘導電圧現象に着目するので、以
丁で説明する誘導電圧は全て静電誘導を示すものとする
Note that among these induced voltages, the present invention focuses on the electrostatic induced voltage phenomenon that is not affected by tidal currents and the like, so all induced voltages described hereinafter indicate electrostatic induction.

次に、事故が発生して事故相がしゃ断されているにもか
かわらず、送電線事故が継続(アークが消えない)して
いる状態における誘導電圧について説明する。
Next, an explanation will be given of induced voltage in a state where the transmission line fault continues (the arc does not go out) even though the fault phase has been cut off due to the occurrence of a fault.

第4図(a)は、事故相送電線がしゃ断されているにも
拘らず、事故が継続(アーク継続)している様子を示す
。同図において、9がT相送亀線の事故を示し、両電気
すfA、Bのしゃ断器が開いているにも拘らず、健全相
から相互容量を介してアーク電流が継続し、事故が消滅
しない様相を示している。このモードを、前第2図と同
様に表わしたのが第4図(b)であり、10がしゃ新組
でなお継続している事故を示す。
FIG. 4(a) shows how the accident continues (arc continues) even though the fault phase transmission line is cut off. In the same figure, 9 indicates a fault in the T-phase feeder line, and even though both electrical circuit breakers A and B are open, arc current continues from the healthy phase through mutual capacitance, causing the fault. It shows that it will not disappear. FIG. 4(b) shows this mode in the same way as the previous FIG. 2, and shows an accident that is still continuing in the 10th class.

ここで、この10で示しだ事故がほとんど零に近い抵抗
値で地絡していると仮定したとき、このしゃ新組に発生
する電圧は(2)式を用いてその概略を示すと、 (ここで、C3−Fは事故によりほぼ零の抵抗で短絡さ
れているので、C8,F−トω(無限大)相当。) の如くとなり、しゃ新組に発生する電圧は微少となる。
Now, assuming that the fault shown in 10 is a ground fault with a resistance value close to zero, the voltage generated in this shingle assembly can be summarized using equation (2) as follows: Here, since C3-F has been short-circuited with almost zero resistance due to an accident, C8, F-equivalent to ω (infinite).

なお、このケースは事故点の抵抗がほぼ零という仮定を
しているので誘起電圧は零となったが、実際には事故点
抵抗が零でないケースが多い。しかし、たとえこの抵抗
が零でなくとも事故アークが残っている状態では、事故
相(しゃ新組)に発生する電圧は上記(2)式による事
故なしの状態で誘起される電圧に比べ充分低いものであ
る。
Note that this case assumes that the resistance at the fault point is almost zero, so the induced voltage is zero, but in reality there are many cases where the resistance at the fault point is not zero. However, even if this resistance is not zero, if the fault arc remains, the voltage generated in the fault phase is sufficiently lower than the voltage induced in the fault-free state according to equation (2) above. It is something.

本発明は、以上の如くしゃ断された後の事故相に誘起さ
れる電圧を検出し、その大きさから事故が継続している
か否かを判定し、事故消滅と判定した場合にしゃ断器を
角閉路させようとするものである。そして、この事故継
続か否かの判定レベルの一例を示せは、T相しゃ断面の
T相送電線側電圧をVLとすると、 (η:マーノンて例えば05など) なる判型レベルでこの条件が満たされた時に再閉路を行
わぜることでも良い。
The present invention detects the voltage induced in the fault phase after being cut off as described above, determines whether the fault is continuing based on its magnitude, and turns off the breaker when it is determined that the fault has disappeared. It is an attempt to close the circuit. To give an example of the judgment level for whether or not this accident will continue, let us say that the voltage on the T-phase transmission line side of the T-phase cut-off section is VL, and this condition is met at the format level of (η: Marnon, for example, 05). It is also possible to reclose the circuit when it is satisfied.

次に、上記原理に基つく本発明の構成例を第5図(、)
 (b)を用いて説明する。第5図(a)はシステムの
全体構成を示すもので、図においてlt、s。
Next, an example of the configuration of the present invention based on the above principle is shown in FIG.
This will be explained using (b). FIG. 5(a) shows the overall configuration of the system, and in the figure, lt, s.

Tは電気所A、B間を結ぶ各相の送電線を示し、11R
rl IB+I ITはA電気所の各相の送電線保護リ
レー装置を示す。この保& ’)レー装置によって、送
電線事故を検出し、またしゃ断器への再閉路(再投入)
指令も出す。まだ12R812s+127は、A電気所
側の送電線側(しゃ断器よりも送電線側)にある各相の
電圧変成器(通常線路PD等と呼ばれている)、さらに
13は本発明の判定機能ロノック回路を示すものである
T indicates the power transmission line of each phase connecting electric stations A and B, and 11R
rl IB+I IT indicates the power transmission line protection relay device for each phase of electric station A. This protection device can detect transmission line faults and reclose (re-energize) the circuit breaker.
Also issues orders. 12R812s+127 is a voltage transformer for each phase (usually called a line PD, etc.) on the transmission line side of electric station A (on the transmission line side from the circuit breaker), and 13 is the judgment function Ronok of the present invention. This shows the circuit.

なお本図では、A電気所外のみしか記載していないが、
B電気所側の4・if成についても同様である。また、
ロノノク回路13に対して11T。
Note that this diagram only shows the area outside electrical station A, but
The same applies to the 4-if configuration on the B electric station side. Also,
11T for Rononok circuit 13.

12Tとの情報やりとりしか記載していないが11n+
11s、I 2R,12sとも同様のやりとりが必要で
ある。つまり、同図において仮にT相がしゃ断されたと
すれば、T相の線路電圧を検出して本システムに導入し
、前記(5)式に示した様な判定論理によって事故維続
か否かを判定して、事故消滅と判定した条件を送電線保
護リレー装置に渡して、同装置からしゃ断器へ再閉路指
令を出すことになる。
Although it only describes information exchange with 12T, 11n+
Similar exchanges are required for 11s, I2R, and 12s. In other words, in the figure, if the T phase is cut off, the line voltage of the T phase is detected and introduced into this system, and it is determined whether the fault continues or not using the decision logic shown in equation (5) above. Then, the conditions for determining that the accident has disappeared are passed to the power transmission line protection relay device, which issues a re-closing command to the circuit breaker.

次に、第5図(b)は上記判定機能ロノックの一例を示
すものである。同図において、14は送電線保護リレー
装置、15は3(1」定機能ロジック回路、16は線路
側PD(電圧変成器)からの電圧入力、17け補助変成
器、18はリレー装置からの送電線がしゃ断された情報
にょシ閉成する接点、19は判定部であシ、その判定条
件が成立した時に1”を出力19Aする。20は判定条
件に若干の確認時間を持/ζずだめの限鞘タイマー、2
ノは保Iリレーからのしゃ断売件でし艷断された場合″
1”を保持したもの、22は判定条件としゃ断条件のA
ND回路、23はしゃ断器へのr1閉路指令でここでは
一度保護リレー装置へ渡し、同装置からしゃ断器へ指令
を出す様にしている。
Next, FIG. 5(b) shows an example of the above-mentioned determination function ronok. In the figure, 14 is a power transmission line protection relay device, 15 is a 3 (1) constant function logic circuit, 16 is a voltage input from a line side PD (voltage transformer), 17 is an auxiliary transformer, and 18 is a voltage input from a relay device. The contact 19 closes upon receiving information that the power transmission line has been cut off, and 19 is a judgment unit that outputs 1" at 19A when the judgment condition is met. 20 has some confirmation time for the judgment condition. No limit sheath timer, 2
In the event that the boat is cut off due to a cut-off from the safety relay,
1” is maintained, 22 is A for the judgment condition and cutoff condition.
The ND circuit 23 is an r1 closing command to the breaker, and here it is once passed to the protective relay device, and then the command is issued from the same device to the breaker.

以上の様に、本発明のシステムを保、J l)レー装置
と絹合せ構成することによって、特に電圧口級の高い基
幹送電系統の高速単相再閉路等において最適な方式が実
現できる。
As described above, by configuring the system of the present invention in combination with the Jl) Leh device, an optimal system can be realized, particularly for high-speed single-phase reclosing of trunk power transmission systems with high voltage levels.

なお、同図では1相分の回路しか記載していないが、実
際には3相分を要する。
Although the figure only shows a circuit for one phase, a circuit for three phases is actually required.

また、ここでしゃ断器への再投入指令は、保m IJシ
レー置を介さずに直接本/ステムより行うようにしても
良い。
Furthermore, the command to re-energize the circuit breaker may be issued directly from the main/stem without going through the IJ relay device.

さらに、システムの構成で第5図はその一例を示したも
のであって、線路電圧値検出による本発明の判定アルゴ
リズムによる方式であればどの様な構成であってもかま
わない。
Furthermore, FIG. 5 shows an example of the system configuration, and any configuration may be used as long as it is based on the determination algorithm of the present invention based on line voltage value detection.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、再閉路失敗のケー
スを殆んどなくし、電力系統へ与える動揺を軽減して系
統の安定度向上に寄与することが可能な高速度再閉路方
式が折機できる。
As explained above, according to the present invention, a high-speed reclosing method that can almost eliminate cases of reclosing failure, reduce fluctuations given to the power grid, and contribute to improving the stability of the power grid can be achieved. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(c)は通常の高速度単相再閉路方式を
説明するだめの図、第2図は1相しゃ断時(しゃ断器事
故消滅後)の静電誘導電圧がしゃ断相に誘起することを
説明するための図、第3図は電磁誘導電圧の誘起を説明
するだめの図、第4図(a)は1相しゃ断時、しゃ断相
に事故(アーク)が継続している状態を説明するだめの
図、第4図(b)は1相しゃ断時、しゃ断相に事故(ア
ーク)が継続している状態での静電誘導電圧を説明する
だめの図、第5図(a)および(b)は本発明の一実施
例を示す構成図である。 11R〜IIT、14・・・保護リレー装置、13゜1
5・・・判定機能ロノック回路、19・・・判定回路、
20・・・限時タイマー、22・・・アンド回路。 出雁1人代理人  弁理士 鈴 江 武 彦第1図 (a) (b) (c) 第2図 第3図 ρ 第4図 (a) (b) 第5図 (a)
Figures 1 (a) to (c) are diagrams for explaining the normal high-speed single-phase reclosing system, and Figure 2 shows the electrostatic induced voltage during one-phase interruption (after the breaker fault has disappeared). Figure 3 is a diagram to explain the induction of electromagnetic induced voltage. Figure 4 (a) shows when one phase is cut off, and when an accident (arc) continues in the cut-off phase. Figure 4 (b) is a diagram that explains the electrostatic induced voltage when one phase is cut off and an accident (arc) continues in the cut-off phase. (a) and (b) are configuration diagrams showing one embodiment of the present invention. 11R~IIT, 14...Protection relay device, 13゜1
5... Judgment function Ronok circuit, 19... Judgment circuit,
20...Time-limited timer, 22...AND circuit. Degan Single Agent Patent Attorney Takehiko Suzue Figure 1 (a) (b) (c) Figure 2 Figure 3 ρ Figure 4 (a) (b) Figure 5 (a)

Claims (1)

【特許請求の範囲】[Claims] 送電線事故時に保護継電装置と組合わせて実施する高速
度再閉路方式において、事故しゃ断した回線またはしゃ
断器に誘起された電圧を検出し、その大きさが所定の値
を越えたことにより送電線故障が回復したことを判定し
毎閉路を行なうようにしたことを特徴とする高速度再閉
路方式。
In the high-speed reclosing method, which is implemented in combination with a protective relay device in the event of a power transmission line accident, the voltage induced in the line or circuit breaker that was disconnected due to an accident is detected, and if the voltage exceeds a predetermined value, the A high-speed re-closing method characterized in that the circuit is closed every time it is determined that the wire failure has been recovered.
JP57168881A 1982-09-28 1982-09-28 High speed reclosing line system Pending JPS5959011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57168881A JPS5959011A (en) 1982-09-28 1982-09-28 High speed reclosing line system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57168881A JPS5959011A (en) 1982-09-28 1982-09-28 High speed reclosing line system

Publications (1)

Publication Number Publication Date
JPS5959011A true JPS5959011A (en) 1984-04-04

Family

ID=15876287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57168881A Pending JPS5959011A (en) 1982-09-28 1982-09-28 High speed reclosing line system

Country Status (1)

Country Link
JP (1) JPS5959011A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010074952A (en) * 2008-09-18 2010-04-02 Toshiba Corp Reclosing system of transmission line
JP2011247769A (en) * 2010-05-27 2011-12-08 Chugoku Electric Power Co Inc:The Insulation performance monitoring device and insulation performance monitoring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010074952A (en) * 2008-09-18 2010-04-02 Toshiba Corp Reclosing system of transmission line
JP2011247769A (en) * 2010-05-27 2011-12-08 Chugoku Electric Power Co Inc:The Insulation performance monitoring device and insulation performance monitoring method

Similar Documents

Publication Publication Date Title
RU2740012C1 (en) Longitudinal compensator and control method
JPH03159519A (en) Automatic disconnection detector
EP3213399B1 (en) Method in, apparatus for, and interface arrangement between an alternating current power system and a direct current power system
Nikolaidis et al. A coordinated multi-element current differential protection scheme for active distribution systems
Mokhberdoran et al. A directional protection strategy for multi-terminal vsc-hvdc grids
CN208890339U (en) A kind of medium-voltage distribution circuit short trouble self-healing cabinet
JPS5959011A (en) High speed reclosing line system
CN109521332A (en) Fault handling method, apparatus and system
JP3227653B2 (en) Power system protection controller
CN108988308A (en) The inhibition device and method of resonance overvoltage
JP2799065B2 (en) Reclosing method of current differential protection relay
RU2284084C2 (en) Device for limiting parameters of electromagnetic processes in high-voltage networks
JP3824804B2 (en) Protection relay device
CN112467703A (en) Bus-tie dead zone protection device suitable for 110KV network characteristics
JP2860477B2 (en) Distribution line switch control method
JP2001095151A (en) Solidly grounded neutral system capable of preventing trouble current
Liu et al. Application of auto-reclosing residual current device in lightning protection for communications power supply
JPS60134723A (en) Protective relaying device
JPH06327137A (en) High speed reclosing ground system
JPS605727A (en) Defect current breaking system
RU85410U1 (en) DEVICE FOR DETERMINING THE TERMINATION OF INSULATED WIRES OF AIR LINES WITH A VOLTAGE OVER 1000 V AT THEIR LOCATION ON THE SUPPORTS OF THE CONTACT AC NETWORK
CN117471358A (en) Traction power supply incoming line fault analysis method, equipment and medium
JPS58123622A (en) Controller for breaker
Joetten et al. A new method for avoiding overvoltages when clearing DC-line faults with a low SCR HVDC station
JPS6222215B2 (en)