JPS5958763A - Layer-built fuel cell - Google Patents

Layer-built fuel cell

Info

Publication number
JPS5958763A
JPS5958763A JP57170586A JP17058682A JPS5958763A JP S5958763 A JPS5958763 A JP S5958763A JP 57170586 A JP57170586 A JP 57170586A JP 17058682 A JP17058682 A JP 17058682A JP S5958763 A JPS5958763 A JP S5958763A
Authority
JP
Japan
Prior art keywords
liquid storage
frame
storage chamber
liquid
liquid supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57170586A
Other languages
Japanese (ja)
Inventor
Mutsuya Saito
斉藤 六弥
Masahiro Ide
井出 正裕
Osamu Tajima
収 田島
Hideo Hagino
秀雄 萩野
Yasuo Miyake
泰夫 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP57170586A priority Critical patent/JPS5958763A/en
Publication of JPS5958763A publication Critical patent/JPS5958763A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • H01M8/04283Supply means of electrolyte to or in matrix-fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To increase the amount of electrolyte stored so as to extend the liquid supply frequency by providing an elastic conductor impregnated with electrolyte in a space surrounded by frame-like sealing members attached to the peripheries of the end surfaces of stacked unit blocks thereby forming a liquid storage chamber, and connecting it to liquid storage grooves corresponding to unit cells through a liquid supply path. CONSTITUTION:Elastic conductive members 9 attached to flat surfaces surrounded by frame-like fluorine-system rubber sealing members 8 spliced onto the top and the bottom of a unit block 1, are impregnated with phosphoric-acid electrolyte. The frame- like sealing member 8 is attached to the flat surface of a half plate 5' located at the bottom of an upper block 1 so as to form a liquid storage chamber 10, surrounded by the frame-like sealing members 8, between the facing half plates 5' and 5' of adjacent blocks 1. The liquid storage chamber 10 formed between the blocks 1, is connected to liquid storage grooves corresponding to unit cells through a liquid supply path which penetrates gas-separating plates 5' and 5. Owing to such constitution as above, arrangement of the stacked members is facilitated, and a deteriorated cell can be replaced for each block. Besides, the liquid supply frequency is extended 4-5 times as compared to one having only liquid storage grooves.

Description

【発明の詳細な説明】 技術分野 本発明は10〜20セル毎に組立てたユニットブロック
を任忌個積1して電池スタックを枯成する燃料市、池に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a fuel tank or pond in which unit blocks assembled in units of 10 to 20 cells are piled up in arbitrary quantities to dry up a battery stack.

背景技術 従来の電池スタックは単位セルをガス分離プレートを介
して多数(100〜200セル)和B、 L、その上1
端面に端子板・耐熱絶縁板を介して当接する金九製端板
間で締付けることによシ手h)成される。
BACKGROUND ART A conventional battery stack consists of a large number of unit cells (100 to 200 cells) summed B, L, and 1 through a gas separation plate.
h) This is accomplished by tightening between the end plates made of Kinkyu, which abut on the end faces via the terminal plate and heat-resistant insulating plate.

しかしこのように多数稍11化する際には5°(]11
部を整列することが難かしく、積11方向に凹凸が生じ
てマニホルF取付時和η1方向のシー/V部相との密着
性が悪く、シー/L/ i9を損ってガス漏れを起す原
因となっていた。また電池スタックの中で劣化の激しい
又は特性の懸い単位セルを交換することは実省上不用能
でめった。
However, when increasing the number to 11 in this way, 5° (]11
It is difficult to align the parts, unevenness occurs in the product 11 direction, and the adhesion with the sea/V part in the manifold F mounting time η1 direction is poor, damaging the sea/L/i9 and causing gas leakage. It was the cause. In addition, it is rarely practical to replace unit cells in a battery stack that are severely degraded or have poor characteristics.

更に電池の長N」作動により電属1液が乾燥するだめ、
各単位セルに対応してガス分離板の一周辺に貯液溝を形
成し、外部よりとの貯液7♂4を介して単位セルのマト
リックスに補液する方法がとられるが、前記貯液溝だけ
では貯蔵電解液係か限られるので、艮々霜池の作動を停
止して補液する必要があり、稼動率の倶、千する原因と
なっていた。
In addition, the electrolytic solution dries due to the operation of the battery length N.
A method is adopted in which a liquid storage groove is formed around one periphery of the gas separation plate corresponding to each unit cell, and liquid is replenished into the matrix of the unit cell via a liquid storage 7♂4 connected to the outside. Since the capacity for storing electrolyte is limited, it is necessary to stop the operation of the frost pond and replenish the electrolyte, which causes a drop in the operating rate.

発明の開示 本発明は電池スタックを任意数に分割する各ユニットブ
ロックの槓庖端■1周縁に枠状シー/I/部制を介押し
、該部側でll+−4れた空間に71.酢液を含浸した
弾性導電、部)FAを配設して貯液室を形成すると共に
、該貯液室と各単位セルに対応する貯液溝とを給液通路
を介して連通し、電池スタック内の貯温電M液tikを
増大して補液週期の卯長を図るものである。
DISCLOSURE OF THE INVENTION The present invention involves inserting a frame-shaped sea/I/part system around the periphery of each unit block that divides a battery stack into an arbitrary number of units, and 71. An elastic conductor FA impregnated with vinegar solution is provided to form a liquid storage chamber, and the liquid storage chamber and a liquid storage groove corresponding to each unit cell are communicated via a liquid supply passage to form a battery. The purpose is to increase the length of the fluid replenishment period by increasing the hot storage electric M fluid tik in the stack.

又af」記給液通路及び貯液溝に、微細多孔質粒子を担
提する抗水性繊維体を充ザ1し、マトリックスへの補液
を円滑化するものである。
In addition, the liquid supply passage and the liquid storage groove described in "af" are filled with water-resistant fibers carrying fine porous particles to facilitate liquid replacement into the matrix.

実施例 木兄FJ4の実施例を図について散、明する。Example An example of the Kinai FJ4 will be explained with reference to the drawings.

ユニットブロックf1)は第1図に示すように、陰陽ガ
ス極間に用、解賃マトリックスを挾柚した単位セJv(
2)と、両i1nに夫々陰・陽の各反応ガス供給溝+3
+[4)を有−する炭素質ガス分離プレート(5)とを
交互に積重し、数セル毎にん却ifl+路(61を・冶
する玲却プレート(7)を介在させて構成される。この
ブロック+11の上下には、内口1のみにカース供給溝
(3)又は(4)を配列し外面が平担である炭素質ハー
フプレート(5)を有し、ブロック上mJ倶jのハーフ
プレー15′)の周縁にはフッ素糸ゴム(商品名パイト
ンラバー)よりなる枠状シー/l/部拐(8)をフッ素
糸接着剤で接合している。
As shown in Figure 1, the unit block f1) is used between the yin and yang gas poles, and the unit block f1) is a unit cell Jv (
2), and each negative and positive reaction gas supply groove +3 for both i1n, respectively.
Carbonaceous gas separation plates (5) having + [4) and -[4] are stacked alternately, and a retraction plate (7) is interposed to separate the flow (61) every few cells. At the top and bottom of this block +11, there are carbonaceous half plates (5) with a flat outer surface and which are arranged with carous supply grooves (3) or (4) only in the inner opening 1. A frame-shaped sheath (8) made of fluorine thread rubber (trade name: Paiton Rubber) is bonded to the periphery of the half play 15') with a fluorine thread adhesive.

この枠状シー/L/部47I(81でV11マれたハー
フプレートの平担面上には、弾性導ル、部和(9)とし
て、厚み0.4mmのカーボンペーパーを3〜4枚eD
したものを嵌合し、この導箱部材(9)にりん酸電解液
を含浸している。
On the flat surface of this frame-shaped sheet/L/part 47I (81 and V11), 3 to 4 sheets of carbon paper with a thickness of 0.4 mm are placed as elastic guides and parts (9).
This guide box member (9) is impregnated with a phosphoric acid electrolyte.

このようなブロック+1+を任意数稍矩ねて市51Φス
タックに組立てる際に−1枠状シール部拐(8iを上方
ブロック(1)の下面ハーフフル−1−+5’lの平担
i1i+に接摺′し、枠状シール部側(8)で同寸ねた
隣接ブロックの対向ハーフプレート(5′)(5′)間
に貯液室(101を構成する。又ブロックの積ルにより
弾性導市7部月(9)は多少B、縮されてブロック間の
電気的接続体として働く。
When assembling an arbitrary number of such blocks +1+ into a 51Φ stack, remove the -1 frame-shaped seal part (8i is attached to the flat i1i+ of the lower half-full -1-+5'l of the upper block (1). A liquid storage chamber (101) is formed between the opposing half plates (5') and (5') of the adjacent blocks, which are of the same size on the frame-shaped seal side (8). The seventh month (9) is somewhat compressed and serves as an electrical connection between blocks.

これら各ブロック(1)間の貯液室(lO;は、ガス分
画ブレー)+5’051を貫通する給液通路(lりを介
して、各単位セルに対応する貯液溝(127に連通して
いる。又この給液通路(11)は各貯液室(lO)を互
に退1通し、外部から供線された市、酢液は、各貯麗1
面尾(+07より貯液?74 (l 21に送られ、こ
の貯液溝(12)を5+うマトリックス(M)の周辺よ
りマトリックス全体に吸液される。給液通路(111及
び貯液溝(121には、シリコンカーバイトやジルコニ
アなどの微細多孔質粒子を相持するフッ素樹脂などの繞
水慴繊維体(13)を天粕し、貯液室(10,内の弾性
導電部相(9)から毛管作用によってマトリックス(M
)に円7骨に電触−歳の襲lけをhう。
It communicates with the liquid storage groove (127) corresponding to each unit cell through the liquid supply passage (lO) that passes through the liquid storage chamber (lO; is the gas fractionating brake) + 5'051 between these blocks (1). In addition, this liquid supply passage (11) passes through each liquid storage chamber (lO), and the liquid and vinegar supplied from the outside are connected to each storage chamber (lO).
The liquid is sent from the liquid storage groove (12) to the liquid storage groove (12) and absorbed into the entire matrix from the periphery of the matrix (M). (In 121, a water-repellent fiber (13) made of fluororesin containing fine porous particles such as silicon carbide or zirconia is used.) matrix (M
) was attacked by an electric shock on the 7th bone.

第4図の仙、実施例dハーフブレー) tg+の周縁切
欠段部04.)に枠状シール部A旧8)を鉄層した場合
、第5図の他実施例はユニットブロック(1)の対向面
に夫々枠状シー/V部月(8′)(g)を予め接合し、
ブロック和(]1時これらシール部相間に、薄%フッ素
わj脂シL−) (+5+を介在させ、シール部側同志
が作−合するのを防1−シてブロックi1+間の分離を
ff+’+単にできるようにした場合を示す。
Figure 4, Example d half bra) tg+ peripheral notch step 04. ), the other embodiment in FIG. join,
Block sum () 1: A thin % fluorine resin L-) (+5+ is interposed between these seal parts to prevent the seal parts from working together and to separate the blocks i1+. A case where ff+'+ is simply made possible is shown.

このようにしてブロン9 (1+の任意数r* ]−1
により組立てられた% 10」スタックは、周知のよう
にその一ト下端面に端子板及び釦熱絶紅板を介して金属
製端板111」で締イlする。
In this way, Bron9 (arbitrary number r* of 1+) -1
As is well known, the % 10" stack assembled by the above method is fastened with a metal end plate 111" on the lower end surface via a terminal plate and a button heat insulation plate, as is well known.

枠状シール部拐(8)は、上記実施例では絶縁体である
が、膨張黒船パラキンクを用いれはブロック周辺からも
ブロック間の市1免的接続か行はれる。
Although the frame-shaped seal part (8) is an insulator in the above embodiment, an insulating connection between blocks can also be made from the periphery of the blocks by using an expanded black ship parakink.

又貯液室(10・内の弾性導汁拐(9Bは、上記実施例
のカーホンベーパー稙ル体の他に、多孔費カーボンプレ
ート特に膨張黒鉛の成型体を用いることができる。
In addition to the carbon vapor shape body of the above embodiment, a porous carbon plate, particularly a molded body of expanded graphite, can be used for the elastic liquid guide tube (9B) in the liquid storage chamber (10).

尚これら弾14導電体(9)はプロ・ツク(1)間の電
気接続体として働くが、電、酢液はイオン伝導性である
が電子伝導慴が殆どないので含浸電解液の光漏状態及び
枯渇状態でも、ブロック間の電気化導性には何ら影響を
及ぼさない。
These bullet 14 conductors (9) act as electrical connections between the proton and the tsuku (1), but although the electricity and vinegar solution have ionic conductivity, they have almost no electron conductivity, so there is a light leakage state in the impregnated electrolyte. Even in the depleted state, the electrical conductivity between the blocks is not affected in any way.

効果 本発明によれば電池スタックはユニ・ントグロツりを任
意個数積重して414成されるので、稍’3<部側の整
列が容易となると共に、劣化セルはブロック狛に交換ず
れはよく、従来のセル交換に封し極めてffri単とな
る。
Effects According to the present invention, a battery stack is formed by stacking an arbitrary number of unit cells, making it easy to align them on the 3< section side, and replacing deteriorated cells with blocks to prevent misalignment. , it is extremely simple to replace conventional cells.

特に本発明ではブロック稍11M1に枠状シー/I/部
和で[JI+ ”!れた貯液室か形成され且f、h’F
液を含浸した弾t!J導箱、部側か配設されたこの貯液
室を各セルに対応する貯1イ9. tti)に連通させ
ているのて、電池スタックの貯液klが著しく増大し、
補液周期が従来の貯亀?7ftのみの場合に比し4〜5
倍に延長され、電池の稼動率を向上することができる。
In particular, in the present invention, a frame-shaped liquid storage chamber is formed in the block depth 11M1 with [JI+''!
A bullet impregnated with liquid! 9. This liquid storage chamber provided on the side of the J guide box is used as a storage chamber corresponding to each cell.9. tti), the stored liquid kl in the battery stack increases significantly,
Is the fluid replacement cycle the same as the traditional one? 4-5 compared to the case of only 7ft
It is possible to extend the battery life by twice as much and improve the operating rate of the battery.

更に各貯液室間を連通ずると共に各貯液溝への分配路と
なる粘液通路及び各貯液溝に、徽紬多孔賀粒イを相打1
するJ混水1イI繊維体を弄相しておけば、貯液♀から
の電解n(d、これら繊維付の毛管作用によ−)で円滑
にマトリックスに補給される。
In addition, 1 piece of Hikatsumu Pooka Grain is placed in each liquid storage groove and the mucus passage that communicates between each liquid storage chamber and serves as a distribution path to each liquid storage groove.
If the J mixed water 1 b I I fibrous body is stirred, the matrix will be smoothly replenished by electrolysis n (d, due to capillary action with these fibers) from the stored liquid ♀.

4・、 図■■1の口j1単な説明 第1図は本発明燃料電池を招成するユニットブロックの
斜面図、第2図は同上ブロックの組立状部を示す一部破
断斜i1n図、第3図は同上の要部拡大断面図である。
4. Simple explanation of Figure ■■1 Figure 1 is a perspective view of a unit block constituting the fuel cell of the present invention, Figure 2 is a partially cutaway oblique view showing an assembled portion of the same block; FIG. 3 is an enlarged sectional view of the main parts same as above.

又第4・図及び第5図はいずれも他実施例による要部拡
大断面図である。
4 and 5 are both enlarged sectional views of main parts according to other embodiments.

l・・・ユニットブロック 2・・・単位セル3.4・
・・反応ガヌ供給溝 5・・・カス分離プレートに・・
・ハーフフ”レート  6・・・冷却通路7・・・冷却
板      8・・・枠状シール部側9・・・弾V1
導電部相   10・・・貯敢室11・・・給液通路 
   12・・・貯液溝】3・・・祝水V1繊維体 第3図
l...Unit block 2...Unit cell 3.4.
...Reaction gas supply groove 5...To the waste separation plate...
・Half” rate 6...Cooling passage 7...Cooling plate 8...Frame seal side 9...Bullet V1
Conductive part phase 10... Storage chamber 11... Liquid supply passage
12...Liquid storage groove] 3...Holiday water V1 fiber body Figure 3

Claims (1)

【特許請求の範囲】 ■ 市、池スタックを任意数のユニットブロックに分割
すると共に前記各ブロックの積:ni rhI周縁に枠
状シー/l’部拐を介挿し、該部相で囲捷れた空間に電
解液を保持する弾性導電部相を配設して貯液室を形成す
ると共に、との貯液室と各セルに対応する貯液溝とを給
液通路を介して連通せしめたことを特徴とする積層燃料
電池 ■ 前記結電通路及び貯液flljには、微細多孔質粒
子を担持する撥水慴繊維体が充填されていることを特徴
とする特許t!’j水の卸1囲第1項記4Gの87層大
!!’4i1 η電池。 ■ 前記弾性導電部相は、多孔質カーホンプレート、カ
ーボンペーパー、もしくは膨張黒釦成4す体で槁成され
ていることを特徴とする特許請求の範囲第1槌記載の積
層燃料電池。
[Claims] ■ Divide the city and pond stack into an arbitrary number of unit blocks, insert a frame-shaped sea/l' part around the product of each block, and surround it with the part. A liquid storage chamber is formed by disposing an elastic conductive part that holds an electrolyte in the space, and the liquid storage chamber and the liquid storage groove corresponding to each cell are communicated via a liquid supply passage. Stacked fuel cell, characterized in that ■ Patent t!, characterized in that the electricity-coupling passage and the liquid storage flj are filled with water-repellent fibers that support fine porous particles. 'j Water Wholesale 1 Section 1 4G 87 layers large! ! '4i1 η battery. (2) The stacked fuel cell according to claim 1, wherein the elastic conductive part is made of a porous carbon plate, carbon paper, or an expanded black button material.
JP57170586A 1982-09-28 1982-09-28 Layer-built fuel cell Pending JPS5958763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57170586A JPS5958763A (en) 1982-09-28 1982-09-28 Layer-built fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57170586A JPS5958763A (en) 1982-09-28 1982-09-28 Layer-built fuel cell

Publications (1)

Publication Number Publication Date
JPS5958763A true JPS5958763A (en) 1984-04-04

Family

ID=15907577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57170586A Pending JPS5958763A (en) 1982-09-28 1982-09-28 Layer-built fuel cell

Country Status (1)

Country Link
JP (1) JPS5958763A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2612696A1 (en) * 1987-03-17 1988-09-23 Us Energy ELECTROLYTIC CELL STACK WITH ELECTROLYTE MIGRATION CONTROL

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2612696A1 (en) * 1987-03-17 1988-09-23 Us Energy ELECTROLYTIC CELL STACK WITH ELECTROLYTE MIGRATION CONTROL

Similar Documents

Publication Publication Date Title
US4648955A (en) Planar multi-junction electrochemical cell
EP0188873B1 (en) Lightweight bipolar metal-gas battery
US6656624B1 (en) Polarized gas separator and liquid coalescer for fuel cell stack assemblies
US4463068A (en) Fuel cell and system for supplying electrolyte thereto with wick feed
US10230123B2 (en) Battery cell and redox flow battery
EP0068508A2 (en) Methanol fuel cell
US20100068599A1 (en) Fuel cell stack
US8304127B2 (en) Fuel cell stack
US4614025A (en) Method for making a lightweight bipolar metal-gas battery
GB2132004A (en) Zinc-bromine battery with long term stability
US20130089802A1 (en) Flow field plate with relief ducts for fuel cell stack
JP2005038858A (en) Manufacturing system and method for electrolyte using electro-deposition
US4463067A (en) Fuel cell and system for supplying electrolyte thereto utilizing cascade feed
CN111224124A (en) Fuel cell monomer and preparation method thereof
US20030022051A1 (en) Multi-element thin-film fuel cell
JPS61216248A (en) Fuel cell
CN110137529A (en) Fuel cell unit
KR101315622B1 (en) Fuelcell stack using branched channel
JPS5958763A (en) Layer-built fuel cell
JPS58145066A (en) Fuel cell
CN110431699B (en) Novel modular electrochemical cell and stack design
JPS59154772A (en) Fuel cell
JP2007005222A (en) Fuel cell and separator for fuel cell
JP2000012053A (en) Solid high-polymer electrolyte-type fuel cell
KR20200055311A (en) Manifold with back side flow path and Redox flow battery