JPS5958053A - Silicone resin solution and its preparation - Google Patents

Silicone resin solution and its preparation

Info

Publication number
JPS5958053A
JPS5958053A JP57168271A JP16827182A JPS5958053A JP S5958053 A JPS5958053 A JP S5958053A JP 57168271 A JP57168271 A JP 57168271A JP 16827182 A JP16827182 A JP 16827182A JP S5958053 A JPS5958053 A JP S5958053A
Authority
JP
Japan
Prior art keywords
resin solution
silicone resin
solvent
reduced pressure
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57168271A
Other languages
Japanese (ja)
Other versions
JPS6110495B2 (en
Inventor
Shiro Takeda
武田 志郎
Minoru Nakajima
実 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57168271A priority Critical patent/JPS5958053A/en
Publication of JPS5958053A publication Critical patent/JPS5958053A/en
Publication of JPS6110495B2 publication Critical patent/JPS6110495B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prepare a silicone resin solution useful as an insulating material for circuit layers such as semiconductors having improved shelf stability from which a very small amount of hydrochloric acid is removed, etc., by dissolving a polycondensate obtained by hydrolyzing a tetra-alkoxysilane and subjecting it to polycondensation in a specific organic solvent, treating it under reduced pressure. CONSTITUTION:A polycondensate obtained by hydrolyzing a tetra-alkoxysilane and subjecting it to polycondensation is dissolved in an organic solvent having >=110 deg.C boiling point, and treated under reduced pressure at <=5mm.Hg, preferably <=3mm.Hg, to give a resin solution having <=10ppm content of a hydrogen halide. The treatment under reduced pressure is carried out at <=40 deg.C, preferably at 5- 28 deg.C.

Description

【発明の詳細な説明】 (])  発明の技術分野 本発明はコーティング用シリコーン樹脂溶液およびその
製造方法に関し、更に詳しくは、特に半導体、バブルメ
モリなどの保護もしくは配線層間絶縁材料として用いる
ことのできる、スピンコード可能なシリコーン樹脂およ
びその製造方法に関する。
[Detailed Description of the Invention] (]) Technical Field of the Invention The present invention relates to a silicone resin solution for coating and a method for producing the same, and more specifically, it can be used particularly as a protection material for semiconductors, bubble memories, etc. or as an interlayer insulating material for wiring. , relates to a spin-codable silicone resin and a method for producing the same.

(2)技術の背景並びに従来技術と問題点画アルコキシ
シランの加水分解縮合重合物(以下、単にPDASとい
う)溶液は、塗布、加熱処理によりS10.膜と力るた
め、例えば半導体ガどの表面あるいは配線層間々どの絶
縁材料の一つとして使われている。
(2) Technical Background, Prior Art, and Problems A solution of a hydrolyzed condensation polymer of alkoxysilane (hereinafter simply referred to as PDAS) is coated and heat-treated at S10. For example, it is used as an insulating material on the surface of semiconductor materials or between wiring layers.

半導体あるいはバプルメそり々どのように電食不良の起
とシうる装置は高度の長期信頼性が要求され、その中で
使用される絶縁材料に微量の不紳物が存在していても電
食不良の原因となりうる。
Semiconductor or bubble metal devices are required to have a high degree of long-term reliability, and even if there is a trace amount of impurity in the insulating material used in the equipment, electrolytic corrosion defects will occur. It can cause

また、Te、  パーマロイFe2O3など酸に腐食さ
れ易い薄膜の保護に用いるときには、微Iの酸を含有す
ることが致命的なことともなυうる。従っ″て、絶縁材
料には微量の酸の存在も許されない。
Furthermore, when used to protect thin films such as Te and permalloy Fe2O3 that are easily corroded by acids, the inclusion of a small amount of acid may be fatal. Therefore, the presence of even a trace amount of acid in the insulating material is not allowed.

微量の酸は以下に述べる反応工程で存在する。Trace amounts of acid are present in the reaction steps described below.

すなわち、本発明における四アルコキシシラン5l(O
R)4〔式中、Rはアルキル基であるDの加水分解縮合
重合物溶液は一般に次の(1) 、 (2)式の反応に
従って得られる: Si(OR)4+2H20→ S i (OR)z (OH)!+2ROM     
  (])ns i (OR)1 (OB) 2→0H
−(=St(OR)、O+H十(n−1)H,O(2)
尚、(2)式の反応の他に膜アルコール縮合反応もおこ
秒得る。
That is, the tetraalkoxysilane 5l (O
R)4 [wherein R is an alkyl group] A hydrolysis condensation polymer solution of D is generally obtained according to the reaction of the following formulas (1) and (2): Si(OR)4+2H20→ Si(OR) z (OH)! +2ROM
(])ns i (OR)1 (OB) 2→0H
-(=St(OR), O+H+(n-1)H,O(2)
In addition to the reaction of formula (2), a membrane alcohol condensation reaction can also be obtained.

とわらの反応によって得られる重合物は、5t−OR基
の他r(多数の5i−OH基を含むためその1\でも三
次元架橋反応を起こしやすいのでアルコール溶剤中で該
反応は行なわれることが多い。更に(1)式又は(2)
式の反応の促進剤としてシランモノマーに対し0.05
〜05%の酸が添加される。酸としては、塗膜を加熱処
理する際、揮発除去し得る塩酸を用いることが多い。こ
の塩酸は事実上殆んど揮発除去されているようであシ、
アルミニウム配線上に直接塗布してもアルミニウムの腐
食は観察されない。しかるに、長期にわたるバイアス試
験を行なうと、電食不良を起こすことが見出された。
The polymer obtained by Towara's reaction contains many 5i-OH groups in addition to 5t-OR groups, so even the 1\ group is likely to cause a three-dimensional crosslinking reaction, so the reaction must be carried out in an alcohol solvent. Furthermore, equation (1) or (2)
0.05 to the silane monomer as a promoter for the reaction of formula
~05% acid is added. As the acid, hydrochloric acid, which can be removed by volatilization during heat treatment of the coating film, is often used. It appears that most of this hydrochloric acid has been evaporated and removed.
No corrosion of aluminum is observed even when applied directly onto aluminum wiring. However, when a long-term bias test was conducted, it was found that electrolytic corrosion defects occurred.

これは除去し得なかった微量の塩酸に基づくものと思わ
れた。何故なら、樹脂液中の塩酸を可能な限し除去する
と電食不良が軽減されたからである。
This was thought to be due to trace amounts of hydrochloric acid that could not be removed. This is because removing as much hydrochloric acid from the resin liquid as possible reduced electrolytic corrosion defects.

一般に、樹脂液中の水溶性不純物の除去は、水洗によっ
て行々われる。しかしPDAS溶液の場合はそわが困難
である。何故ガら、PDAS中の5i−OR基が5i−
OH基に変化し易く、5iOHが多くなるとゲル化して
しまったわ、保存安定性を失いゲル化してしまう。又、
塩酸除去のための水洗時に水に溶は込む有機溶剤のため
か、洗浄水層にPDASが分配されてしまうからである
。有枦溶剤としてエタノールの如き水混和性溶剤を用い
るときは、水洗そのものが不可能であシ、直ちにゲル化
する。ベンゼンの如き水と混じ#)雛い溶剤にはPDA
Sけ溶解しないので使用できないっまた、揮発性不純物
の除去には、例えば溶剤の高齢[7度化のため、加温し
て蒸留分離する方法が採用されるが、この方法もPI)
AS溶液には適用できない。何故なら、分子量の増加に
よシゲル化し易くなるからである。
Generally, water-soluble impurities in the resin liquid are removed by washing with water. However, in the case of PDAS solution, it is difficult to fidget. Why is it that the 5i-OR group in PDAS is 5i-
It easily converts into OH groups, and when the amount of 5iOH increases, it turns into a gel.It loses its storage stability and turns into a gel. or,
This is because PDAS is distributed in the washing water layer, probably due to the organic solvent that dissolves in the water during washing to remove hydrochloric acid. When a water-miscible solvent such as ethanol is used as a liquid solvent, washing with water itself is impossible and gelation occurs immediately. PDA is mixed with water such as benzene.
It cannot be used because it does not dissolve S. Also, to remove volatile impurities, for example, when the solvent is aged (7 degrees Celsius, heating and distillation separation is used, but this method is also PI).
Not applicable to AS solutions. This is because as the molecular weight increases, it becomes easier to form a gelatin.

PDASはこのように単独では不安定であり短時間でゲ
ル化してし捷うので、常に有視5溶剤に溶解している状
態になければならない。又、その溶剤は塩酸が除去され
てもなお多量に残っているよう々蒸気圧を有するもので
なければならない。
PDAS is thus unstable when used alone and gels and dissolves in a short period of time, so it must always be in a state of being dissolved in the visible solvent. The solvent must also have a vapor pressure such that a large amount remains after the hydrochloric acid is removed.

(3)発明の目的および構成 本発明け、このよう々従来の間断点を解消し、微量の塩
酸を除去した、しかも保存安定状態にあるシリコーン樹
脂溶液並びにその製造方法を提供することをその目的と
する。
(3) Object and Structure of the Invention The object of the present invention is to provide a silicone resin solution that eliminates the conventional interruption point, removes trace amounts of hydrochloric acid, and is stable in storage, and a method for producing the same. shall be.

すガわち、本発明のシリコーン樹脂溶液は、肺点110
℃以上を有する有機溶剤に、四アルコキシシランの加水
分解縮合物を溶解してカリ、ハロゲン化水素の含有が1
0ppm以下であると七を特ダとするものであり、又別
の発明におけるシリコーン樹脂溶液の製造方法は四アル
コジシランの加水分解縮合重合物清液と110℃以上の
沸点を有する有機溶剤を混合し、5mmHg 以下の圧
力下で減圧処理することを特りとする。
In other words, the silicone resin solution of the present invention has a lung point of 110
A hydrolyzed condensate of tetraalkoxysilane is dissolved in an organic solvent having a temperature of 1°C or higher to reduce the content of potassium and hydrogen halide to 1.
7 is special if it is 0 ppm or less, and a method for producing a silicone resin solution in another invention involves mixing a hydrolyzed condensation polymer clear liquid of tetraalcodisilane with an organic solvent having a boiling point of 110° C. or higher. The special feature is that the decompression treatment is performed under a pressure of 5 mmHg or less.

本発明で使用する有機溶剤はアルコール系、セロソルブ
アセテート系、ケトン系、エーテル糸、セロソルブ系な
どPDASを溶解し沸点110℃以上を有する溶剤であ
ればいかなる溶剤も使用できる。
As the organic solvent used in the present invention, any solvent can be used as long as it dissolves PDAS and has a boiling point of 110° C. or higher, such as alcohol, cellosolve acetate, ketone, ether thread, and cellosolve.

例えば、n−ブタノール(117,7℃) 、n −I
Zルアルコール(138,3℃)、n−へキサノーノl
For example, n-butanol (117.7°C), n-I
Z alcohol (138,3℃), n-hexanol
.

(157,9℃)、n−ブチルエーテル(140,9℃
)、エビクロロヒドリン(117℃)、メチル−〇−ブ
チルケトン(127,2℃)、メチルセロソルブアセテ
ート(144,5〜345.1℃)等がその例としてあ
げられる。尚、沸点の高い溶剤はど室温での蒸発速度が
小さいと言ってそわ程間違いではない。本発明において
使用する溶剤も沸点の高い溶剤を用いる方が有利である
。たとえばメチルセロソルブアセテート、エチルエセロ
ソルブアセテート、ブチルセロソルブアセテートを比較
すると、それぞれ沸点は1445〜145.1℃、15
6゜3℃、1915℃(浅原ら編「溶剤ハンドブック」
講談社、昭和51重量板による)であり、0,1%のH
ceを含むPDASのエチルアルコール溶液中の均酊′
を、硝酸銀を用いても検出でき々い程度にまで減圧処理
したとき、加えたセロソルブアセテートに対し1残った
セロソルブアセテートの塁はそれぞわ48%、76%、
98%であった。もとより泳新分は添加するととで補う
ことが可能である。あまりにも沸点の高すぎる溶剤、た
とえば2−フェノキシエチルアセテート(沸点2597
℃)などは減圧処理1時には有利であろうけわども、塗
布硬化時に膜中に残された溶剤が微細カビンホールを形
成するかも知ねガい。
(157,9℃), n-butyl ether (140,9℃
), shrimp chlorohydrin (117°C), methyl-〇-butyl ketone (127.2°C), and methyl cellosolve acetate (144.5-345.1°C). It is not at all incorrect to say that a solvent with a high boiling point has a low evaporation rate at room temperature. It is advantageous to use a solvent with a high boiling point as the solvent used in the present invention. For example, when comparing methyl cellosolve acetate, ethyl cellosolve acetate, and butyl cellosolve acetate, the boiling points are 1445-145.1°C and 15°C, respectively.
6°3°C, 1915°C (Solvent Handbook, edited by Asahara et al.)
Kodansha, Showa 51 weight board), 0.1% H
Solubility of PDAS containing ce in ethyl alcohol solution
When treated under reduced pressure to a level that is undetectable even using silver nitrate, the proportion of cellosolve acetate remaining 1 to the added cellosolve acetate was 48%, 76%, and 76%, respectively.
It was 98%. Of course, it is possible to supplement the swimming fraction by adding it. Solvents with too high a boiling point, such as 2-phenoxyethyl acetate (boiling point 2597
℃) may be advantageous during the first vacuum treatment, but it is possible that the solvent left in the film during coating and curing may form fine cavin holes.

尚、本発明においては混1合溶剤の使用も可能であり、
例λはトルエン、キシレン々ど単独ではPDASを溶解
しシい溶剤もn−ブチルアルコールなどの如きアルコー
ル老溶剤と混合して用いることもできる。
In addition, in the present invention, it is also possible to use a mixed solvent,
For example, λ may be a solvent such as toluene or xylene which cannot dissolve PDAS when used alone, or may be used in combination with an alcoholic solvent such as n-butyl alcohol.

たとえばn−ブチルアルコール/キシレン系混合溶剤の
場合型1比で1010〜8/2の#囲で用いることがで
き、n−ブチルアルコール/トルエン系混合溶剤の場合
1010〜6/4の範囲で用いることができる。ただし
とわらの範囲はPDAS原液の和1でよって多少変化す
る。キシレンよシもトルエンの方が広い範囲をとしうる
のけ減圧処理時に揮発邪が多いためと考えらねる。
For example, in the case of n-butyl alcohol/xylene-based mixed solvent, it can be used in the # range of 1010 to 8/2 in the type 1 ratio, and in the case of n-butyl alcohol/toluene-based mixed solvent, it can be used in the range of 1010 to 6/4. be able to. However, the range varies somewhat depending on the sum of the PDAS stock solution. Although toluene can cover a wider range than xylene, this is not considered to be because it evaporates more during depressurization treatment.

本発明における混合樹脂溶液の減圧処理時の圧力は、小
さ;叶れげ小さい程短時間に処理するととができるので
有利であるが、5wnHgl、J下であれば良く、3w
IHg以下が好ましい。しかし、05mug以上でも実
際使用可能である。減圧処理時の温度は、高ければ短時
間に処理できるがPDASの変質を避けるため40℃以
下で行なう必要がある。28℃以下で5℃以上が望まし
い。
The pressure during the reduced pressure treatment of the mixed resin solution in the present invention is small; the smaller the pressure, the more advantageous it is because the treatment can be carried out in a shorter time.
IHg or less is preferable. However, 0.05 mg or more can actually be used. If the temperature during the depressurization treatment is high, the treatment can be carried out in a short time, but it is necessary to perform the treatment at a temperature of 40° C. or lower to avoid deterioration of the PDAS. The temperature is preferably 28°C or lower and 5°C or higher.

必要な減圧処理時間は、処理するPDAS溶液の量、P
DA8溶液中に含まれる塩酸濃度によって異なるので一
般的に規定でき力いが通常1oocc処理するのに1〜
4時間である。減圧処理はたとえば四−タリーエバポレ
ータを用いて行なうことができる。その場合、ロータリ
ーエバポレータの角度、回転数、フラスコの形状、大き
さなどによって必要な処理時間は異なる。
The required vacuum treatment time depends on the amount of PDAS solution to be treated, P
It varies depending on the concentration of hydrochloric acid contained in the DA8 solution, so it cannot be generally specified, but it is usually 1~10cc for 10cc treatment.
It is 4 hours. The reduced pressure treatment can be carried out using, for example, a four-tally evaporator. In that case, the required processing time varies depending on the angle of the rotary evaporator, the rotation speed, the shape and size of the flask, etc.

このようにして減圧処理を行なうことによって、PDA
S溶液中の塩酸濃度を硝酸銀を用いても検出できない程
度にまで下げることが可能であり、lppm以下と推定
される。すなわち、少なくとも測宇限界がloppm 
 である分析法によっては検出されなかった。
By performing the depressurization process in this way, the PDA
It is possible to lower the hydrochloric acid concentration in the S solution to an undetectable level even by using silver nitrate, and it is estimated to be 1 ppm or less. In other words, at least the measurement limit is loppm.
It was not detected by certain analytical methods.

(4)発明の実施例 以下、本発明を実施例により更に説明する。(4) Examples of the invention The present invention will be further explained below with reference to Examples.

重量平均分子量(扁W;ゲルパーミュージョンクロマト
グラフィによる標準ポリスチレンへの換算値)5400
、官能基がエトキシとシラノールでそのモル比が約1対
1であるPDASを15,5重要パーセントを含み、溶
剤がエチルアルコールとイソプロピルアルコールでその
混合比が重量で約3:ラスコに採取し、ブチルセロソル
ブアセテート845gを加えた、このナス型フラスコを
ロータリーエバレターに接続し、傾斜45℃に設置し、
回転数5Qrpmで回転させた。次に浴温25℃の水槽
にフラスコを入れ、真空ポンプで2.0++anHgK
鍼圧し、4時間波圧処理した。ドライアイスで冷却した
エタノールを冷媒とするトラップにけ86,1gの溶剤
がトラップされ、ナス型フラスコ中の溶液の重量は98
4gであった。これにブチルセロソルブアセテート1.
’6 gを加え、PDAS溶液■を得た。
Weight average molecular weight (w: converted value to standard polystyrene by gel perfusion chromatography) 5400
, containing 15.5 significant percent of PDAS whose functional groups are ethoxy and silanol in a molar ratio of about 1:1, and the solvent is ethyl alcohol and isopropyl alcohol in a mixing ratio of about 3 by weight: This eggplant-shaped flask containing 845 g of butyl cellosolve acetate was connected to a rotary evaporator and placed at a tilt of 45°C.
It was rotated at a rotation speed of 5 Qrpm. Next, put the flask in a water tank with a bath temperature of 25℃, and use a vacuum pump to 2.0++anHgK.
Acupuncture pressure was applied and wave pressure treatment was applied for 4 hours. 86.1 g of solvent was trapped in a trap using ethanol cooled with dry ice as a refrigerant, and the weight of the solution in the eggplant-shaped flask was 98.
It was 4g. Add 1. butyl cellosolve acetate to this.
'6 g was added to obtain a PDAS solution (■).

とのPDAS溶液■のIgを試験管に採り、0.1%硝
硝酸水水溶液2を漂加し捏盪したところ、やがて有機層
部の管壁に白いゲル状物質が付着したが、水層部は還元
された鐸の茶褐色の色を呈したが白色の沈殿は生じなか
った。
When Ig from PDAS solution (2) was taken into a test tube, 0.1% nitric acid aqueous solution 2 was added and stirred, a white gel-like substance eventually adhered to the tube wall in the organic layer, but the water layer The part took on the brownish color of a reduced pottery, but no white precipitate was formed.

PDAS溶液■を水で抽出洗浄し、塩素の定量分析を行
なった。その結果、塩素の濃度はloppm以下であっ
た1、一方、PDAS溶液T溶液全1g管に採υ、01
%硝酸銀溶液1滴を加え振とうした結果、白濁を生じた
The PDAS solution (1) was extracted and washed with water, and quantitative analysis of chlorine was performed. As a result, the concentration of chlorine was less than loppm1, while a total of 1g of PDAS solution T was added to the tube, 01
When one drop of % silver nitrate solution was added and the mixture was shaken, white turbidity occurred.

特許出願人 富士通株式会社 特許出枦代理人 弁理士 青 木   朗 弁理士西舘和之 弁理士内田幸男 弁理士 山 口 昭 之patent applicant Fujitsu Limited Patent agent Patent attorney Akira Aoki Patent attorney Kazuyuki Nishidate Patent attorney Yukio Uchida Patent attorney Akira Yamaguchi

Claims (1)

【特許請求の範囲】 1、沸点110℃以上を有する有機溶剤に、四アルコキ
シシランの加水分解縮合重合物を溶解して寿る、ハロゲ
ン化水素含有10ppm以下のシリコーン樹脂溶液。 2 四アルコキシシランの加水分解縮合重合物溶液と1
10℃以上の沸点を有する有機溶剤を混合し、5III
ffIHg以下の圧力下で減圧処理することを特許とす
るシリコーン樹脂溶液の製造方法。
[Claims] 1. A silicone resin solution containing hydrogen halide of 10 ppm or less, which can be obtained by dissolving a hydrolyzed condensation polymer of tetraalkoxysilane in an organic solvent having a boiling point of 110° C. or higher. 2 Hydrolyzed condensation polymer solution of tetraalkoxysilane and 1
Mixing an organic solvent with a boiling point of 10°C or higher, 5III
ff A method for producing a silicone resin solution that is patented in that it is subjected to reduced pressure treatment under a pressure of IHg or less.
JP57168271A 1982-09-29 1982-09-29 Silicone resin solution and its preparation Granted JPS5958053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57168271A JPS5958053A (en) 1982-09-29 1982-09-29 Silicone resin solution and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57168271A JPS5958053A (en) 1982-09-29 1982-09-29 Silicone resin solution and its preparation

Publications (2)

Publication Number Publication Date
JPS5958053A true JPS5958053A (en) 1984-04-03
JPS6110495B2 JPS6110495B2 (en) 1986-03-29

Family

ID=15864920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57168271A Granted JPS5958053A (en) 1982-09-29 1982-09-29 Silicone resin solution and its preparation

Country Status (1)

Country Link
JP (1) JPS5958053A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100742196B1 (en) 2006-11-16 2007-07-24 주식회사 베스트화성 Manufacturing method of needle-shaped bristle having short taper length and toothbrush by same manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5774370A (en) * 1981-06-15 1982-05-10 Tokyo Denshi Kagaku Kabushiki High-purity silica-forming coating solution

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5774370A (en) * 1981-06-15 1982-05-10 Tokyo Denshi Kagaku Kabushiki High-purity silica-forming coating solution

Also Published As

Publication number Publication date
JPS6110495B2 (en) 1986-03-29

Similar Documents

Publication Publication Date Title
EP0112168B1 (en) Silicone-type coating resin solution and its preparation
JP2739902B2 (en) Coating solution for forming silicon oxide coating
JP3153367B2 (en) Molecular weight fractionation method for polyhydrogensilsesquioxane
CN101937172B (en) Positive type radiation-sensitive composition, cured film, interlayer insulating film, method for forming method interlayer insulating film, display element and siloxane polymer
US7294584B2 (en) Siloxane-based resin and a semiconductor interlayer insulating film using the same
EP0410564A2 (en) Metastable silane hydrolyzate solutions and process for their preparation
JPS5958053A (en) Silicone resin solution and its preparation
US5399648A (en) High-purity silicone ladder polymer and process producing the same
JPH0766188A (en) Semiconductor device
US6447846B2 (en) Electrically insulating thin-film-forming resin composition and method for forming thin film therefrom
JPS6033117B2 (en) Method for producing silanol oligomer liquid
Tsukuma et al. Liquid phase deposition of a film of silica with an organic functional group
JPS5958054A (en) Silicone resin solution and its preparation
KR19980026265A (en) Etch Liquid Composition for Semiconductor Wafer Regeneration
US5270074A (en) Silicone resin coating compositions
JP3268506B2 (en) Solvent composition for removing adhering water
JPH06293879A (en) Coating liquid for forming oxide coating film and production of oxide coating film
JPS6228511B2 (en)
JPS6059303B2 (en) Acidic aqueous etchant composition for chrome etching
CN115287069B (en) C-free etching solution for inhibiting silicon dioxide etching
JP2002321910A (en) Method for forming aerogel membrane
JPH0129056B2 (en)
JPH09249673A (en) Aqueous solution for forming silica coating membrane and formation of silica coating membrane
CN115291483B (en) Semiconductor stripping liquid and preparation method thereof
US4713145A (en) Method of etching etch-resistant materials