JPS59577A - Inertia propelled engine and inertia motor - Google Patents

Inertia propelled engine and inertia motor

Info

Publication number
JPS59577A
JPS59577A JP11009182A JP11009182A JPS59577A JP S59577 A JPS59577 A JP S59577A JP 11009182 A JP11009182 A JP 11009182A JP 11009182 A JP11009182 A JP 11009182A JP S59577 A JPS59577 A JP S59577A
Authority
JP
Japan
Prior art keywords
inertial
angular velocity
rotating system
propulsion engine
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11009182A
Other languages
Japanese (ja)
Inventor
Masato Ito
正人 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11009182A priority Critical patent/JPS59577A/en
Publication of JPS59577A publication Critical patent/JPS59577A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G3/00Other motors, e.g. gravity or inertia motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gear Transmission (AREA)

Abstract

PURPOSE:To produce a propelling force, by causing movement of a weight disposed in a radial space of a rotating system which produces such an inertial oscillation that the angular velocity is minimum at the central part of the rotating system and maximum at the outer side. CONSTITUTION:When a rotor 4 is turned with application of an input rotation omega0, an elliptic gear 2 and a bevel gear 8 attached to the rotor 4 are turned once together by a bevel gear 7 fixed to a stationary system 6. Resultantly, two elliptic gears 3 are turned once at unequal speed respectively in the directions shown by arrows in the drawing, and a weight 1 is made to cause circular motion also at an unequal speed by the rotation of the elliptic gears 3. At the position where all of the six focal points of the three elliptic gears are located straight, the angular velocity of the weight 1 becomes maximum (omega2) and minimum (omega1), and a propelling force is produced in the direction of omega2. In the above arrangement, the direction of the propelling force is changed by altering the phase of the bevel gear 7 fixed to the stationary system 6.

Description

【発明の詳細な説明】 この発明は遠心力を偏向させる概念によって推進力を発
生させる慣性推進機関と、それにより回転力を得る慣性
モーターに関するもので、いずれ。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an inertial propulsion engine that generates propulsive force based on the concept of deflecting centrifugal force, and an inertial motor that obtains rotational force thereby.

も動力を得ることを目的とするものである。The purpose is also to obtain power.

まず慣性推進機関の原理を説明すると、第1図で質量m
の質点Pを円運動させ角速度をω1がらω2まで加速さ
せ、再びω2からω、まで減速させる非等速円運動によ
って、y軸方向で遠心力の差を生じるが、同時に加速及
び減速に伴う運動量の変化によって反作用fを生じ、こ
の回転系は力学的に均合うことになる。
First, to explain the principle of an inertial propulsion engine, Fig. 1 shows the mass m
A difference in centrifugal force is generated in the y-axis direction by a non-uniform circular motion in which the mass point P of The change in causes a reaction f, and this rotating system becomes dynamically balanced.

このときの反作用fを消滅させる手段として再度遠心力
を利用するのが本発明の根本概念である。
The basic concept of the present invention is to utilize centrifugal force again as a means to eliminate the reaction f at this time.

まず第1図でχ−y座標中の質点Pの非等速円運動をX
軸方向から見て最小角速度と最大角速度が両端となる振
動を特に慣性振動と定義すると、第2図のようにX−Y
座標の原点0を中心に直線0−.31がω。で回転する
とき、質点Pがo−y上において原点0で最小角速度ω
1となりY軸上の定点Qで常に最大角速度ω2となる慣
性振動をすると、質点Pは図のように一定の楕円状の軌
道を描くことに々る、この場合は慣性振動の周期Tに回
転運動の周期を一致させ、ω。−2π/Tとしである。
First, in Figure 1, the non-uniform circular motion of the mass point P in the χ-y coordinate is represented by
If we define inertial vibration as the vibration where the minimum angular velocity and maximum angular velocity are at both ends when viewed from the axial direction, the X-Y
A straight line 0-.centered on the coordinate origin 0. 31 is ω. When the mass point P rotates at the origin 0 on o-y, the minimum angular velocity ω
1, and when inertial vibration always has a maximum angular velocity ω2 at a fixed point Q on the Y-axis, the mass point P often draws a constant elliptical orbit as shown in the figure. In this case, it rotates at the period T of inertial vibration. Match the period of motion, ω. -2π/T.

この軌道上にある質点Pの運動量の変化を分析すると、
図のIJ、 =R,ω。にょる運動量の変化は一周する
と相殺されて無関係となり、質点が最大速度を持つのは
主としてvlに伴う遠心力mRxω:にょって加速度を
受けだだめである。
Analyzing the change in momentum of mass point P on this orbit, we get
IJ in the figure = R, ω. Changes in momentum are canceled out after one revolution and become irrelevant, and the mass point has the maximum velocity mainly because it receives acceleration due to the centrifugal force mRxω: due to vl.

したがって反作用なしで運動量が最大となるため、原点
Oから定点Qの方向に遠心力の偏向がちり、矢印Fの推
進力を発生させることができる。
Therefore, since the momentum is maximized without any reaction, the centrifugal force is deflected in the direction from the origin O to the fixed point Q, and the propulsive force indicated by the arrow F can be generated.

このように、質点Pの慣性振動をその角速度が最小とな
るときを中心部に置き、最大となるとき常に外側の定点
を通過するよう周期を定めて回転させることが、本発明
の技術的思想である。
In this way, the technical idea of the present invention is to rotate the inertial vibration of the mass point P at a fixed period so that the time when the angular velocity is the minimum is at the center, and when the angular velocity is the maximum, it always passes through a fixed point on the outside. It is.

従ってその慣性振動は、第2図のように原点0を通って
X−Y面に垂直な平面内での非等速円運動によるものだ
けでなく、X−Y面内での非等速円運動に起因してo−
y上に現われる慣性振動も本発明の技術的思想の範ちゅ
うである。
Therefore, the inertial vibration is not only due to non-uniform circular motion in a plane perpendicular to the X-Y plane passing through the origin 0 as shown in Figure 2, but also due to non-uniform circular motion within the X-Y plane. O- due to exercise
Inertial vibration appearing on y is also within the scope of the technical idea of the present invention.

更にX−Y面にこだわらず、非等速円運動を往復直線運
動にする変換機構を利用して、質点Pをo−y上で往復
直線運動させるこ吉はまさに慣性振動そのものであり、
技術的思想の根幹である。
Furthermore, without worrying about the X-Y plane, by using a conversion mechanism that converts non-uniform circular motion into reciprocating linear motion, Kokichi, which moves the mass point P in reciprocating linear motion on o-y, is exactly inertial vibration itself,
It is the basis of technical thought.

その上、慣性振動の周期と回転系の回転周期は同一で彦
くても良く、慣性撮動の角速度に大きな大小差があれば
、その1サイクルの間に回転系を2回収上回転させても
ω2が定点Qを通過する。
Furthermore, the period of inertial vibration and the rotation period of the rotating system may be the same, and if there is a large difference in the angular velocity of inertial imaging, the rotating system may be rotated twice during one cycle. Also, ω2 passes through the fixed point Q.

実施のための最良の形態は、第3図及び第4図のように
、静止系6に支えられたローター4とその軸5があり、
入力回転ω。全力えてローター4が一回転すると静止系
6に固定した笠歯車7によりローター4にある笠歯車8
と楕円歯車2が共に一回転する構造であり、よって2個
の楕円歯車3がそれぞれ矢印の方向に非等速で一回転し
、その楕円歯車3と連動しておもり1かそnぞれ非等速
円運動を行う機構である。ここで各楕円歯車の6個の焦
点が全部直列となったとき、おもりlの角速度はそれぞ
れ最大ω2と最小ω1になり、最大ω2となる方向か推
進力の方向である。そして静止系6に固定した笠歯車7
0位相を変えると推進力の方向か変わるのは当然である
。尚、ローター4に楕円歯車3を′2個使いおもり1を
複数にしたのは回転時の振動を抑制するためである。
The best mode for implementation is as shown in FIGS. 3 and 4, in which there is a rotor 4 supported by a stationary system 6 and its shaft 5,
Input rotation ω. When the rotor 4 rotates once with full force, the cap gear 7 fixed to the stationary system 6 activates the cap gear 8 on the rotor 4.
The structure is such that both the elliptical gear 2 and the elliptical gear 2 rotate once, and therefore, the two elliptical gears 3 each rotate once in the direction of the arrow at non-uniform speeds, and in conjunction with the elliptical gears 3, the weight 1 and each rotate non-uniformly. It is a mechanism that performs fast circular motion. Here, when the six focal points of each elliptical gear are all in series, the angular velocity of the weight l becomes maximum ω2 and minimum ω1, respectively, and the direction in which the maximum ω2 is achieved is the direction of the propulsive force. And the cap gear 7 fixed to the stationary system 6
It is natural that changing the 0 phase will change the direction of the propulsive force. The reason why two elliptical gears 3 are used in the rotor 4 and a plurality of weights 1 are used is to suppress vibration during rotation.

実際にはこの慣性推進機関を2基以上並列にして不必要
な振動を相殺するものとする。
In reality, two or more of these inertial propulsion engines are arranged in parallel to cancel out unnecessary vibrations.

ところで本発明に必要な非等速円運動は同じ大きさの楕
円歯車′ff:2個以上かみ合わせて作るものて、3僧
服」二かみ合わせて角速度に差のある非等速円運動を作
ることもできる。尚3個以上の場合歯車の重量を軽減し
最終歯車間隔を長く取nる。
By the way, the non-uniform circular motion required for the present invention is made by meshing two or more elliptical gears of the same size. You can also do it. If there are three or more gears, reduce the weight of the gears and increase the final gear spacing.

次に慣性モーターの原理を説明す−る。Next, we will explain the principle of an inertial motor.

前記のような慣性推進機関全通常2基、第二回転系に設
け、連動させてその推進力により偶力を発生させるよう
配置したものでるり、その慣性推進機関に入力回転を与
える構造全備えていて、その入力回転さえ与え几ば連続
して動力を得ることができるものである。
The above-mentioned inertial propulsion engines are usually two inertial propulsion engines, installed in the second rotation system, and arranged so that they are linked to generate a couple by the propulsive force, or have a complete structure that provides input rotation to the inertial propulsion engines. As long as the input rotation is applied, power can be obtained continuously.

その慣性推進機関に回転’1lIiえる構造としての態
様を略図にて説明すると、第5図から第8図において、
第二回転系としての円板9に慣性推進機関12ヲその推
進力により偶力を発生させる方向に配置し、軸20に結
合した歯車10 Kよって歯車II i回転させ、それ
が慣性推進機関12を駆動する機構のとき、 (1)第5図は軸20を駆動する電動機13を円板9に
固定し、一体となって回転するよう静止系が支持した構
造で、集電環14ヲ通じて電力の供給をするものである
。電動機130回転数を制御して出力の回転力を加減す
ることができる。
The structure of the inertial propulsion engine capable of rotating 1lIi will be explained schematically in Figs. 5 to 8.
An inertial propulsion engine 12 is arranged on a disc 9 serving as a second rotating system in a direction that generates a couple by its propulsive force, and a gear IIi is rotated by a gear 10K coupled to a shaft 20, which inertial propulsion engine 12 (1) Fig. 5 shows a structure in which the electric motor 13 that drives the shaft 20 is fixed to the disk 9, and is supported by a stationary system so that it rotates as one. It is used to supply electricity. By controlling the rotation speed of the electric motor 130, the output rotational force can be adjusted.

(2)第6図は前記(月の電動機13を静止系に設置し
(2) Figure 6 shows the above (moon electric motor 13 installed in a stationary system).

てその回転を歯車10 VC与える構造である。前記(
1)同様電動機I3の回転数により慣性モーターの回転
力を制御することができる。
The structure is such that the rotation is given by gear 10 VC. Said (
1) Similarly, the rotational force of the inertial motor can be controlled by the rotational speed of the electric motor I3.

(3)  第7図は、歯車16と歯車17を結合して成
る帰還歯車が軸19によって静止系にあると共に、円板
9と一体の歯車15と軸20に結合した歯車18の間を
適当な歯車比によシ連絡したもので、円板9の出力回転
数を増速又は減速して直接歯車10に返すこと、ができ
る。尚矢印のように帰還歯車による連絡を断つことでこ
の慣性モーターは停止する。
(3) In FIG. 7, the return gear consisting of the gear 16 and the gear 17 is in a stationary system by the shaft 19, and the gear 18, which is integral with the disk 9 and the gear 15, is connected to the shaft 20. The output rotation speed of the disc 9 can be increased or decreased and then directly returned to the gear 10. This inertial motor will stop by cutting off the communication via the return gear as shown by the arrow.

(4)  第8図は、歯車11を回転させるための歯車
10全軸20により静止系へ固定した構造で、円板9が
回転すれば自動的に歯車11が回転するもので、前記(
3)における減速帰還の場合の極限に相当し、歯車10
は静止系と帰還歯車を兼ねるものである。
(4) Fig. 8 shows a structure in which the gear 10 for rotating the gear 11 is fixed to a stationary system by the entire shaft 20, and when the disk 9 rotates, the gear 11 automatically rotates.
Corresponds to the limit in the case of deceleration return in 3), and gear 10
is a stationary system and a feedback gear.

そして歯車10ヲ半固定の状態にして出力の回転力全制
御することができ、自由に解放すれば、この慣性モータ
ーは停止する。
By keeping the gear 10 in a semi-fixed state, it is possible to fully control the output rotational force, and by releasing it freely, the inertia motor will stop.

(5)  第9図は前記(4)と同じ概念であるが、歯
車10が静止系に固定した内歯歯車であり、円板9が軸
20 Vc結合して回転することが異るもので前記(4
)と同様の効果をもつ態様でらる。
(5) Fig. 9 has the same concept as (4) above, but the difference is that the gear 10 is an internal gear fixed to a stationary system, and the disc 9 rotates coupled to the shaft 20 Vc. Said (4
) has a similar effect.

以上の態様に共通の概念は、円板9に対して歯車1】が
向きには無!関係で相対的に回転しさえすれば各慣性推
進機関12(l−j:働き、円板9に回転力を発生する
ことでろる。
The concept common to the above embodiments is that the gear 1 has no orientation with respect to the disk 9! As long as they rotate relative to each other in relation to each other, each inertial propulsion engine 12 (lj: works) and generates rotational force in the disk 9.

慣性モーターを実施する最良の形態を第10図から第1
2図に示す。
The best form of implementing an inertial motor is shown in Figures 10 to 1.
Shown in Figure 2.

その概要は、動円の直径が固定円の直径の半分のとき、
内サイクロイドの軌跡が直線になることを利用して、非
等速円運動を慣性振動に変換する機構を持つ慣性推進機
関と、前記(5)における第9図の態様とを組合わせて
具体化したものである。
The outline is that when the diameter of the moving circle is half the diameter of the fixed circle,
Embodied by combining an inertial propulsion engine with a mechanism that converts non-uniform circular motion into inertial vibration by utilizing the fact that the locus of the endocycloid becomes a straight line, and the embodiment shown in FIG. 9 in (5) above. This is what I did.

まず前記(5)の概念であるから、静止系に固定した内
歯歯車10の中で円板9が回転すると歯車11により円
板24が回転して慣性推進機関が作動し、円板9の回転
は自己増殖をする構造である。
First, since it is the concept of (5) above, when the disc 9 rotates in the internal gear 10 fixed to a stationary system, the disc 24 is rotated by the gear 11, and the inertial propulsion engine is operated, and the disc 9 is rotated. Rotation is a self-replicating structure.

次に円板24上には円板9に固定した楕円歯車22の周
囲を半径Rで転勤できるよう楕円歯車23が取付けてあ
り、第10図のA−A線上では各楕円歯車の焦点が直列
となって矢印Fの方向に推進力全発生する位相でかみ合
わせてあり、更に楕円歯車22の占める空間を確保する
ためのスペーサー27ヲ用いて内歯歯車25ヲ固定しで
ある。
Next, an elliptical gear 23 is mounted on the disc 24 so that the elliptical gear 22 fixed to the disc 9 can be shifted with a radius R, and the focus of each elliptical gear is in series on line A-A in FIG. The gears are meshed in a phase in which the full propulsive force is generated in the direction of arrow F, and the internal gear 25 is fixed using a spacer 27 to secure the space occupied by the elliptical gear 22.

ピッチ円の直径が内歯歯車25の半分である歯車26ば
、偏心して取付けたおもり21を伴って楕円歯車23上
で回転しなから内歯歯車25の中を転動するもので、同
じ<A−A線上に来ると図の如くおもり21ヲ含めて各
楕円歯車と直列になるようかみ合わせである。
The gear 26, whose pitch circle has half the diameter of the internal gear 25, rotates on the elliptical gear 23 with the weight 21 attached eccentrically, and then rolls inside the internal gear 25. When it comes to line A-A, it is meshed so that it is in series with each oval gear including the weight 21 as shown in the figure.

この機構により円板24が回転して楕円歯車23が非等
速円運動をすると、歯車26上にあるおもり21の中心
は内歯歯車25の中をほぼ往復直線運動しながら円板2
4と共に回転することになる。
When the disc 24 rotates by this mechanism and the elliptical gear 23 performs a non-uniform circular motion, the center of the weight 21 on the gear 26 moves approximately linearly in a reciprocating manner within the internal gear 25 while the disc 24 moves non-uniformly.
It will rotate with 4.

但し、おもり2Iの中心が歯車26のピッチロ上にあれ
ば完全な直線運動となり完全な慣性振動となる。尚、円
板24におもり21その他を2組つつ設けたのは、不均
衡による回転時の振動全抑制するためである。
However, if the center of the weight 2I is on the pitch of the gear 26, it will be a complete linear motion and will be a complete inertial vibration. The reason why two sets of weights 21 and others are provided on the disc 24 is to completely suppress vibrations during rotation due to imbalance.

この慣性モーターの出力P。は損失を無視すると図の寸
法からP。−ωFDであり、Fは推進力であっておもり
の質量fmとすると、F=KmRω:となるものである
。尚比例定数KUいろいろな要素によって変わるが、約
に=1が期待できる。
The output P of this inertial motor. Ignoring loss, P from the dimensions in the figure. -ωFD, where F is the propulsive force and the mass of the weight is fm, then F=KmRω:. Although the proportionality constant KU varies depending on various factors, it can be expected to be approximately 1.

更にFは第11図における制御入力PCによって、制御
装置28ヲ作動し内歯歯車10ヲ半固定状態に調節し加
減することができる。
Further, F can be adjusted by operating the control device 28 and adjusting the internal gear 10 to a semi-fixed state using the control input PC shown in FIG.

尚、大出力の慣性モーターの場合、小型の慣性モーター
を搭載して慣性推進機関を駆動させる方式も可能である
In the case of a high-output inertial motor, it is also possible to mount a small inertial motor and drive the inertial propulsion engine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図は慣性推進機関の原理説明図、第3図は
その実施形態の正面図、第4図は第3図の右側面図、第
5図から第9図は慣性モーターの実施態様の概念を説明
する略図、第10図は慣性モーターの実施形態の正面図
、第11図は第1O図におけるA−A断面図、第12図
は第10図の右側面図であり、一部B−B断面増示す。 21   おもり、 22.23  楕円歯車、24 
  円板、  25   内歯歯車、26   歯車、
  27   スペーサー28   制御装置、  9
  円板、10   内歯歯車、 11   歯車、Y 才5図          才6図
Figures 1 and 2 are diagrams explaining the principle of an inertial propulsion engine, Figure 3 is a front view of its embodiment, Figure 4 is a right side view of Figure 3, and Figures 5 to 9 are illustrations of an inertial motor. A schematic diagram illustrating the concept of the embodiment, FIG. 10 is a front view of the embodiment of the inertial motor, FIG. 11 is a sectional view taken along line A-A in FIG. 1O, and FIG. 12 is a right side view of FIG. Part of the BB cross section is enlarged. 21 Weight, 22.23 Oval gear, 24
Disc, 25 Internal gear, 26 Gear,
27 spacer 28 control device, 9
Disc, 10 Internal gear, 11 Gear, Y Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1、 最小角速度が半周の間に最大とな9更に半周して
最小に戻る物体の非等速円運動を、その回転面方向から
見たとき、最小角速度と最大角速度を両端とする振動を
特に慣性振動と定義すると、おもシが回転系の半径方向
の空間にあって、回転系の中心部で最小角速度となシ外
側で最大角速度となる向きの慣性振動を現わす動きを伴
って、回転系と共に回転する機構であり、その慣性振動
の周期を回転系の回転周期の整数倍に一致させて連動す
る機構の慣性推進機関。 2、 おもシの慣性振動が、回転系の中心を通って回転
面に垂直な平面内における非等速円運動によるものであ
る特許請求の範囲第1項記載の慣性推進機関。 3 おもシの慣性振動が、非等速円運動から往復直線運
動への変換機構を利用したことによって、回転系の半径
方向の直線上における往復直線運動となっている特許請
求の範囲第1項記載の慣性推進機関。 4 おもりの慣性振動が、回転系の回転面内における非
等速円運動によるものである特許請求の範囲第1項記弊
の慣性推進機関。 5 最小角速度が半周の間に最大となり更に半周して最
小に戻る物体の非等速円運動を、その回転面方向から見
たとき、最小角速度と最大角速度を両端とする振動を特
に慣性振動と定義すると、おもりが回転系の半径方向の
空間にあって、回転系の中心部で最小角速度となり外側
で最大角速度となる向きの慣性振動を現わす動きを伴っ
て、回転系と共に回転する機構であり、その慣性振動の
周期を回転系の回転周期の整数倍に一致させて連動する
機構の慣性推進機関を第二回転系に置いて回転力を発生
させる構造であり、この慣性推進機関に入力回転を匈え
る構造を備えた慣性モーター。 6 慣性推進機関に入力回転を与える構造として、第二
回転系に電動機を固定し集電環を通じて系外から電力を
供給する特許請求の範囲第5項記載の慣性モーター。 7 慣性推進機関に入力回転を与える構造として、静止
系に電動機を置き歯車その他の伝達機構を備えだ特許請
求の範囲第5項記載の慣性モーター。 8 慣性推進機関に入力回転を与える構造として、第二
回転系の出力回転を静止系が媒介して再び入力回転とす
るだめの帰還歯車を備えた特許請求の範囲第5項記載の
慣性モーター。
[Claims] 1. When the non-uniform circular motion of an object whose minimum angular velocity reaches a maximum during half a revolution and returns to a minimum after another half revolution, the minimum angular velocity and the maximum angular velocity are determined when viewed from the direction of its rotating surface. If we define the vibrations at both ends as inertial vibrations, we can express inertial vibrations whose main axis is in the radial space of the rotating system, with the minimum angular velocity at the center of the rotating system and the maximum angular velocity at the outside. An inertial propulsion engine is a mechanism that rotates together with a rotating system with a writhing motion, and the period of inertial vibration is made to match an integral multiple of the rotational period of the rotating system. 2. The inertial propulsion engine according to claim 1, wherein the inertial vibration of the main body is due to non-uniform circular motion in a plane passing through the center of the rotating system and perpendicular to the rotating surface. 3. Claim 1 in which the inertial vibration of the main body becomes reciprocating linear motion on a straight line in the radial direction of the rotating system by using a conversion mechanism from non-uniform circular motion to reciprocating linear motion. Inertial propulsion engine as described in section. 4. Our inertial propulsion engine as set forth in claim 1, wherein the inertial vibration of the weight is due to non-uniform circular motion within the rotational plane of the rotating system. 5 When the non-uniform circular motion of an object whose minimum angular velocity reaches its maximum during half a revolution and returns to its minimum after another half revolution is viewed from the direction of its rotating surface, the vibrations with the minimum angular velocity and maximum angular velocity as both ends are particularly referred to as inertial vibrations. Defined as a mechanism in which a weight is located in the radial space of a rotating system and rotates with the rotating system with a movement that exhibits inertial vibration with the minimum angular velocity at the center of the rotating system and the maximum angular velocity at the outside. The structure is such that the inertial propulsion engine, which is an interlocking mechanism, is placed in the second rotating system to generate rotational force by matching the period of inertial vibration to an integral multiple of the rotational period of the rotating system, and the input to this inertial propulsion engine is An inertia motor with a structure that allows it to rotate. 6. The inertial motor according to claim 5, wherein the electric motor is fixed to the second rotating system and electric power is supplied from outside the system through a current collecting ring as a structure for providing input rotation to the inertial propulsion engine. 7. The inertial motor according to claim 5, wherein the electric motor is placed in a stationary system and a gear or other transmission mechanism is provided as a structure for providing input rotation to the inertial propulsion engine. 8. The inertial motor according to claim 5, wherein the inertial motor has a structure for providing input rotation to the inertial propulsion engine, and includes a feedback gear that converts output rotation of the second rotating system into input rotation again via a stationary system.
JP11009182A 1982-06-26 1982-06-26 Inertia propelled engine and inertia motor Pending JPS59577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11009182A JPS59577A (en) 1982-06-26 1982-06-26 Inertia propelled engine and inertia motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11009182A JPS59577A (en) 1982-06-26 1982-06-26 Inertia propelled engine and inertia motor

Publications (1)

Publication Number Publication Date
JPS59577A true JPS59577A (en) 1984-01-05

Family

ID=14526792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11009182A Pending JPS59577A (en) 1982-06-26 1982-06-26 Inertia propelled engine and inertia motor

Country Status (1)

Country Link
JP (1) JPS59577A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215930A (en) * 1988-02-24 1989-08-29 Kobe Steel Ltd Method for continuously annealing steel sheet
EP2728180A1 (en) * 2012-11-02 2014-05-07 Jordi Cortell Flasche Method and apparatus for energy extraction of a gravitational field
WO2018092769A1 (en) 2016-11-15 2018-05-24 株式会社カネカ Cell population containing mesenchymal stem cells derived from fetal appendages, method for producing same, and medicinal composition
WO2019132026A1 (en) 2017-12-28 2019-07-04 株式会社カネカ Cell population including adhesive stem cells, production method therefor, and pharmaceutical composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215930A (en) * 1988-02-24 1989-08-29 Kobe Steel Ltd Method for continuously annealing steel sheet
EP2728180A1 (en) * 2012-11-02 2014-05-07 Jordi Cortell Flasche Method and apparatus for energy extraction of a gravitational field
WO2018092769A1 (en) 2016-11-15 2018-05-24 株式会社カネカ Cell population containing mesenchymal stem cells derived from fetal appendages, method for producing same, and medicinal composition
WO2019132026A1 (en) 2017-12-28 2019-07-04 株式会社カネカ Cell population including adhesive stem cells, production method therefor, and pharmaceutical composition

Similar Documents

Publication Publication Date Title
US3653269A (en) Converting rotary motion into unidirectional motion
US7347799B2 (en) Antivibration device having rotary flyweights and an epicyclic geartrain
JPH0754928A (en) Opposing method to vibrational propagation of rotational rotor having dynamic unbalance and revolving-torque vector and generator of vibrational couple
JPS63503591A (en) Structure of dual permanent magnet generator
GB1120193A (en) Vibration absorbing device
US3439548A (en) Torque generator
JP2020525346A (en) Rotor for airborne stationary aircraft
JPS59577A (en) Inertia propelled engine and inertia motor
JPS621690A (en) Variable pitch propeller
US3922926A (en) Stepping drive
US4856358A (en) Conversion of rotational output to linear force
JP2583427B2 (en) Vehicle using concentric reversing rotor
US3287981A (en) Generation of rotations about a fixed point with symmetric and near symmetric distribution of tangential velocity components and rotary components
RU2097600C1 (en) Inertial propeller
WO2019139559A1 (en) Cycloidal rotor having an elliptical blade trajectory and method of controlling an aircraft using a cycloidal rotor
KR20110104835A (en) Unit for generating propulsive force and apparatus having the same unit
US3363472A (en) Constant-angular-momentum gyroscope
RU2066398C1 (en) Vehicle inertia propelling device
CN114466793B (en) Rotor for aircraft with hover capability
GB2231127A (en) Thrust apparatus
JP2709559B2 (en) Flying object steering system
EP0351238A2 (en) Thrust-generating device
SU710660A1 (en) Vibration exciter
US3182517A (en) Variable oscillator system
JPS62103486A (en) Propulsion force generating device