JPS5957672A - Medical super-ultrasonic radiation multi-stage antenna - Google Patents

Medical super-ultrasonic radiation multi-stage antenna

Info

Publication number
JPS5957672A
JPS5957672A JP16797782A JP16797782A JPS5957672A JP S5957672 A JPS5957672 A JP S5957672A JP 16797782 A JP16797782 A JP 16797782A JP 16797782 A JP16797782 A JP 16797782A JP S5957672 A JPS5957672 A JP S5957672A
Authority
JP
Japan
Prior art keywords
antenna
antennas
stage antenna
medical
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16797782A
Other languages
Japanese (ja)
Inventor
河合 義雄
十川 「あきら」
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP16797782A priority Critical patent/JPS5957672A/en
Publication of JPS5957672A publication Critical patent/JPS5957672A/en
Pending legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は医用極R1短波放射多段アンテナに係り、より
詳細には、腫傷に対する温熱治療等に適用され得る医用
超短波放射多段アンテナに係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a medical pole R1 shortwave radiation multi-stage antenna, and more particularly to a medical ultrahigh-frequency radiation multi-stage antenna that can be applied to thermal treatment for tumors and the like.

癌細胞等が正常細胞と比較して熱に弱いことを利用して
、患部を加14することにより治療を行なう温熱治療に
おいて、極超短波放射アンテゾが患部の加温のために用
いられている。
In hyperthermia therapy, which uses the fact that cancer cells and the like are more sensitive to heat than normal cells to heat the affected area, ultrahigh-frequency radiation antezo is used to heat the affected area.

この種の極超短波送信アンテナは、腔内、例えば消化器
系のI顧器の治療に用いられるためには、可及的に細い
ことが好ましく、従来、一種の線状ダイポールアンテナ
が用いられている。そして、広い患部領域を加温するた
めに、従来、複数のダイポールアンテナを一直線状に配
設してなる多段アンテナが用いられている。
This type of extremely high frequency transmitting antenna is preferably as thin as possible in order to be used for treatment of intracavity, for example, the digestive system. Conventionally, a type of linear dipole antenna has been used. There is. In order to heat a wide affected area, a multi-stage antenna consisting of a plurality of dipole antennas arranged in a straight line has conventionally been used.

しd−L乍ら、従来の医用極超短波放射多段アンテナ1
は、第1図に示す如く、一つのダイポールアンテナ2の
給電線3からアンテナ2に並設した別のダイポールアン
テナ4 、5@に分岐線6,7等を介して給電するよう
に構成されていたために、臓器壁等の被加温物に対する
アンテナ3,4.5、の適用条件下で極超短波発振器8
とのインピーダンスマツチングをとり難かった。本発明
は前記した点に鑑みなされたものでおり、その目的とす
るところは、比較的容易に極超短波の放射効率を高くし
得る医用極超短波放射多段アンテナを提供することKあ
る。
Shid-L et al., conventional medical ultrashort wave radiation multi-stage antenna 1
As shown in FIG. 1, the antenna is configured to feed power from the feed line 3 of one dipole antenna 2 to other dipole antennas 4 and 5 which are arranged in parallel to the antenna 2 via branch lines 6 and 7, etc. Therefore, under the conditions in which the antennas 3, 4.5 are applied to objects to be heated such as organ walls, the ultra high frequency oscillator 8
It was difficult to perform impedance matching. The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide a multi-stage medical ultra-high frequency radiation antenna that can relatively easily increase the radiation efficiency of ultra-high frequency waves.

この目的は、アンテナと給電線とを含めたインピーダン
スが給電線(ケーブル)の長さを適当に選ぶととKより
実数値となることに着目して最初にインピーダンスの実
数化を行ない、次に各アンテナと発振器との相互接続を
行なうことにより達成される。次に、本発明を三つの同
一形状の線状アンテナとしてのダイポールアンテナ11
,12゜13を有する多段アンテナ14を例にとって、
第2図に基づきより詳細に説明する。
The purpose of this is to first convert the impedance into a real number by focusing on the fact that the impedance including the antenna and feed line becomes a real value when the length of the feed line (cable) is chosen appropriately, and then This is achieved by interconnecting each antenna with the oscillator. Next, the present invention will be explained using three dipole antennas 11 as linear antennas having the same shape.
, 12°13 as an example,
This will be explained in more detail based on FIG.

(1)  まず極超短波発振器15の発振周波数(通常
300〜3,000 M■h  程度)に応じて、極超
短波の体液中における波長の約3の長さになるようにア
ンテナ11,12.13の一対の導体部15゜16 、
、17 、18 、19 、20を形成する。
(1) First, depending on the oscillation frequency of the ultra-high frequency oscillator 15 (usually about 300 to 3,000 M■h), the antennas 11, 12, 13 are set so that the length is approximately three times the wavelength of the ultra-high frequency in body fluids. A pair of conductor parts 15°16,
, 17 , 18 , 19 , 20 are formed.

(2)生体中でのアンテナ11,12.13の夫々のイ
ンピーダンスZAが計算される。
(2) The impedance ZA of each of the antennas 11, 12, and 13 in the living body is calculated.

(3)  次にアンテナ11,12.13の夫々に適当
なインピーダンスZaを有する給電線としてのケー7”
ル22,23.24を接続する。ケーブル22.23.
24の夫々を含めたインピーダンスで求められる。尚、
ここでβは波長によりきまる定数であり、dは各ケーブ
ル22,23.24の長さである。このケーブル22,
23.24の夫々の長さdをtan7#d=ωとなるよ
うに選んで、z1=7.o2/ ZA  となるように
する。
(3) Next, connect the antennas 11, 12.
Connect cables 22, 23 and 24. Cable 22.23.
It is determined by the impedance including each of the 24 impedances. still,
Here, β is a constant determined by the wavelength, and d is the length of each cable 22, 23, 24. This cable 22,
23. Select the length d of each of 24 so that tan7#d=ω, and z1=7. o2/ZA.

ただし、ZAが複素数のときはbn72dを適当に選ぶ
ことによりZlの虚数部が零となり実数部が極値をとる
点がある。
However, when ZA is a complex number, there is a point where the imaginary part of Zl becomes zero and the real part takes an extreme value by appropriately selecting bn72d.

f41  次K、Zl なるインピーダンスのケーブル
22.23.24付のアンテナ11,12.13を適当
に並列乃至直列に組合せて発振器15と組合せ易いイン
ピーダンスにまとめる。
The antennas 11, 12, 13 with cables 22, 23, 24 having an impedance of f41 order K, Zl are appropriately combined in parallel or in series to have an impedance that is easy to combine with the oscillator 15.

尚、同長のケーブル22,23.24ではコネクタ25
側の位置にズレがあり、手前側のアンテナ13.12程
大きいたるみがケーブル24゜23に生じるが、生体は
誘電率が太きいため、各アンテナ11,12.13の長
さが例えば2cIrL程度と比較的小さくなり、このた
るみも例えば2〜’IcnL程度であり、例えばコネク
タ25近傍でケーブル24.23を適当に曲げることに
より、このたるみは実用上は問題ない程度となる。
In addition, for cables 22, 23, and 24 of the same length, connector 25
There is a misalignment in the position of the antennas 13 and 12 on the front side, and a large sag occurs in the cables 24 and 23, but since living bodies have a large dielectric constant, the length of each antenna 11, 12 and 13 is, for example, about 2 cIrL. This slack is, for example, about 2 to 'IcnL, and by appropriately bending the cables 24 and 23 near the connector 25, for example, this slack can be reduced to a level that poses no problem in practice.

(5) 尚、要すれば再度上記式■により、適切なイン
ピーダンスのケーブル26を適切な長さ使用し、発振器
とのマツチングをとるようにしてもよい。
(5) If necessary, matching with the oscillator may be achieved by using the cable 26 with an appropriate impedance and an appropriate length, again using the above equation (2).

(6)実際の多段アンテナ14の製作に際しては、厳密
に正確な計算が行なわれ難いために、アンテナ14の特
性が必ずしも計算値通りにはならないが、発明者の経験
によれば、ケーブル26の長さを調整することにより、
実用に供し得る範囲の放射特性を有するアンテナ14を
制作し得た。
(6) When actually manufacturing the multi-stage antenna 14, it is difficult to perform strictly accurate calculations, so the characteristics of the antenna 14 do not necessarily match the calculated values; however, according to the inventor's experience, the characteristics of the cable 26 By adjusting the length,
An antenna 14 having radiation characteristics within a practical range could be manufactured.

以下実施例につき述べる。Examples will be described below.

外径8鰭のスチロールパイプ21に巾11聰の銅テープ
を間隔を1澗はなして6箇所捲付け(15,16,17
,18,19,20)その2つづつを組として、3組の
ダイポールアンテナ11.12.13を構成した。それ
ぞれに給電線を22.23.24を接続し、そのケーブ
ル長さを3本共148cmとし、先端を同一コネクタ2
5に接続し915 MHz  の発振器15に接続した
ところ反射率20%であった。
Copper tape with a width of 11 mm is wrapped around a styrofoam pipe 21 with an outer diameter of 8 fins at 6 locations with an interval of 1 mm (15, 16, 17
, 18, 19, 20) Three sets of dipole antennas 11, 12, and 13 were constructed by setting two of each set as a set. Connect the power supply cables 22, 23, and 24 to each, and make the length of all three cables 148 cm, and connect the ends to the same connector 2.
5 and connected to a 915 MHz oscillator 15, the reflectance was 20%.

一方ケーブルの先端を揃えて切った場合には、それぞれ
のケーブル長さは146,148,150のでありこれ
らを束ねて、発振器に接続したときは反射率60%であ
った。
On the other hand, when the cables were cut with their tips aligned, the lengths of the cables were 146, 148, and 150 mm, and when they were bundled and connected to an oscillator, the reflectance was 60%.

尚、以上においては三つのアンテナからなる多段アンテ
ナの例について説明したがアンテナの数は二つでも、四
つ以上でもよい。また、以上では。
Although an example of a multi-stage antenna consisting of three antennas has been described above, the number of antennas may be two, four or more. Also, above.

コネクタ25において、ケーブル22.に3.24付の
アンテナ11,12.13を並列に接続した例について
説明したが、場合によっては直列に接続してもよく、更
に場合によっては発振器に直接接続してもよい。
At connector 25, cable 22. An example has been described in which the antennas 11 and 12.13 with 3.24 are connected in parallel, but in some cases they may be connected in series, and in some cases they may be connected directly to the oscillator.

以上の如く、本発明によれば、医用極超短波放射多段ア
ンテナが、複数個の同一形状の線状アンテナを一直線状
に配設すると共に、各アンテナに誼アンテナとマツチン
グのとれた同一長さの給電線を接続してなるために、比
較的容易に放射効率の高い多段アンテナとして形成され
得る。
As described above, according to the present invention, a medical ultrahigh frequency radiation multi-stage antenna includes a plurality of linear antennas of the same shape arranged in a straight line, and each antenna has a linear antenna of the same length that is matched with the horizontal antenna. Since the antenna is formed by connecting feed lines, it can be relatively easily formed as a multi-stage antenna with high radiation efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の医用極超短波放射多段アンテナの説明図
、第2図は本発明による好ましい一具体例の医用極超短
波放射多段アンテナの説明図である、 11.12.13・・・アンテナ。 21・・・パイプ、   22,23.24・・・ケー
ブル。 代理(弁叩士用 [1、義 雄 第1図  vB2図 ・]−続 ン113  、tTh  V!;昭和573
110月29日 2、発明の名称   1%用t〜超短波放削多段アンテ
ナ3、補正をJる者 事件との関係  1:I11′F出願人名 称    
(110)呉羽化学工業株式会社4、代 理 人   
東京都新宿区新宿1丁目1番14号 山田ビル5、?i
li正命令の日付 +1!+ ru  年 月 日8、
補正の内容   〈1)正式明細書を別紙の通り補充す
るく内容に変更なし)。 (2)委任状を別紙の通り補充する。 −よg
FIG. 1 is an explanatory diagram of a conventional medical ultra-high frequency radiation multi-stage antenna, and FIG. 2 is an explanatory diagram of a medical extremely high-frequency radiation multi-stage antenna according to a preferred embodiment of the present invention. 11.12.13 Antenna. 21...pipe, 22,23.24...cable. Substitute (for bento players [1, Yoshio Figure 1 vB2 Figure] - Continued N113, tTh V!; Showa 573
November 29, 2, Title of the invention: 1% t~ultrahigh-frequency cutting multi-stage antenna 3, Relationship with the amendment J case 1:I11'F Applicant name: Title
(110) Kureha Chemical Industry Co., Ltd. 4, Agent
Yamada Building 5, 1-1-14 Shinjuku, Shinjuku-ku, Tokyo, ? i
Date of li positive order +1! + ru year month day 8,
Contents of the amendment (1) The official specification has been supplemented as shown in the attached sheet, but there is no change in the content). (2) Supplement the power of attorney as shown in the attached sheet. -yog

Claims (1)

【特許請求の範囲】[Claims] 複数個の同一形状の線状アンテナを一直線状に配設する
と共に、各アンテナに同一長さの給電線を接続してなる
医用極超短波放射多段アンテナ。
A medical ultrahigh frequency radiation multi-stage antenna consisting of a plurality of linear antennas of the same shape arranged in a straight line and each antenna connected to a feeder line of the same length.
JP16797782A 1982-09-27 1982-09-27 Medical super-ultrasonic radiation multi-stage antenna Pending JPS5957672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16797782A JPS5957672A (en) 1982-09-27 1982-09-27 Medical super-ultrasonic radiation multi-stage antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16797782A JPS5957672A (en) 1982-09-27 1982-09-27 Medical super-ultrasonic radiation multi-stage antenna

Publications (1)

Publication Number Publication Date
JPS5957672A true JPS5957672A (en) 1984-04-03

Family

ID=15859520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16797782A Pending JPS5957672A (en) 1982-09-27 1982-09-27 Medical super-ultrasonic radiation multi-stage antenna

Country Status (1)

Country Link
JP (1) JPS5957672A (en)

Similar Documents

Publication Publication Date Title
Howe Stripline circuit design
Luyen et al. A minimally invasive coax-fed microwave ablation antenna with a tapered balun
CN209980821U (en) Flat data transmission cable
JPS61256802A (en) Dual circularly polarized wave-shaped antenna
US10492860B2 (en) Microwave ablation antenna system with tapered slot balun
US8994609B2 (en) Conformal surface wave feed
Mohtashami et al. Toward flexible microwave ablation antennas with a balun-free helical dipole design
EP1396901A3 (en) Dielectric waveguide bend
Napoli et al. Characteristics of coupled microstrip lines
US10707581B2 (en) Dipole antenna for microwave ablation
JPS5957672A (en) Medical super-ultrasonic radiation multi-stage antenna
TWM282335U (en) Antenna structure
CN216450815U (en) Conformal circular polarized antenna of broadband and capsule endoscope
Grabowski Non-resonant slotted waveguide antenna design method
Kumar 24 GHz graphene patch antenna array
JPS59120173A (en) Electromagnetic wave generator for heating theapeutic method
JPS5957671A (en) Medical super-ultrasonic antenna
WO2021129054A1 (en) Planar structure microwave ablation antenna based on pcb structure, and ablation needle
JPS60213104A (en) Microwave antenna
CN207868365U (en) A kind of transition transmission structure of novel class GCPW
JPH06164214A (en) Microwave circuit
JPH04127701A (en) Microstrip line attenuator
JP2582255Y2 (en) Helical antenna
US20110006964A1 (en) Antenna with a bent portion
JPS5923481B2 (en) microstrip antenna