JPS595725A - Electrode structure of thin film of zinc oxide - Google Patents

Electrode structure of thin film of zinc oxide

Info

Publication number
JPS595725A
JPS595725A JP57114450A JP11445082A JPS595725A JP S595725 A JPS595725 A JP S595725A JP 57114450 A JP57114450 A JP 57114450A JP 11445082 A JP11445082 A JP 11445082A JP S595725 A JPS595725 A JP S595725A
Authority
JP
Japan
Prior art keywords
zinc oxide
oxide film
thin film
electrode structure
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57114450A
Other languages
Japanese (ja)
Other versions
JPH0115210B2 (en
Inventor
Koji Nishiyama
浩司 西山
Takeshi Nakamura
武 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP57114450A priority Critical patent/JPS595725A/en
Priority to US06/509,028 priority patent/US4445066A/en
Publication of JPS595725A publication Critical patent/JPS595725A/en
Publication of JPH0115210B2 publication Critical patent/JPH0115210B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/131Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials consisting of a multilayered structure

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Die Bonding (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To obtain an electrode structure of a thin zinc oxide film with stable electric characteristics, by interposing an Ni layer between the thin zinc oxide film and an Al layer and preventing the diffusion of Al into the thin zinc oxide film. CONSTITUTION:The thin zinc oxide film is used as a piezoelectric body for a surface acoustic wave device, various oscillators, etc. A tuning fork type oscillator which uses the invented electrode structure of the thin zinc oxide film as shown in a figure is constituted by providing the electrode structure of the thin zinc oxide film consisting of the zinc oxide film 12, Ni layer 13, and Al electrode 14 to a metallic tuning fork 11 made of ''Elinvar'', etc. This electrode structure is obtained by forming the Ni layer 13 on the thin zinc oxide film 12 formed by sputtering on the tuning fork 11 by an electron beam method to a 350Angstrom thickness and forming the Al electrode 14 thereupon to a 1mum thickness by the electron beam method. This electrode structure is free of diffusion of Al into the thin zinc oxide film 12, which functions as the piezoelectric body electrically stably.

Description

【発明の詳細な説明】 この発明は安定な特性を示す酸化亜鉛薄膜の電極構造に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrode structure of a zinc oxide thin film exhibiting stable characteristics.

酸化亜鉛+1膜は弾性表面波装置、音叉振動子、音片振
動子などの圧電体として使用されている。
Zinc oxide +1 film is used as a piezoelectric material in surface acoustic wave devices, tuning fork vibrators, vibrator vibrators, etc.

この酸化亜鉛薄膜の使用例を音叉振動子にもとづいて説
明する。
An example of the use of this zinc oxide thin film will be explained based on a tuning fork vibrator.

第1図は音叉振動子の一例を示覆側面図である。FIG. 1 is a side view showing an example of a tuning fork vibrator.

図において、1は音叉振動子の本体、2.3はこの本体
1の脚部を示し、脚部2.3の側壁2a 。
In the figure, 1 indicates the main body of the tuning fork vibrator, 2.3 indicates the leg portion of this main body 1, and side wall 2a of the leg portion 2.3.

3aには酸化亜鉛薄膜4.5が形成されている。A zinc oxide thin film 4.5 is formed on 3a.

この酸化亜鉛薄l114.5は真空蒸着法、スパッタリ
ング法、イオンブレーティング法などにより形成される
。6.7は酸化亜鉛薄M4.5の上に形成されたAI/
、電極を示す。
This zinc oxide thin layer 114.5 is formed by a vacuum evaporation method, a sputtering method, an ion blasting method, or the like. 6.7 is an AI formed on zinc oxide thin M4.5
, indicates the electrode.

このへβ電極6.7は安価でボンディングができること
から選ばれたもので、電子ビーム蒸着法などにより30
00〜100OOAの膜厚の範囲で形成される。
This β electrode 6.7 was selected because it was cheap and could be bonded, and was made by electron beam evaporation method etc.
It is formed with a film thickness in the range of 00 to 100 OOA.

しかしながら、上記したような酸化亜鉛II!の電極構
造では次のような欠点が見られる。つまり、Aρ主電極
のものが高い親和性を示すため、酸化亜鉛薄膜中にAR
M−拡散し、電気的特性が劣化するという欠点がある。
However, zinc oxide II as mentioned above! This electrode structure has the following drawbacks. In other words, since the Aρ main electrode shows high affinity, AR in the zinc oxide thin film
There is a drawback that M-diffuses and electrical characteristics deteriorate.

すなわち、2価の半導体である酸化亜鉛に3価であるA
fLが拡散することによって酸化亜鉛薄膜の電気的特性
、たとえば撮動周波数を大きく変化させるという現象が
認められた。また高温負荷寿命試験を行うと、さらに上
記した現象が促進され、電気的特性の劣化が一層大きな
ものとなった。
In other words, zinc oxide, which is a divalent semiconductor, contains A, which is trivalent.
A phenomenon was observed in which the electrical properties of the zinc oxide thin film, such as the imaging frequency, were significantly changed due to the diffusion of fL. Furthermore, when a high-temperature load life test was conducted, the above-mentioned phenomenon was further accelerated, and the deterioration of the electrical characteristics became even more significant.

したがって、酸化亜鉛薄膜を形成するに当っては、電極
を含めた構成全体について考慮する必要があり、従来の
電極構成にさらに改良を施さなければならなかった。
Therefore, when forming a zinc oxide thin film, it is necessary to consider the entire structure including the electrode, and it is necessary to further improve the conventional electrode structure.

この発明はかかる背景からなされたものであり、安定な
特性を示す酸化亜鉛薄膜の電極構造を提供することを目
的とする。
The present invention was made against this background, and an object of the present invention is to provide an electrode structure of a zinc oxide thin film exhibiting stable characteristics.

以下この発明を実施例にもとづいて詳細に説明する。The present invention will be described in detail below based on examples.

第2図はこの発明にかかる酸化亜鉛薄膜の電極構造を音
叉振動子に適用した例を示す側面図である。
FIG. 2 is a side view showing an example in which the zinc oxide thin film electrode structure according to the present invention is applied to a tuning fork vibrator.

11はエリンバなどからなる金属音叉、12は酸化亜鉛
薄膜、13はNi層、14はAρ電極である。このうち
N1層13は電子ビーム法、スパッタリング法、イオン
ビーム法、抵抗加熱蒸着法などによって形成される。
11 is a metal tuning fork made of Erimba or the like, 12 is a zinc oxide thin film, 13 is a Ni layer, and 14 is an Aρ electrode. Of these, the N1 layer 13 is formed by an electron beam method, a sputtering method, an ion beam method, a resistance heating vapor deposition method, or the like.

第3図は屈曲振動モードの音片振動子にこの発明にかか
る酸化亜鉛薄膜の電極構造を適用した例を示した斜視図
である。
FIG. 3 is a perspective view showing an example in which the electrode structure of the zinc oxide thin film according to the present invention is applied to a sound element vibrator in a bending vibration mode.

図において、21は振動子本体を示し、振動子22とこ
れを支持部24で支持している枠体23から構成されて
いる。25は酸化亜鉛薄膜で振動子22の表面に形成さ
れている。26は酸化亜鉛1膜25の上に形成されたN
i層、27はNi層26の上に形成されたAffi電極
である。
In the figure, reference numeral 21 indicates a vibrator body, which is composed of a vibrator 22 and a frame 23 that supports the vibrator 22 with a support portion 24. 25 is a zinc oxide thin film formed on the surface of the vibrator 22. 26 is N formed on the zinc oxide 1 film 25.
The i layer 27 is an Affi electrode formed on the Ni layer 26.

第4図は同じくこの発明を他の屈曲振動モードの振動子
に適用した例の側面図である。
FIG. 4 is a side view of an example in which the present invention is applied to another bending vibration mode vibrator.

図において、31はセラミクス、プラスチック、ゴムな
どの基板、この基板31表面には、へρ電極32、Ni
層33、酸化亜鉛薄膜34、N1層35、およびAρ電
極36が順次形成されている。
In the figure, 31 is a substrate made of ceramics, plastic, rubber, etc. On the surface of this substrate 31, a ρ electrode 32, Ni
A layer 33, a zinc oxide thin film 34, an N1 layer 35, and an Aρ electrode 36 are formed in this order.

第5図は同じくこの発明を拡がり振動モードの振動子に
適用した例を示す側面図である。
FIG. 5 is a side view showing an example in which the present invention is applied to a vibrator in a spread vibration mode.

図において、41は酸化亜鉛薄膜、42は酸化亜鉛薄膜
41の両面に形成されたNi層、43はN1層42の上
に形成されたへ!電極である。
In the figure, 41 is a zinc oxide thin film, 42 is a Ni layer formed on both sides of the zinc oxide thin film 41, and 43 is a layer formed on the N1 layer 42! It is an electrode.

第6図は同じくこの発明を厚み振動モードの振動子に適
用した例を示す側面図である。
FIG. 6 is a side view showing an example in which the present invention is applied to a thickness vibration mode vibrator.

図において、51は3i、SiO2などからなる基板、
基板51の上にはAn電極52、N1層53が順次形成
されている。さらにN1層53の上には酸化亜鉛薄膜5
4が形成されている。この酸化亜鉛薄膜54が形成され
ている位置に相当する基板51には空部51aが形成さ
れている。酸化亜鉛薄膜54の上にはN1層55、およ
びAI2電極56が順次積層して形成されている。
In the figure, 51 is a substrate made of 3i, SiO2, etc.
An An electrode 52 and an N1 layer 53 are sequentially formed on the substrate 51. Furthermore, a zinc oxide thin film 5 is provided on the N1 layer 53.
4 is formed. A cavity 51a is formed in the substrate 51 corresponding to the position where the zinc oxide thin film 54 is formed. On the zinc oxide thin film 54, an N1 layer 55 and an AI2 electrode 56 are sequentially laminated.

次に具体的な実施例として、第2図に示した音叉振動子
についてこの発明にかかる酸化亜鉛薄膜の電極構造を適
用した例を説明する。
Next, as a specific example, an example in which the electrode structure of the zinc oxide thin film according to the present invention is applied to the tuning fork vibrator shown in FIG. 2 will be described.

第2図を参照して説明すれば、振動子11の上にスパッ
タリング法により酸化亜鉛薄膜12を形成し、その上に
N1を層13を電子ビーム法により350Aの厚みに形
成し、さらにその上に厚みが1μからなるAR電極14
を電子ビーム法により形成した。
Referring to FIG. 2, a zinc oxide thin film 12 is formed on the vibrator 11 by sputtering, a layer 13 of N1 is formed on it to a thickness of 350A by an electron beam method, and then The AR electrode 14 has a thickness of 1μ.
was formed by an electron beam method.

このようにして振動周波数32Kl−12の振動子を作
成した。
In this way, a vibrator with a vibration frequency of 32 Kl-12 was created.

この振動子に直流電圧20Vを印加し、120℃の温度
に10000時間放置した。このときの振動周波数の経
時変化特性を試料数20個について測定したところ第7
図に示すような結果が得られた。図中実線はこの実施例
によるものである。また破線は従来例のAj2電極のみ
からなるものについて、同様にして測定した結果を示し
たものである。この振動周波数の経時変化特性(ΔF/
Fo)は次式また、直列共振抵抗(Ro )についても
同様に測定し、その結果を第8図にそれぞれ示した。
A DC voltage of 20 V was applied to this vibrator, and the vibrator was left at a temperature of 120° C. for 10,000 hours. At this time, the temporal change characteristics of the vibration frequency were measured for 20 samples.
The results shown in the figure were obtained. The solid line in the figure is based on this embodiment. Moreover, the broken line shows the results of measurements made in the same manner for a conventional example consisting of only Aj2 electrodes. This vibration frequency change characteristic over time (ΔF/
Fo) is expressed by the following formula.The series resonant resistance (Ro) was also measured in the same manner, and the results are shown in FIG.

第7図〜第8図から明らかなように、この発明にかかる
ものは、従来例にくらべて、振動周波数の経時変化が小
さく、またRoの経時変化が小さくかつその値も小さい
などの効果が得られている。
As is clear from FIGS. 7 and 8, the device according to the present invention has effects such as a smaller change in vibration frequency over time and a smaller change in Ro over time than the conventional example. It has been obtained.

ここで、Roを測定したのは次のような理由による。The reason why Ro was measured here is as follows.

まず、酸化亜鉛薄膜についてその等何回路を示せば第9
図のようになる。図中、cdは並列容量を示し、酸化亜
鉛薄膜をコンデンサとして考えた場合の静電容量に近い
値である。Roは直列共振抵抗、Coは等儀容量、Lo
は等価インダクタンスである。
First, how many circuits can be shown for the zinc oxide thin film?
It will look like the figure. In the figure, cd indicates parallel capacitance, which is a value close to the capacitance when a zinc oxide thin film is considered as a capacitor. Ro is series resonant resistance, Co is isometric capacitance, Lo
is the equivalent inductance.

Roは第10図に示したインピーダンスと周波数の関係
から、直列共振周波数(fO〉に対応し、このRoが大
きくなれば発振に大きな増幅度が必要となり、発振条件
の低下をもたらすことになることが伺える。
From the relationship between impedance and frequency shown in Figure 10, Ro corresponds to the series resonant frequency (fO), and if this Ro becomes large, a large degree of amplification is required for oscillation, resulting in a decrease in the oscillation conditions. I can see it.

第8図から明らかなように、この発明の実施例によれば
、従来例のへρ電極のものにくらべR。
As is clear from FIG. 8, according to the embodiment of the present invention, R is lower than that of the conventional hep electrode.

の経時変化が小さく、このことからこの発明にかかる酸
化亜鉛薄膜の電極構造は安定な電気的特性を有するとと
もに、高温負荷寿命試験に対しても安定した特性を示す
ものであると理解することができ、安定した発振を期待
することができる。
It can be understood that the zinc oxide thin film electrode structure according to the present invention has stable electrical characteristics and also exhibits stable characteristics even in high-temperature load life tests. stable oscillation can be expected.

以上この発明によれば、酸化亜鉛薄膜とへρ電極との間
に八ρの拡散防止層としてNi層を介在させたものであ
り、従来のものにくらべて実用上十分な特性を示す酸化
亜鉛薄膜を提供することができる。特にこの発明によれ
ば、高温負荷寿命試験に対してRoの変化が小さく、周
波数変化が少ないなど信頼性の高い酸化亜鉛薄膜が得ら
れる。
As described above, according to the present invention, a Ni layer is interposed between the zinc oxide thin film and the ρ electrode as a diffusion prevention layer of 8 ρ, and the zinc oxide film exhibits practically sufficient characteristics compared to conventional ones. A thin film can be provided. In particular, according to the present invention, a highly reliable zinc oxide thin film with small changes in Ro and small changes in frequency can be obtained in a high-temperature load life test.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は音叉振動子の一例を示す側面図、第2図は音叉
振動子にこの発明にかかる酸化亜鉛薄膜の電極構造を適
用した例を示す側面図、第3図は音片振動子にこの発明
にかかる酸化亜鉛薄膜の電極構造を適用した例の斜視図
、第4図〜第6図は同じくこの発明にかかる酸化亜鉛薄
膜の電極構造を各振動子に適用した例の側面図、第7図
はこの発明の具体的実施例にもとづく振動周波数の経時
変化特性図、第8図は同じ<Roの経時変化特性図、第
9図は酸化亜鉛薄膜の等両回略図、第10図はインピー
ダンスと周波数の関係特性図である。 11・・・・・・基板、12・・・・・・酸化亜鉛簿膜
、13・・・・・・Ni層、14・・・・・・A!電極
。 特  許  出  願  人 株式会社村田製作所 第4日 第5図 菊乙囮 第7TiJ 第8図
Fig. 1 is a side view showing an example of a tuning fork vibrator, Fig. 2 is a side view showing an example in which the zinc oxide thin film electrode structure according to the present invention is applied to a tuning fork vibrator, and Fig. 3 is a side view showing an example of a tuning fork vibrator. FIGS. 4 to 6 are a perspective view of an example in which the zinc oxide thin film electrode structure according to the present invention is applied, and FIGS. 4 to 6 are side views and FIGS. Figure 7 is a diagram of the change in vibration frequency over time based on a specific embodiment of the present invention, Figure 8 is a diagram of the change in vibration frequency over time of the same <Ro, Figure 9 is a schematic diagram of the same cycle of a zinc oxide thin film, and Figure 10 is a diagram of the change in vibration frequency over time. FIG. 3 is a characteristic diagram showing the relationship between impedance and frequency. 11...Substrate, 12...Zinc oxide film, 13...Ni layer, 14...A! electrode. Patent application: Murata Manufacturing Co., Ltd., Day 4, Figure 5, Kikuotsu Decoy No. 7, TiJ, Figure 8

Claims (1)

【特許請求の範囲】[Claims] 酸化亜鉛薄膜表面とAρ主電極の間にNi層を介在させ
たことを特徴とする酸化亜鉛薄膜の電極構造。
An electrode structure of a zinc oxide thin film characterized in that a Ni layer is interposed between the surface of the zinc oxide thin film and the Aρ main electrode.
JP57114450A 1982-06-30 1982-06-30 Electrode structure of thin film of zinc oxide Granted JPS595725A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57114450A JPS595725A (en) 1982-06-30 1982-06-30 Electrode structure of thin film of zinc oxide
US06/509,028 US4445066A (en) 1982-06-30 1983-06-29 Electrode structure for a zinc oxide thin film transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57114450A JPS595725A (en) 1982-06-30 1982-06-30 Electrode structure of thin film of zinc oxide

Publications (2)

Publication Number Publication Date
JPS595725A true JPS595725A (en) 1984-01-12
JPH0115210B2 JPH0115210B2 (en) 1989-03-16

Family

ID=14638031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57114450A Granted JPS595725A (en) 1982-06-30 1982-06-30 Electrode structure of thin film of zinc oxide

Country Status (1)

Country Link
JP (1) JPS595725A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7770275B2 (en) * 2007-09-03 2010-08-10 Nihon Dempa Kogyo Co., Ltd. Methods for manufacturing tuning-fork type piezoelectric vibrating devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7770275B2 (en) * 2007-09-03 2010-08-10 Nihon Dempa Kogyo Co., Ltd. Methods for manufacturing tuning-fork type piezoelectric vibrating devices

Also Published As

Publication number Publication date
JPH0115210B2 (en) 1989-03-16

Similar Documents

Publication Publication Date Title
US7414349B2 (en) Piezoelectric vibrator, filter using the same and its adjusting method
JPH0148694B2 (en)
JP2007535883A (en) FBAR device with frequency stability against temperature drift
JPH0532925B2 (en)
US6198200B1 (en) Thickness extensional vibration piezoelectric resonator and piezoelectric resonance apparatus
US4445066A (en) Electrode structure for a zinc oxide thin film transducer
EP0907244B1 (en) Piezoelectric resonator and electronic component using the same resonator
JPS595720A (en) Electrode structure of thin film of zinc oxide
JPS595725A (en) Electrode structure of thin film of zinc oxide
JPS595723A (en) Electrode structure of thin film of zinc oxide
JPS595722A (en) Electrode structure of thin film of zinc oxide
JPS595726A (en) Electrode structure of thin film of zinc oxide
JP2000183686A (en) Thickness longitudinal piezoelectric resonator and piezoelectric resonance component
JPS595724A (en) Electrode structure of thin film of zinc oxide
JPS595721A (en) Electrode structure of thin film of zinc oxide
JPH05283968A (en) Oscillation circuit
JPS595716A (en) Electrode structure of thin film of zinc oxide
JPS595718A (en) Electrode structure of thin film of zinc oxide
JP3330102B2 (en) 3rd overtone type piezoelectric oscillator
JPS595719A (en) Electrode structure of thin film of zinc oxide
JPS595717A (en) Electrode structure of thin film of zinc oxide
JP2023111668A (en) Detection device
EP0845859A3 (en) Piezoelectric resonator and electronic component using the same resonator
JP3330099B2 (en) Piezoelectric oscillator
JP2001044785A (en) Piezoelectric vibrator