JPS5957166A - Acceleration sensor - Google Patents

Acceleration sensor

Info

Publication number
JPS5957166A
JPS5957166A JP16800082A JP16800082A JPS5957166A JP S5957166 A JPS5957166 A JP S5957166A JP 16800082 A JP16800082 A JP 16800082A JP 16800082 A JP16800082 A JP 16800082A JP S5957166 A JPS5957166 A JP S5957166A
Authority
JP
Japan
Prior art keywords
saw
load
acceleration sensor
shaped electrode
comb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16800082A
Other languages
Japanese (ja)
Other versions
JPH0479419B2 (en
Inventor
Ryoji Murata
村田 良司
Kaneyoshi Miyasaka
宮坂 金佳
Nobushige Sawai
澤井 信重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP16800082A priority Critical patent/JPS5957166A/en
Publication of JPS5957166A publication Critical patent/JPS5957166A/en
Publication of JPH0479419B2 publication Critical patent/JPH0479419B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/097Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements
    • G01P15/0975Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements by acoustic surface wave resonators or delay lines

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To obtain a small acceleration sensor with limited power consumption while serving as telemeter by providing a comb-shaped electrode on the surface of a piezo-electric substrate to form a surface acoustic wave element and arranging a load appyling means so that a load is applied on the element as uniform stress with an acceleration to be measured. CONSTITUTION:A bomb-shaped electrode 2, an input terminal 3 and an output terminal 4 are provided on a piezo-electric substrate 1 to form a surface acoustic wave (SAW) element. A SAW generated on the surface of the substrate 1 by a signal from the input terminal 3 is reflected sequentially with the comb-shaped electrode 2 and an output appears at the output terminal 4. When a bending load is applied to an SAW element 10, the series resonance frequency, parallel resonance frequency and passage characteristic changes due to a pitch variation and hence, acts as acceleration sensor. An acceleration generating mass 11 is mounted closer to both ends of the SAW element 10 supported at both ends thereof and a 4-point bending method is used to apply a uniform stress thereon. This provides a small acceleration sensor with limited power consumption while serving as telemeter.

Description

【発明の詳細な説明】 本発明は、表面音響波(SAWと略記する。)素子を利
用した加速度センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an acceleration sensor using a surface acoustic wave (abbreviated as SAW) element.

加速厩センサ(振動センサ)としては、抵抗線歪計ピエ
ゾ素子等々のすでに確立した技術がある。
As acceleration sensors (vibration sensors), there are already established technologies such as resistance wire strain meters and piezo elements.

本発明は、SAW索子を利用することによシこれらのセ
ンサに比して小型化、低価格化をはかシ。
The present invention uses SAW probes to achieve smaller size and lower cost than these sensors.

テレメータの搬送波同波数の発振要素と兼用させること
も可能な加速度センサを提供しようとするものである。
The present invention aims to provide an acceleration sensor that can also be used as an oscillation element with the same wave number as the carrier wave of a telemeter.

例えば、切削加工時における工具損傷、工員摩耗などの
検出には、できるたけ小型で信頼性のある振動センサが
必要であシ、シかも各切刃毎に装着するためできる限り
安価であることが望ましいが、本発明の加速度センサは
、このような工具損゛傷等の検出に有効であるばかりで
なく、一般的な振動測定、特にフィールドテストや種々
の回転機器の振動モニタとして有効なものである。
For example, to detect tool damage and worker wear during cutting, a vibration sensor that is as small and reliable as possible is required. Desirably, the acceleration sensor of the present invention is not only effective for detecting tool damage, etc., but is also effective for general vibration measurement, particularly for field tests and vibration monitoring of various rotating equipment. be.

而して、本発明の加速度センサは、圧電性基板の表面に
くし状電極を設置し、入力端子からの上記電極への入力
信号によって圧電性基板に生じた表面波がくし状電極に
よって順次反射され、それに伴う出力が出力端子にあら
れれる表面音響波素子を用い、この素子に対して被測定
加速成に伴う荷重が略均一応力となる荷重負荷手段を設
けたこと金隼旨聞とするものである。
In the acceleration sensor of the present invention, comb-shaped electrodes are installed on the surface of the piezoelectric substrate, and surface waves generated on the piezoelectric substrate by input signals to the electrodes from the input terminals are sequentially reflected by the comb-shaped electrodes. According to Kanehaya, a surface acoustic wave element whose accompanying output is applied to the output terminal is used, and a load loading means is provided to the element so that the load associated with the acceleration to be measured becomes a substantially uniform stress. be.

以干、図面を参照して本発明の実施例について61−述
する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

不発ψノの加速区セ/?において用いるSAW素子は、
”lNh”3 + L、、”tto3 + ”a”t0
3 + ■)hTlo3笠の圧電性基板の表面にくし状
電極を設置して表面波を発生させるものであり、一般に
TV回路等のクイ1ルタとして用いられている。
Misfire ψノ acceleration section/? The SAW element used in
"lNh"3 + L,, "tto3 + "a"t0
3 + (3) hTlo3 A comb-shaped electrode is installed on the surface of a piezoelectric substrate to generate surface waves, and it is generally used as a quilter in TV circuits, etc.

第1図はこのSAW素子の構成を示すものであり、1t
ま圧電性基板、2はくし状′Jt極(150〜200本
)、3は入力端子、4は出力端子を示している。
Figure 1 shows the configuration of this SAW element, and 1t
Also, a piezoelectric substrate, 2 is a comb-shaped 'Jt pole (150 to 200 pieces), 3 is an input terminal, and 4 is an output terminal.

このSAW索子においては、入力端子3から入力1.た
(ii号によって圧電性基板1の表面に生じた表+ro
 u文が左右に進むが、多数のくし状電極によってjl
↓次反射され、出力端子4に出力があられれる。
In this SAW cable, input terminals 3 and 1. (Table +ro generated on the surface of the piezoelectric substrate 1 due to No. ii)
The u sentence moves left and right, but the jl
↓Then, it is reflected and the output is sent to output terminal 4.

このとき、くシ状電MI!、2のピッチPが表面波の半
波長し2に合致すると、はとんど完全に反射され、出力
端子4にはは全出力が出る。これは−釉の直列共振素子
であり、その等価回路は第2図のようになる。共振のQ
は数千〜敵方が口」能である。なお、第2図においてC
12は人出カ端子3,4間の容量である。
At this time, the comb-shaped electric MI! , 2 is half the wavelength of the surface wave, and when it matches 2, the wave is almost completely reflected, and the full output is output to the output terminal 4. This is a -glaze series resonant element, and its equivalent circuit is as shown in FIG. Q of resonance
There are thousands of people on the enemy's side. In addition, in Figure 2, C
12 is the capacitance between the output terminals 3 and 4.

而して、第1図のSAW索子において、圧電性基板lと
してL t ’I’a03 (音a ’= 3250 
”/s )を用い、ピンチPを約21μmとしたとき、
  77.4hLjH2の搬込波力)発振される。
Therefore, in the SAW cable shown in FIG. 1, L t 'I'a03 (sound a' = 3250
”/s) and when the pinch P is set to about 21 μm,
77.4hLjH2 of wave force) is oscillated.

二のようなSAW素子に曲げ荷重を加えると、応力によ
ってピッチPが伸縮するため、直列共振周波数f、?、
並列共振周波数fP1通過特性などが変イヒする。この
効果は加速度による荷重でも同様であシ、従って加速度
センサとして動作させることが可能である。
When a bending load is applied to a SAW element like 2, the pitch P expands and contracts due to the stress, so the series resonance frequency f, ? ,
Parallel resonance frequency fP1 passage characteristics etc. change. This effect is the same even with a load due to acceleration, so it can be operated as an acceleration sensor.

第6図及び第4図は、それらの図中に示すようにSAW
素子に対して6点曲げによる曲げ荷重を加えた場合にお
ける特性の変化を示すものであるが、実際の周波数変化
はピッチPの伸縮から求めた(j−4より太きい。即ち
、抵抗Ivil歪言1の場合と同様にゲージノアフタが
ある。そのゲージファクタは、この6点曲げによる曲げ
荷■の場合、圧電性基板1に作用する尾、力が不均一で
あるだめ、平均応力に対し約4 、 :(3であった。
Figures 6 and 4 show the SAW as shown in those figures.
This shows the change in characteristics when a bending load is applied to the element by 6-point bending.The actual frequency change was determined from the expansion and contraction of the pitch P (thicker than j-4, that is, the resistance Ivil strain As in case 1, there is a gauge no after.In the case of the bending load (2) caused by this six-point bending, the gauge factor is approximately 4% compared to the average stress since the force acting on the piezoelectric substrate 1 is uneven. , :(It was 3.

また、6点曲げ方式では、兄かけの直列共振約波数f、
の変化は飽オU的でリニアリティが劣る。これtま、荷
m #j(加による通過特性の劣化が原因である。この
ような効果は、歪み不均一に伴うピッチPの不均一に基
づき、表面波杯射のコヒーレンスが乱れるためと考えら
れる。
In addition, in the 6-point bending method, the series resonance approximation wave number f,
The changes are tedious and have poor linearity. This is caused by the deterioration of the passage characteristics due to the load m#j (addition).Such an effect is thought to be due to the disturbance of the coherence of the surface wave radiation due to the non-uniformity of the pitch P accompanying the non-uniform distortion. It will be done.

従って、本発明においては、SAW素子に対し工略均一
応力となる荷λ方式によって被ゆ11定加速度に伴う荷
重を負M L 、そのため第5図に例示するような荷重
負荷手段が採用される。この荷重負荷手段は、両端を支
持したSAW累子10に対してその両端に近い位置にお
いて加速度発生用質量11を取付け、上述の6点曲げ方
式に対して4点曲げ方式を採用し、振動加速度に伴う向
■がSAW素子10に略均−尾、力として作用するよう
にしたものである。
Therefore, in the present invention, the load associated with the constant acceleration of the 11 is applied to the SAW element by the load λ method which produces a uniform stress on the SAW element as a negative M L , and therefore a load applying means as illustrated in FIG. 5 is adopted. . This load applying means attaches acceleration generating masses 11 at positions close to both ends of the SAW resistor 10 supported at both ends, adopts a four-point bending method instead of the six-point bending method described above, and generates vibration acceleration. The force caused by the force is made to act on the SAW element 10 as a substantially uniform force.

第6図はこの4点曲げ方式における特性変化を示すもの
で、リニアリティ、通過特性とも良好である。なお、こ
の場合のゲージファクタは約1.8であった。
FIG. 6 shows changes in characteristics in this four-point bending method, and both linearity and passing characteristics are good. Note that the gauge factor in this case was approximately 1.8.

また、第7図A−Cは上記SAW素子をテレメ17タ等
の搬送波周波数の発振散索と兼用する場合の回路構成を
示している。
Further, FIGS. 7A to 7C show a circuit configuration when the above-mentioned SAW element is also used for oscillating the carrier frequency of a telemeter 17 or the like.

以上に詳述したところから明らかなように、本発明によ
れば、小型、安価で、電力消費が少なく、しかもテレメ
ータを兼ねたものとして構成できる加速度センサを得る
ことができる。
As is clear from the detailed description above, according to the present invention, it is possible to obtain an acceleration sensor that is small, inexpensive, consumes little power, and can also be configured as a telemeter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明において用いるSAW素子の平面図、第
2図は上記SAW素子の等価回路に関する説明図、第6
図及び第4図はSAW素子の6点曲げ方式の荷重による
特性変化を示す線図、第5図は本発明に係る加速度上ノ
サの実施例を示す側断面図、第6図はその特性を示す線
図、第7図A〜Cは上記SAW累子を搬送波周波数の発
振嶽素として用いる場合の回路構成図である。 l・07j:電性基板、   ・0くし状電極、3・・
・入力端子、   4・・・出力端子、10・・・SA
W素子、11・・・質量。 指定代理人 第 1 図 第 2 図 第 3 図 !114WI Q     50    10G    +50荷 東
 (鉤 1$5vA O 第6E ギ Σ つ 鶏; 0  100  200  300  10fl   
Son后 *  r5)
FIG. 1 is a plan view of the SAW device used in the present invention, FIG. 2 is an explanatory diagram regarding the equivalent circuit of the above SAW device, and FIG.
4 and 4 are diagrams showing changes in characteristics due to loads in the 6-point bending method of the SAW element, FIG. The diagrams shown in FIGS. 7A to 7C are circuit configuration diagrams when the above-mentioned SAW resistor is used as an oscillation element of a carrier frequency. l・07j: Electrical substrate, 0 comb-shaped electrode, 3...
・Input terminal, 4...Output terminal, 10...SA
W element, 11...mass. Designated Agent Figure 1 Figure 2 Figure 3! 114WI Q 50 10G +50 load East (Hook 1$5vA O 6th E GiΣ Tsudori; 0 100 200 300 10fl
After Son *r5)

Claims (1)

【特許請求の範囲】[Claims] 1、 圧電性基板の表面にくし状゛電極を設置し、入力
端子からの上記電極への入力信号によって圧電性基板に
生じた表面波がくし状電極によって順籾反射され、それ
に伴う出力が出力端子にあられ路る表面音響波素子を用
い、この素子に対して被鱒定加速度に伴う荷重が略均一
応力となる荷重負荷手段を設けたこ、とを特徴とする加
速度センサ。
1. A comb-shaped electrode is installed on the surface of the piezoelectric substrate, and the surface wave generated on the piezoelectric substrate by the input signal from the input terminal to the electrode is forwardly reflected by the comb-shaped electrode, and the resulting output is sent to the output terminal. What is claimed is: 1. An acceleration sensor comprising: a surface acoustic wave element having a surface acoustic wave element, and a load applying means for applying a load to the element due to a constant acceleration of the trout to a substantially uniform stress.
JP16800082A 1982-09-27 1982-09-27 Acceleration sensor Granted JPS5957166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16800082A JPS5957166A (en) 1982-09-27 1982-09-27 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16800082A JPS5957166A (en) 1982-09-27 1982-09-27 Acceleration sensor

Publications (2)

Publication Number Publication Date
JPS5957166A true JPS5957166A (en) 1984-04-02
JPH0479419B2 JPH0479419B2 (en) 1992-12-15

Family

ID=15859938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16800082A Granted JPS5957166A (en) 1982-09-27 1982-09-27 Acceleration sensor

Country Status (1)

Country Link
JP (1) JPS5957166A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6803698B2 (en) 2000-10-12 2004-10-12 Murata Manufacturing Co., Ltd Acceleration sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364045A (en) * 1976-11-19 1978-06-08 Hitachi Ltd Strain converer
JPS5414285A (en) * 1977-07-01 1979-02-02 Thomson Csf Elastic surface wave acceleration seismometer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364045A (en) * 1976-11-19 1978-06-08 Hitachi Ltd Strain converer
JPS5414285A (en) * 1977-07-01 1979-02-02 Thomson Csf Elastic surface wave acceleration seismometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6803698B2 (en) 2000-10-12 2004-10-12 Murata Manufacturing Co., Ltd Acceleration sensor

Also Published As

Publication number Publication date
JPH0479419B2 (en) 1992-12-15

Similar Documents

Publication Publication Date Title
US3479536A (en) Piezoelectric force transducer
JP3108881B2 (en) Strain measurement method and device
CN108931292B (en) Method for calibrating at least one sensor
US2984111A (en) Accelerometer
GB2188421A (en) Vibrating beam force transducer with a-frame beam root and frequency adjusting means
US3505866A (en) Single tine digital force transducer
JP2000046639A (en) Oscillatory wave detection method and device
US7274002B2 (en) Heating element induction of time-varying thermal gradient in elongated beam to cause one or more elongated beam oscillations
US4199990A (en) Elastic surface wave accelerometer
CA1061474A (en) Method of monitoring the machining by ion bombardment, of a piezoelectric wafer
JPS5957166A (en) Acceleration sensor
JP2000205940A (en) Sensor element and oscillatory wave sensor
US6807872B2 (en) Force transducer having a central portion of reduced thickness
JP2598171B2 (en) Acoustic emission sensor
JPH08145614A (en) Method for measuring strain of object
RU2212736C2 (en) Bender transducer
JP2856748B2 (en) Method of measuring vibration propagating in a substance and vibration pickup
RU2781805C1 (en) Low-amplitude aperiodic vibration sensor based on a film sensing element
SU1187078A1 (en) Apparatus for measuring value of ceramic element piezoelectric modulus
SU1668931A1 (en) Method of measuring ultrasonic oscillation inlet angle of inclined transducers
SU669186A1 (en) Apparatus for measuring small motions and deformations
JP2007171065A (en) Wideband frequency characteristic measuring device
JPH02236431A (en) Piezoelectric pressure sensor
SU1746210A1 (en) Structure deformation measuring method
JPH06160169A (en) Evaluating method for piezoelectric element for resonance type knock sensor