JPH0479419B2 - - Google Patents

Info

Publication number
JPH0479419B2
JPH0479419B2 JP57168000A JP16800082A JPH0479419B2 JP H0479419 B2 JPH0479419 B2 JP H0479419B2 JP 57168000 A JP57168000 A JP 57168000A JP 16800082 A JP16800082 A JP 16800082A JP H0479419 B2 JPH0479419 B2 JP H0479419B2
Authority
JP
Japan
Prior art keywords
acceleration
load
piezoelectric substrate
comb
saw element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57168000A
Other languages
Japanese (ja)
Other versions
JPS5957166A (en
Inventor
Ryoji Murata
Kaneyoshi Myasaka
Nobushige Sawai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP16800082A priority Critical patent/JPS5957166A/en
Publication of JPS5957166A publication Critical patent/JPS5957166A/en
Publication of JPH0479419B2 publication Critical patent/JPH0479419B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/097Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements
    • G01P15/0975Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements by acoustic surface wave resonators or delay lines

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は、表面音響波(SAWと略記する。)素
子を利用した加速度センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an acceleration sensor using a surface acoustic wave (abbreviated as SAW) element.

加速度センサ(振動センサ)としては、抵抗線
歪計ピエゾ素子等々のすべに確立した技術があ
る。
As acceleration sensors (vibration sensors), there are established technologies such as resistance wire strain meters and piezo elements.

本発明は、SAW素子を利用することによりこ
れらのセンサに比して小型化、低価格化をはか
り、テレメータの搬送波周波数の発振要素と兼用
させることも可能な加速度センサを提供しようと
するものである。
The present invention aims to provide an acceleration sensor that is smaller and cheaper than these sensors by using a SAW element, and that can also be used as an oscillation element for the carrier wave frequency of a telemeter. be.

例えば、切削加工時における工具損傷、工具摩
耗などの検出には、できるだけ小型で信頼性のあ
る振動センサが必要であり、しかも各切刃毎に装
着するためできる限り安価であることが望ましい
が、本発明の加速度センサは、このような工具損
傷等の検出に有効であるばかりでなく、一般的な
振動測定、特にフイールドテストや種々の回転機
器の振動モニタとして有効なものである。
For example, to detect tool damage, tool wear, etc. during cutting, a vibration sensor that is as small and reliable as possible is required, and since it is attached to each cutting edge, it is desirable that it be as inexpensive as possible. The acceleration sensor of the present invention is not only effective for detecting such tool damage, but also for general vibration measurement, particularly for field tests and vibration monitoring of various rotating equipment.

而して、上記SAW素子を利用した小型、低廉
な加速度センサを得るに際し、本発明者らは、
種々の予備的な実験を行い、それにより、第3図
及び第4図により後述するように、SAW素子に
対して3点曲げによる曲げ荷重を加えた場合に
は、圧電性基板に作用する応力が不均一になるた
め、種々の問題が生じることを確かめた。また、
その原因を追求することにより、略均一応力とな
る荷重方式により問題を解決できることを確かめ
た。
Therefore, in order to obtain a compact and inexpensive acceleration sensor using the above-mentioned SAW element, the present inventors
We conducted various preliminary experiments and found that when a bending load is applied to the SAW element by three-point bending, the stress acting on the piezoelectric substrate is It was confirmed that various problems occur due to non-uniformity. Also,
By investigating the cause of this problem, we confirmed that the problem could be solved by a loading method that produces approximately uniform stress.

本発明は、かかる知見に基づいて完成したもの
であり、即ち、圧電性基板の表面にくし状電極を
設置し、入力端子からの上記電極への入力信号に
よつて圧電性基板に生じた表面波がくし状電極に
よつて順次反射され、それに伴う出力が出力端子
にあらわれる表面音響波素子を用い、この素子に
対して被測定加速度に伴う荷重を負荷する手段と
して、素子の両端を支持してその両端に近い位置
に加速度発生用質量を取付ける4点曲げ方式、ま
たは被測定加速度に伴う荷重の分布がそれと同程
度に均一化されるように素子に対する荷重点を配
設する方式を用いたことを特徴とするものであ
る。
The present invention was completed based on this knowledge, that is, a comb-shaped electrode is installed on the surface of a piezoelectric substrate, and the surface generated on the piezoelectric substrate by an input signal to the electrode from the input terminal. A surface acoustic wave element is used in which waves are sequentially reflected by comb-shaped electrodes, and the resulting output appears at the output terminal, and both ends of the element are supported as a means of applying a load associated with the acceleration to be measured to this element. A four-point bending method is used in which the mass for generating acceleration is attached to a position close to both ends, or a method is used in which load points are placed on the element so that the distribution of the load accompanying the measured acceleration is made uniform to the same degree. It is characterized by:

以下、図面を参照して本発明の実施例について
詳述する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

本発明の加速度センサにおいて用いるSAW素
子は、LiNbO3、LiTaO3、BaTiO3、PbTiO3等の圧
電性基板の表面にくし状電極を設置して表面波を
発生させるものであり、一般にTV回路等のフイ
ルタとして用いられている。
The SAW element used in the acceleration sensor of the present invention has comb-shaped electrodes on the surface of a piezoelectric substrate such as L i N b O 3 , L i T a O 3 , B a T i O 3 , P b T i O 3 , etc. It is installed to generate surface waves, and is generally used as a filter in TV circuits, etc.

第1図はこのSAW素子の構成を示すものであ
り、1は圧電性基板、2はくし状電極(150〜200
本)、3は入力端子、4は出力端子を示している。
Figure 1 shows the configuration of this SAW element, where 1 is a piezoelectric substrate, 2 is a comb-shaped electrode (150 to 200
3 indicates an input terminal, and 4 indicates an output terminal.

このSAW素子においては、入力端子3から入
力した信号によつて圧電性基板1の表面に生じた
表面波が左右に進むが、多数のくし状電極によつ
て順次反射され、出力端子4に出力があらわれ
る。このとき、くし状電極2のピツチPが表面波
の半波長λ/2に合致すると、ほとんど完全に反
射され、出力端子4にほぼ全出力が出る。これは
一種の直列共振素子であり、その等価回路は第2
図のようになる。共振のQは数千〜数万が可能で
ある。なお、第2図においてC12は入出力端子3,
4間の容量である。
In this SAW element, a surface wave generated on the surface of the piezoelectric substrate 1 by a signal input from the input terminal 3 propagates left and right, but is sequentially reflected by a large number of comb-shaped electrodes and output to the output terminal 4. appears. At this time, when the pitch P of the comb-shaped electrode 2 matches the half wavelength λ/2 of the surface wave, the wave is almost completely reflected and almost the entire output is output to the output terminal 4. This is a type of series resonant element, and its equivalent circuit is the second
It will look like the figure. The resonance Q can range from several thousand to several tens of thousands. In addition, in Fig. 2, C 12 is the input/output terminal 3,
The capacity is between 4 and 4.

而して、第1図のSAW素子において、圧電性
基板1としてLiTaO3(音速≒3250m/s)を用
い、ピツチPを約21μmとしたとき、77.4MHzの
搬送波が発振される。
Therefore, in the SAW element shown in Fig. 1, when L i T a O 3 (sound velocity ≒ 3250 m/s) is used as the piezoelectric substrate 1 and the pitch P is approximately 21 μm, a carrier wave of 77.4 MHz is oscillated. .

このようなSAW素子に曲げ荷重を加えると、
応力によつてピツチPが伸縮するため、直列共振
周波数s、並列共振周波数p、通過特性などが変
化する。この効果は加速度による荷重でも同様で
あり、従つて加速度センサとして動作させること
が可能である。
When a bending load is applied to such a SAW element,
Since the pitch P expands and contracts due to stress, the series resonance frequency s, parallel resonance frequency p, passing characteristics, etc. change. This effect is the same for loads caused by acceleration, and therefore it is possible to operate it as an acceleration sensor.

第3図及び第4図は、それらの図中に示すよう
にSAW素子に対して3点曲げによる曲げ荷重を
加えた場合における特性の変化を示すものである
が、実際の周波数変化はピツチPの伸縮から求め
た値より大きい。即ち、抵抗線歪計の場合と同様
にゲージフアクタがある。そのゲージフアクタ
は、この3点曲げによる曲げ荷重の場合、圧電性
基板1に作用する応力が不均一であるため、平均
応力に対し約4.33であつた。また、3点曲げ方式
では、見かけの直列共振周波数sの変化は飽和的
でリニアリテイが劣る。これは、荷重増加による
通過特性の劣化が原因である。このような効果
は、歪み不均一に伴うピツチPの不均一に基づ
き、表面波反射のコヒーレンスが乱れるためと考
えられる。
Figures 3 and 4 show the changes in characteristics when a bending load is applied to the SAW element by three-point bending as shown in those figures, but the actual frequency change is due to the pitch P. is larger than the value calculated from the expansion and contraction of. That is, there is a gauge factor as in the case of a resistance wire strain meter. In the case of the bending load due to this three-point bending, the gauge factor was about 4.33 with respect to the average stress because the stress acting on the piezoelectric substrate 1 was non-uniform. Furthermore, in the three-point bending method, the change in the apparent series resonance frequency s is saturated and the linearity is poor. This is due to the deterioration of the passing characteristics due to the increase in load. This effect is thought to be due to the fact that the coherence of the surface wave reflection is disturbed due to the non-uniformity of the pitch P due to the non-uniformity of the distortion.

従つて、本発明においては、SAW素子に対し
て略均一応力となる荷重方式によつて被測定加速
度に伴う荷重を負荷し、そのため第5図に例示す
るような荷重負荷手段が採用される。この荷重負
荷手段は、両端を支持したSAW素子10に対し
てその両端に近い位置において加速度発生用質量
11を取付け、上述の3点曲げ方式に対して4点
曲げ方式を採用し、振動加速度に伴う荷重が
SAW素子10に略均一応力として作用するよう
にしたものである。
Therefore, in the present invention, a load associated with the acceleration to be measured is applied to the SAW element by a loading method that provides a substantially uniform stress, and therefore a load applying means as illustrated in FIG. 5 is employed. This load applying means attaches acceleration generating masses 11 at positions close to both ends of the SAW element 10, which supports both ends, and adopts a four-point bending method instead of the three-point bending method described above. The load involved
This is designed to act as a substantially uniform stress on the SAW element 10.

第6図はこの4点曲げ方式における特性変化を
示すもので、リニアリテイ、通過特性とも良好で
ある。なお、この場合のゲージフアクタは約1.8
であつた。
FIG. 6 shows changes in characteristics in this four-point bending method, and both linearity and passing characteristics are good. In addition, the gauge factor in this case is approximately 1.8
It was hot.

なお、SAW素子に対して被測定加速度に伴う
荷重を負荷する手段としては、上述したように、
素子の両端を支持してその両端に近い位置に加速
度発生用質量を取付ける4点曲げ方式ばかりでな
く、被測定加速度に伴う荷重の分布がそれと同程
度に均一化されるように素子に対する荷重点を配
設する適宜方式を用いることができる。
As mentioned above, as a means of applying a load associated with the measured acceleration to the SAW element,
In addition to the four-point bending method in which both ends of the element are supported and acceleration generating masses are attached to positions close to both ends, the load points on the element are adjusted so that the distribution of the load accompanying the measured acceleration is equally uniform. An appropriate method for arranging can be used.

また、第7図A〜Cは上記SAW素子をテレメ
ータ等の搬送波周波数の発振要素と兼用する場合
の回路構成を示している。
Further, FIGS. 7A to 7C show a circuit configuration in which the above-mentioned SAW element is also used as a carrier frequency oscillation element of a telemeter or the like.

以上に詳述したところから明らかなように、本
発明によれば、小型、安価で、電力消費が少な
く、しかもテレメータを兼ねたものとして構成で
きる加速度センサを得ることができる。
As is clear from the detailed description above, according to the present invention, it is possible to obtain an acceleration sensor that is small, inexpensive, consumes little power, and can also be configured as a telemeter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明において用いるSAW素子の平
面図、第2図は上記SAW素子の等価回路に関す
る説明図、第3図及び第4図はSAW素子の3点
曲げ方式の荷重による特性変化を示す線図、第5
図は本発明に係る加速度センサの実施例を示す側
断面図、第6図はその特性を示す線図、第7図A
〜Cは上記SAW素子を搬送波周波数の発振要素
として用いる場合の回路構成図である。 1……圧電性基板、2……くし状電極、3……
入力端子、4……出力端子、10……SAW素子、
11……質量。
Fig. 1 is a plan view of the SAW element used in the present invention, Fig. 2 is an explanatory diagram of the equivalent circuit of the above SAW element, and Figs. 3 and 4 show changes in characteristics of the SAW element due to load in the three-point bending method. Diagram, 5th
The figure is a side sectional view showing an embodiment of the acceleration sensor according to the present invention, FIG. 6 is a diagram showing its characteristics, and FIG. 7A
-C are circuit configuration diagrams when the above-mentioned SAW element is used as an oscillation element of a carrier wave frequency. 1...Piezoelectric substrate, 2...Comb-shaped electrode, 3...
Input terminal, 4...output terminal, 10...SAW element,
11...Mass.

Claims (1)

【特許請求の範囲】[Claims] 1 圧電性基板の表面にくし状電極を設置し、入
力端子からの上記電極への入力信号によつて圧電
性基板に生じた表面波がくし状電極によつて順次
反射され、それに伴う出力が出力端子にあらわれ
る表面音響波素子を用い、この素子に対して被測
定加速度に伴う荷重を負荷する手段として、素子
の両端を支持してその両端に近い位置に加速度発
生用質量を取付ける4点曲げ方式、または被測定
加速度に伴う荷重の分布がそれと同程度に均一化
されるように素子に対する荷重点を配設する方式
を用いたことを特徴とする加速度センサ。
1 A comb-shaped electrode is installed on the surface of a piezoelectric substrate, and the surface waves generated on the piezoelectric substrate by the input signal from the input terminal to the electrode are sequentially reflected by the comb-shaped electrode, and the resulting output is output. A four-point bending method uses a surface acoustic wave element that appears at the terminal, and supports both ends of the element and attaches an acceleration generating mass to a position close to each end, as a means of applying a load associated with the acceleration to be measured to this element. , or an acceleration sensor characterized by using a method of arranging load points on the element so that the distribution of the load accompanying the acceleration to be measured is made uniform to the same extent.
JP16800082A 1982-09-27 1982-09-27 Acceleration sensor Granted JPS5957166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16800082A JPS5957166A (en) 1982-09-27 1982-09-27 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16800082A JPS5957166A (en) 1982-09-27 1982-09-27 Acceleration sensor

Publications (2)

Publication Number Publication Date
JPS5957166A JPS5957166A (en) 1984-04-02
JPH0479419B2 true JPH0479419B2 (en) 1992-12-15

Family

ID=15859938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16800082A Granted JPS5957166A (en) 1982-09-27 1982-09-27 Acceleration sensor

Country Status (1)

Country Link
JP (1) JPS5957166A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002122614A (en) 2000-10-12 2002-04-26 Murata Mfg Co Ltd Acceleration sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364045A (en) * 1976-11-19 1978-06-08 Hitachi Ltd Strain converer
JPS5414285A (en) * 1977-07-01 1979-02-02 Thomson Csf Elastic surface wave acceleration seismometer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364045A (en) * 1976-11-19 1978-06-08 Hitachi Ltd Strain converer
JPS5414285A (en) * 1977-07-01 1979-02-02 Thomson Csf Elastic surface wave acceleration seismometer

Also Published As

Publication number Publication date
JPS5957166A (en) 1984-04-02

Similar Documents

Publication Publication Date Title
US3978731A (en) Surface acoustic wave transducer
JP3108881B2 (en) Strain measurement method and device
US4467235A (en) Surface acoustic wave interferometer
US4100811A (en) Differential surface acoustic wave transducer
US4107626A (en) Digital output force sensor using surface acoustic waves
JP3348687B2 (en) Vibration wave detection method and device
CN108931292B (en) Method for calibrating at least one sensor
US4199990A (en) Elastic surface wave accelerometer
JPH0479419B2 (en)
JP2000205940A (en) Sensor element and oscillatory wave sensor
EP0239608A1 (en) An apparatus for determining the condition of a material, in particular the adsorption of a gas or liquid on said material
JPH06103230B2 (en) Strain gauge
Mengue et al. SAW-RFID temperature and strain sensors on metallic substrates
JPH08145614A (en) Method for measuring strain of object
FR3100330A1 (en) Differential acoustic wave pressure sensors
JP2009281975A (en) Surface acoustic wave device and sensor
SU1190211A1 (en) Device for measuring temperature
CN115183708A (en) Deformation detection method, deformation detection system and battery
JPH0643928B2 (en) Stress sensor
JP2001165765A (en) Vibration distribution measuring apparatus
RU2781805C1 (en) Low-amplitude aperiodic vibration sensor based on a film sensing element
SU1113689A1 (en) Force pickup
CN214848679U (en) Deformation sensor, battery case and battery
Horikawa et al. 2Pa3-1 Identification method of wireless SAW sensor based on mass loading effect
JPH05322670A (en) Load detector