JPS5957074A - Three-dimensional moving machine - Google Patents

Three-dimensional moving machine

Info

Publication number
JPS5957074A
JPS5957074A JP57167999A JP16799982A JPS5957074A JP S5957074 A JPS5957074 A JP S5957074A JP 57167999 A JP57167999 A JP 57167999A JP 16799982 A JP16799982 A JP 16799982A JP S5957074 A JPS5957074 A JP S5957074A
Authority
JP
Japan
Prior art keywords
wheels
walking
steering
aircraft
legs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57167999A
Other languages
Japanese (ja)
Inventor
Eiji Nakano
中野 栄二
Norio Koyanai
小谷内 範穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57167999A priority Critical patent/JPS5957074A/en
Publication of JPS5957074A publication Critical patent/JPS5957074A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track

Abstract

PURPOSE:To easily move a machine body and simplify the control of traveling legs by providing a steering control unit that can be set in both full direction mode and rotary mode. CONSTITUTION:A full directional moving mechanism consisting of wheels 4 that run on a flat running surface and a steering control unit 5 that controls the running direction by the wheels 4 is provided in a machine body 1 together with traveling legs 3 that ascends and descends the stairs, etc. The steering control unit secures steering worm wheels 9a to 9d on the upper end of the steering shaft at the four corners of the machine body 1 and engages steering worm gears 12a and 12b provided on the rotary shaft 11 of a motor 10 with the front two-wheel worm wheels 9a and 9b and steering worm gears 15c and 15d provided on the rotary shaft 14 of a motor 13 with the rear two-wheel worm wheels 9c and 9d.

Description

【発明の詳細な説明】 本発明は、平坦な走行面上における走行ばかシでなく、
階段、段差、急坂の登降をも行う3次元移動機械に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is not limited to running on a flat running surface;
This relates to a three-dimensional mobile machine that can climb and descend stairs, steps, and steep slopes.

この種の6次元移動機械は、平坦な走行面では自由な経
路に沿う高速走行を可能とし、階段等では安定的な登降
を行うように構成する必要がある。
This type of six-dimensional mobile machine needs to be configured to be able to run at high speed along a free route on a flat running surface, and to be able to climb and descend stairs stably.

しかるに、既に提案されている各種3次元移動機械は必
ずしもこのような要求を満足させるものでねなく、特に
平坦な走行面と階段等を単一の移動機構によって走行ま
たは登降させるように構成し・た移動機械では、平坦走
行面及び階段等のいずれ箋−おいても満足できるような
動作を得ることが困論であって、機能の一部に何らかの
制約が加えら些るのが通例である。また、平坦走行面の
走行機構と階段等の登降機構を個別的に設ける場合にお
いても、両機構がそれらの有機的結合によってそれぞれ
の機能を効果的に発揮できるようにすることが望ましい
が、このような点においても満足できるような移動機械
は提案されていない。
However, the various three-dimensional moving machines that have already been proposed do not necessarily satisfy these requirements, and are particularly designed to run on flat running surfaces and stairs, etc. using a single moving mechanism. With mobile machines, it is difficult to obtain satisfactory operation on both flat running surfaces and stairs, and it is common that some restrictions are added to some of the functions. . Furthermore, even when a flat running surface running mechanism and a climbing mechanism such as stairs are provided separately, it is desirable that both mechanisms be able to effectively perform their respective functions through an organic combination. No mobile machine has been proposed that is satisfactory in these respects.

本発明は、上述しだ要求をみたす6次元移動機械を提供
しようとするものであって、機体の隅部にそれを駆動走
行(せる単輪を設け、各車輪を支持するステアリング軸
に、少なくとも全車輪を任意の走行方向に転向させる全
方向モードと、全車輪を機体の回転中心のまわりにおけ
る円周方向に向けた回転モードとに設定可口しにしたス
テアリング制御装置を設けることにより、全方向移動機
構、′@構成し、上記機体の前後に少なくとも各6足の
歩行運動を行う歩行脚を略等間隔に配設し、これ−ちの
各歩行脚を上記車輪の接地面より上方の不便゛用位置に
保持可能なものとして構成したことを特徴とするもので
ある。
The present invention aims to provide a six-dimensional moving machine that satisfies the above-mentioned requirements.A single wheel for driving the machine is provided at a corner of the machine body, and at least one wheel is attached to a steering shaft supporting each wheel. By providing a steering control device that can be set to an omnidirectional mode in which all wheels are turned in any direction of travel, and a rotation mode in which all wheels are directed in the circumferential direction around the center of rotation of the aircraft, omnidirectional A locomotive mechanism, comprising at least six walking legs each at the front and rear of the aircraft at approximately equal intervals, each of which is inconveniently located above the ground contact surface of the wheels. The device is characterized in that it is constructed so that it can be held in the position where it is used.

以下、図面を参照して本発明の実施例について詳述する
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明に係る6次元移動機械の概要を示すもの
で、機体1に、平坦な走行面を走行するだめの車輪4と
それらの車輪による走行方向を制御するステアリング制
御装置5(第3図参照)とによって構成される全方向移
動機構2を設けると共に、階段、段差、急坂等の登降を
行うための歩行機構3を設けている。
FIG. 1 shows an outline of a six-dimensional mobile machine according to the present invention, in which a machine body 1 is equipped with wheels 4 for running on a flat running surface and a steering control device 5 (for controlling the running direction of these wheels). 3), and a walking mechanism 3 for climbing stairs, steps, steep slopes, etc.

上記全方向移動機構2は、第2図ないし第4図に示すよ
うに、機体1の4隅にステアリング軸7を回転可能に垂
設し、これらのステアリング軸7の下端から側方に突出
する車輪軸8に車輪4を取′付け、上記ステアリング軸
7に以下に説明するよ1うなステアリング制御装置を設
けることによシ構成している。
As shown in FIGS. 2 to 4, the omnidirectional movement mechanism 2 has steering shafts 7 rotatably disposed vertically at the four corners of the aircraft body 1, and protrudes laterally from the lower ends of these steering shafts 7. The wheel 4 is attached to a wheel shaft 8, and the steering shaft 7 is provided with a steering control device as described below.

このステアリング制御装置は、第6図に示すよ弗に、機
体lの4隅のステアリング軸7の上端にステアリング用
つオームホづ一ル9α〜9dを固定し、前2輪のウオー
ムホイール9α、9bにモータ10の回転軸ll上に設
けたステアリング用ウオーム12a。
As shown in FIG. 6, this steering control device has steering ohm wheels 9α to 9d fixed to the upper ends of the steering shaft 7 at the four corners of the aircraft body l, and two front worm wheels 9α and 9b. A steering worm 12a is provided on the rotating shaft ll of the motor 10.

12 bを噛合させると共に、後2輪のウオームホイー
ル9c 、 gdにモータ130回転軸14上に設けた
ステアリング用つメーム15 C、15dを噛合させて
いる。
At the same time, the steering wheels 15C and 15d provided on the rotating shaft 14 of the motor 130 are engaged with the rear two worm wheels 9c and gd.

これらは、前2輪及び後2輪について、各左右輪を同じ
向きに保ってそれらのステアリング軸を同時に操舵回転
させるものである。上記操舵回転の手段としては、チェ
ーン等を利用した他の適宜手段を採用することができる
These systems simultaneously rotate the steering axes of two front wheels and two rear wheels while keeping the left and right wheels in the same direction. As the above-mentioned steering rotation means, other appropriate means using a chain or the like may be employed.

而して、上記ステアリング用ウオームホイール9α〜9
dのうち、対角側に位置する一対のウオームホイールg
a 、 9dには、それを取付けたステアリング軸7と
の間に係脱自在のクラッチ(図示せず)τ1ご1設けて
いる。
Therefore, the above-mentioned steering worm wheels 9α to 9
A pair of worm wheels g located on the diagonal side of d
A and 9d are provided with a clutch (not shown) τ1 which can be freely engaged and disengaged between the steering shaft 7 and the steering shaft 7 to which it is attached.

また、一対の対角側に位置するステアリング軸7・1の
中心を貫通した車輪の駆動軸の上端に車輪駆動用のウオ
ームホイール16 a 、 16 dを固定し、こレラ
ノウオームホイールにそれぞれモータ17 、18によ
って回転する車輪駆動用ウオーム19α、19dを噛合
させている。
In addition, worm wheels 16 a and 16 d for driving the wheels are fixed to the upper ends of the drive shafts of the wheels passing through the centers of the steering shafts 7 and 1 located on the diagonal sides, and motors are respectively attached to these worm wheels. Wheel drive worms 19α and 19d rotated by 17 and 18 are engaged with each other.

このような構成を有する全方向移動機構2においては、
以下に説明するように移動機械を少なくとも全方向モー
ド及び回転モードで駆動することができ、さらに自動車
モードにおいても駆動することができる。
In the omnidirectional movement mechanism 2 having such a configuration,
The mobile machine can be driven in at least an omnidirectional mode and a rotational mode, as described below, and can also be driven in a motor vehicle mode.

即ち、全方向モードでは、前2輪及び後2輪をそれぞれ
同一方向に向けたままで方向を変えるため、モータ10
 、13を同一操舵方向に同量たけ回転させ、全車輪4
を第4図Aに示す直進方向あるいけ同図Bに示すような
任意の走行方向に転向させ岐ばよく、これによって機体
1の向きを変えるこ賓1なく移動機械を任意の方向へ走
行させることができる。
That is, in the omnidirectional mode, the motor 10 changes direction while keeping the two front wheels and the two rear wheels facing the same direction.
, 13 by the same amount in the same steering direction, all wheels 4
4A, or to any direction as shown in FIG. be able to.

また、後2輪を直進方向に向けた状態でモータ13を停
止させ、前2輪のみの方向をモータ10によって変えれ
ば、第4図Cに示すように一般の自動車と同様の操舵方
法で、即ち自動車モードで走行させることができる。
Furthermore, if the motor 13 is stopped with the rear two wheels pointing straight ahead, and the direction of only the front two wheels is changed by the motor 10, the steering method similar to that of a general automobile can be used, as shown in FIG. 4C. That is, the vehicle can be driven in car mode.

回転モードによって移動体の機体を一定位置で回転させ
る場合には、まず、モータ10 、13の回転によって
ウオームホイール9α、9dに取付けた一対の対角位置
にあるステアリング軸の車輪を機体の回転中心のまわり
における円絢方向に向け、この状態でステアリング軸と
ウオームホイール9α、9dとの間のクラッチを切シ、
その後層びモータ1o。
When rotating the body of a mobile body at a fixed position in the rotation mode, first, the rotation of the motors 10 and 13 moves the wheels of a pair of diagonally positioned steering shafts attached to the worm wheels 9α and 9d to the center of rotation of the body. In this state, disengage the clutch between the steering shaft and the worm wheels 9α, 9d,
Then layer motor 1o.

13を回転させることによシラオームホイール975゜
9Cに数句けたステアリング軸だけを回転させ、それら
に取付けた車輪を機体の回転中心のまゎシに叶ける円周
方向に向ける。第4図りはこの状態を帯し、車輪をこの
ように配向させた状態でモータ゛lδ゛、13を停止さ
せると共に上記クラッチを係合さ癲隆ことによシ、各車
輪のステアリング軸がロックされる。
By rotating 13, only the steering shafts attached to the Shiraohm wheel 975°9C are rotated, and the wheels attached to them are directed in a circumferential direction that aligns with the center of rotation of the aircraft body. The fourth diagram assumes this state, and with the wheels oriented in this manner, the motors 13 are stopped and the clutches are engaged, thereby locking the steering shafts of each wheel. Ru.

以上においては全方向移動機構の一例について説明j−
だが、本発明においては上述した機構に限られるもので
はナク、各車輪を支持するステアリング軸に、少なくと
も全車輪を任意の走行方向に転向させる全方向モードと
、全車輪を機体の回転ドとに設定可能にしたステアリン
グ制御装置(例えば特開昭56−131462号公報参
照)を設ければよい。
In the above, an example of an omnidirectional movement mechanism is explained.
However, the present invention is not limited to the mechanism described above; the steering shaft that supports each wheel has at least an omnidirectional mode in which all wheels are turned in an arbitrary direction of travel, and an omnidirectional mode in which all wheels are rotated in the direction of rotation of the aircraft. A configurable steering control device (for example, see Japanese Patent Laid-Open No. 131462/1983) may be provided.

一方、移動機械に階段、段差、急坂等を登降させるため
に設ける歩行機構3は、第1図及び第5図に示すように
、機体工の前後に少なくとも各3@;、>歩行脚21 
(1、21A 、 21 C及び2261 、22+6
 、220ヲ;、略等間隔に配設すると共に、各歩行脚
に歩行運動を行わせる脚部動機構23を設けることによ
り構成している。
On the other hand, as shown in FIGS. 1 and 5, there are at least 3 walking legs 21 each at the front and rear of the machine body, as shown in FIGS.
(1, 21A, 21C and 2261, 22+6
, 220 ; are arranged at approximately equal intervals, and are constructed by providing a leg movement mechanism 23 that causes each walking leg to perform a walking motion.

上記各歩行脚は、機体1に枢着した基杆あとその基杆冴
の先端に枢着した先杆25とを備え、さらにその先杆邪
の先端に接地部材26を設けたもので、上記各歩行脚の
基杆24は、機体1に設けた脚部動機構23における駆
動用モータ(図示せず)等によって、各歩行脚ごとに独
立に、あるいは複数の歩行脚の同時駆動により、枢着点
27のまゎシに回転駆動oJ Htとし、址た先杆25
はその基端に枢着した駆動杆28を機体lに設けた駆動
用シリンダ29のピストンに連結し、それによって基杆
24に対する枢着軸30のまわりに回転駆動可能に構成
し2ている。
Each of the walking legs includes a base rod pivotally connected to the body 1 and a tip rod 25 pivoted to the tip of the base rod, and a grounding member 26 is provided at the tip of the tip of the tip. The base rod 24 of each walking leg is pivoted by a drive motor (not shown) in the leg movement mechanism 23 provided in the body 1, independently for each walking leg, or by simultaneously driving a plurality of walking legs. Rotation drive oJ Ht was applied to the landing point 27, and the tip lever 25
A driving rod 28 pivotally attached to the base end thereof is connected to a piston of a driving cylinder 29 provided on the fuselage 1, so that the driving rod 28 can be rotatably driven around a pivot shaft 30 relative to the base rod 24.

従って各歩行脚には歩行運動を行わせることができ、即
ちそれらの接地部材26が接地した状態で機体1を前進
さぜる歩行行程と、接地部材26を地面から持上げた状
態で歩行脚を歩行行程の始端位置1−i 、、T復帰さ
ぜる復帰行程とを、上述した駆動用モ〆wpと駆動用シ
リンダの同期的駆動によって交互に行わせることができ
る。
Therefore, each walking leg can perform a walking motion, that is, a walking stroke in which the aircraft 1 is moved forward with the grounding members 26 in contact with the ground, and a walking stroke in which the walking legs are moved in a state in which the grounding members 26 are lifted off the ground. The starting end position 1-i of the walking stroke, .

なお、上記接地部材26は、歩行脚の動きに対応して常
に1方に向くように、あるいは常に重力の方向に向くよ
うにその向きを制御することができ、また先杆25の先
端に無方向性のものとして固定的に取付けておくことも
できる。
The direction of the grounding member 26 can be controlled so that it always faces in one direction in response to the movement of the walking leg, or in the direction of gravity. It can also be fixedly attached as a directional device.

上記構成を有する歩行機構3は、上述した駆動用モータ
と駆動用シリンダによって歩行運動させることかできる
が、機体1の前後に各6足の歩行脚を設けた場合には次
のような態様で歩行運動させるのが安定的な歩行に有効
である。
The walking mechanism 3 having the above configuration can be made to perform walking motion using the above-mentioned drive motor and drive cylinder, but if six walking legs are provided at the front and rear of the aircraft body 1, the following mode will be used. Walking exercise is effective for stable walking.

即ち、例えばゆるい階段等の登降には、當にいずれか6
足が接地して歩行行程を行い、他の6足が同時に復帰行
程を行うような歩行運動が適している。具体的には、前
方の中央の歩行脚21 bと後方の左右の歩行脚22α
及び22 Cが同一のタイミングで歩行運動を行い、他
の6足が逆位相において同一のタイミングで歩行運動を
行うように制御する。また、急な階段や急坂の登降時の
ように、下方の歩行脚にかかる重量が大きくなる場合に
は、常“に下方の歩行脚が2足接地するような歩行運動
が適している。この場合、機体を安定させるためには前
方の歩行脚も常に2足を接地させるのが望ましい。具体
的には、前方の歩行脚21α、21b及び後方の歩行脚
22α、22Cが接地した状態で歩行脚21 c 、 
22 bを復帰させ、次に歩行脚21α、21C。
In other words, for example, when going up and down stairs, etc., it is necessary to use either 6
A walking movement in which one foot touches the ground and performs a walking stroke, and the other six feet simultaneously perform a return stroke is suitable. Specifically, the front central walking leg 21b and the rear left and right walking legs 22α
and 22C perform walking movements at the same timing, and the other six legs are controlled so that they perform walking movements at the same timing in opposite phases. In addition, when the weight on the lower walking leg is large, such as when going up and down steep stairs or steep slopes, it is appropriate to perform a walking motion in which both of the lower walking legs are always in contact with the ground. In order to stabilize the aircraft, it is desirable to always keep two of the front walking legs in contact with the ground.Specifically, when walking with the front walking legs 21α, 21b and the rear walking legs 22α, 22C in contact with the ground, Leg 21c,
22b is restored, then walking legs 21α and 21C.

2215 、22 Cが接地した状態で歩行脚21 h
 、 22αを復帰婆せ、さらに歩行脚21 b 、 
21 C、22α、22bが接地した状態で歩行脚2j
α、22Cを復帰させる。
2215, 22 Walking leg 21 h with C in contact with the ground
, 22α is restored, and walking leg 21 b ,
21 C, 22α, 22b are in contact with the ground, walking leg 2j
α, 22C is restored.

これによシ、歩行速度が若干遅くなるが安定した歩行を
行わせることができる。
As a result, the walking speed becomes slightly slower, but stable walking can be achieved.

また、上記各歩行脚は、前述した全方向移動機構2によ
る平坦走行面上の走行時に、第6図に実線で示すように
、車@4の接地面よりも上方の不使用位置に格納保持可
能なものとして構成したものである。
Furthermore, when the above-mentioned omnidirectional movement mechanism 2 runs on a flat running surface, each of the walking legs is stored and held in an unused position above the ground contact surface of the car @ 4, as shown by the solid line in Fig. 6. It has been constructed as possible.

さらに、上記各歩行脚、あるいは中央の歩行脚2夏11
″々、22hにおける接地部材26を、第6図に示す−
it!、1.!!Itにマニビーレータ用ハンド31と
交換可能とし、しかもその歩行脚21 b 、 22 
bがマニピーレータとしての必要な動きを行うように構
成する仁ともできる。特に、中央の歩行脚21 b 、
 22 hをマニピーレータとして左右へ移動可能にし
た場合には、上述した急階段や急坂の登降時において、
それらの歩行脚の接地位置を機体1を安定させる左また
は右方向にずらすこともできる。
Furthermore, each of the above walking legs or the central walking leg 2 Summer 11
The grounding member 26 at 22h is shown in FIG.
It! , 1. ! ! It can be replaced with the manibulator hand 31, and its walking legs 21b, 22
It can also be used as a manipulator configured so that b can perform the necessary movements as a manipulator. In particular, the central walking leg 21b,
If the 22 h is made to be able to move left and right as a manipulator, when going up and down the steep stairs and slopes mentioned above,
It is also possible to shift the ground contact positions of these walking legs to the left or right to stabilize the aircraft 1.

なお、上記歩行機構は上述した構成に限らず、リンク機
構やその他の機構を利用し、同様な機能をもつものとし
て構成することができ、また前後に各4足あるいはそれ
以上の歩行脚を設けることもできる。
Note that the walking mechanism is not limited to the above-mentioned configuration, but can be configured to have similar functions by using a link mechanism or other mechanisms, and four or more walking legs are provided at the front and rear. You can also do that.

以上に詳述した6次元移動機械は、平坦な走行四;ドア
は全方向移動機構によシ自由な経路を高速走6°=ti
き、また階段等では歩行機構により安定的な登−降を行
うことができるものであるが、特にその−絆を全方向移
動機構における全方向モードにより真意の位置に移動さ
せることができると共に、回転モードにより任意の向き
に向けることができるため、機体を歩行機構による階段
等の登降に最適な位置へ極めて容易に移動させ得ると共
に、簡易に最適な方向に向けることができ、従って登降
のだめの歩行脚の制御を比較的簡単なものとすることが
できる。
The six-dimensional moving machine described in detail above can run on a flat surface (4); the door can run on a free path at high speed with an omnidirectional movement mechanism (6° = ti);
Furthermore, while it is possible to stably climb up and down stairs etc. using a walking mechanism, it is particularly possible to move the bonds to the desired position using an omnidirectional mode in an omnidirectional movement mechanism. Since the rotation mode allows the aircraft to be oriented in any direction, it is extremely easy to move the aircraft to the optimal position for climbing stairs, etc. using the walking mechanism. Control of the walking legs can be made relatively simple.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る移動機械の実施例を示す斜視図、
第2図はその全方向移動機構についての概略的構成を示
す斜視図、第6図はステアリング制御装置の構成を示す
平面図、第4図A−Dは全方向移動機構における各種走
行のモードについてΩ説明図、第5図は歩行機構につい
ての概略構成因、第6図は上記移動機械における歩行機
構の不侠世状態を示す側1角図である。 1・・・機体、   2・・・全方向移動機構、4・・
・車輪、   5・・・ステアリング制御装置、7・・
・ステアリング軸、 21α〜21 c 、 22α〜22C−拳骨歩行脚。 42 MIWA 籐 3 図 第 4 図 、4             B D
FIG. 1 is a perspective view showing an embodiment of a mobile machine according to the present invention;
Fig. 2 is a perspective view showing the general configuration of the omnidirectional movement mechanism, Fig. 6 is a plan view showing the configuration of the steering control device, and Figs. 4A to 4D show various travel modes in the omnidirectional movement mechanism. Ω explanatory diagram, FIG. 5 is a schematic configuration factor of the walking mechanism, and FIG. 6 is a side one-angle view showing the unstable state of the walking mechanism in the above-mentioned mobile machine. 1... Airframe, 2... Omnidirectional movement mechanism, 4...
・Wheels, 5... Steering control device, 7...
- Steering axis, 21α~21c, 22α~22C-fist bone walking leg. 42 MIWA Rattan 3 Figure 4, 4 B D

Claims (1)

【特許請求の範囲】[Claims] 1、機体の隅部にそれを駆動走行させる車輪を設け、各
車輪を支持するステアリング軸に、少なくとも全車輪を
任意の走行方向に転向させる全方面モードと、全車輪を
機体の回転中心のまわシにおける円周方向に向けた回転
モードとに設定可能日したステアリング制御装置を設け
ることにより、全方向移動機構を措成し、上記機体の前
後に少なう1とも各3是の歩行運動を行う歩行脚を略等
間隔に配設し、これらの各歩行脚を上記車輪の接地面よ
り上方の不使用位置に保持可能なものとして構成したこ
とを特徴とする6次元移動機械。
1. Wheels are installed in the corners of the aircraft to drive the aircraft, and the steering shaft that supports each wheel is equipped with an omnidirectional mode that turns at least all the wheels in an arbitrary direction of travel, and a steering wheel that rotates all the wheels around the center of rotation of the aircraft. By providing a steering control device that can be set to a rotation mode directed in the circumferential direction of the aircraft, an omnidirectional movement mechanism is constructed, and the above-mentioned aircraft performs at least three walking movements in the front and rear directions. A six-dimensional mobile machine, characterized in that walking legs are arranged at approximately equal intervals, and each of these walking legs can be held in an unused position above the ground contact surface of the wheels.
JP57167999A 1982-09-27 1982-09-27 Three-dimensional moving machine Pending JPS5957074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57167999A JPS5957074A (en) 1982-09-27 1982-09-27 Three-dimensional moving machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57167999A JPS5957074A (en) 1982-09-27 1982-09-27 Three-dimensional moving machine

Publications (1)

Publication Number Publication Date
JPS5957074A true JPS5957074A (en) 1984-04-02

Family

ID=15859918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57167999A Pending JPS5957074A (en) 1982-09-27 1982-09-27 Three-dimensional moving machine

Country Status (1)

Country Link
JP (1) JPS5957074A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101850798A (en) * 2010-03-29 2010-10-06 北京航空航天大学 Bionic cockroach robot based on double-four link mechanism
CN102030049A (en) * 2010-12-02 2011-04-27 燕山大学 Lizard-shaped four-foot robot
CN103010331A (en) * 2012-12-27 2013-04-03 哈尔滨工业大学 Electric-drive heavy-load wheel-foot composite mobile robot
WO2013079359A1 (en) * 2011-11-28 2013-06-06 Ams Mekatronik Sistemler Ar-Ge Mühendislik Yazilim Sanayi Ve Ticaret Transport device
CN104875813A (en) * 2015-05-26 2015-09-02 上海大学 Electrically-driven small bionic four-leg robot
CN105292290A (en) * 2015-11-10 2016-02-03 天津工业大学 Motion and control method for bionic inchworm robot
WO2018129837A1 (en) * 2017-01-11 2018-07-19 成都中良川工科技有限公司 Robot walking mechanism
CN108545123A (en) * 2018-03-29 2018-09-18 苏州大学 A kind of lower limb structure of legged type robot
CN109204601A (en) * 2018-10-11 2019-01-15 北京真机智能科技有限公司 A kind of automatic cruising quadruped robot for logistics distribution
CN111348116A (en) * 2019-11-22 2020-06-30 深圳怪虫机器人有限公司 Bridge type continuity of operation's photovoltaic cleaning machines people is crossed to tripodia

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522532A (en) * 1975-06-24 1977-01-10 Toshiba Corp Photosensitive composite for electro photography
JPS551263A (en) * 1978-02-22 1980-01-08 Habegger Willy Travelling*walking apparatus
JPS56131462A (en) * 1980-03-15 1981-10-15 Agency Of Ind Science & Technol Steering control device for all-direction movable car

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522532A (en) * 1975-06-24 1977-01-10 Toshiba Corp Photosensitive composite for electro photography
JPS551263A (en) * 1978-02-22 1980-01-08 Habegger Willy Travelling*walking apparatus
JPS56131462A (en) * 1980-03-15 1981-10-15 Agency Of Ind Science & Technol Steering control device for all-direction movable car

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101850798A (en) * 2010-03-29 2010-10-06 北京航空航天大学 Bionic cockroach robot based on double-four link mechanism
CN102030049A (en) * 2010-12-02 2011-04-27 燕山大学 Lizard-shaped four-foot robot
JP2016193721A (en) * 2011-11-28 2016-11-17 マティア ロボティクス メカトロニック システムラー エイアール − ジーイー ミュヘンディスリク ヤジリム サナイ ヴェ ティカレット アノニム スィルケティ Transport device
WO2013079359A1 (en) * 2011-11-28 2013-06-06 Ams Mekatronik Sistemler Ar-Ge Mühendislik Yazilim Sanayi Ve Ticaret Transport device
CN103010331A (en) * 2012-12-27 2013-04-03 哈尔滨工业大学 Electric-drive heavy-load wheel-foot composite mobile robot
CN103010331B (en) * 2012-12-27 2015-06-17 哈尔滨工业大学 Electric-drive heavy-load wheel-foot composite mobile robot
CN104875813A (en) * 2015-05-26 2015-09-02 上海大学 Electrically-driven small bionic four-leg robot
CN105292290A (en) * 2015-11-10 2016-02-03 天津工业大学 Motion and control method for bionic inchworm robot
WO2018129837A1 (en) * 2017-01-11 2018-07-19 成都中良川工科技有限公司 Robot walking mechanism
CN108545123A (en) * 2018-03-29 2018-09-18 苏州大学 A kind of lower limb structure of legged type robot
CN108545123B (en) * 2018-03-29 2020-07-03 苏州大学 Lower limb structure of foot type robot
CN109204601A (en) * 2018-10-11 2019-01-15 北京真机智能科技有限公司 A kind of automatic cruising quadruped robot for logistics distribution
CN109204601B (en) * 2018-10-11 2023-09-19 北京真机智能科技有限公司 Automatic cruising four-foot robot for logistics distribution
CN111348116A (en) * 2019-11-22 2020-06-30 深圳怪虫机器人有限公司 Bridge type continuity of operation's photovoltaic cleaning machines people is crossed to tripodia
CN111348116B (en) * 2019-11-22 2021-07-02 深圳怪虫机器人有限公司 Bridge type continuity of operation's photovoltaic cleaning machines people is crossed to tripodia

Similar Documents

Publication Publication Date Title
JP3918049B2 (en) Biped robot
JPS5957074A (en) Three-dimensional moving machine
JPH023754B2 (en)
KR100520272B1 (en) Omni-directional toy vehicle
CN110126562A (en) A kind of air-ground integrated electrical parallel connection formula wheel foot driving mechanism
SE507352C2 (en) Of articulated bone supported and propelled vehicles
CN106240726B (en) Children electric vehicle
JP3560403B2 (en) Omnidirectional vehicle and control method thereof
JP4258456B2 (en) robot
JPH0867268A (en) Drive transmitting mechanism for omnidirectional moving vehicle
CN205706348U (en) A kind of multidirectional viewing car for movie theatre
JPH05116643A (en) Reach type fork lift
US4190129A (en) Air cushion bumper cars
JP2001063645A (en) Wheel type moving body
JPH0692272A (en) Traveling vehicle
JP2604112B2 (en) Omnidirectional vehicle
JPS5867574A (en) Travel body
JPH04293687A (en) Walking robot
JPH01172026A (en) Wheel driving mechanism
JPS60259580A (en) Foot unit link mechanism for multifeet walking machine for unlevelled ground
Wada Mechanism and control of a 4WD robotic platform for omnidirectional wheelchairs
Wada Holonomic and omnidirectional wheelchairs with synchronized 4WD mechanism
JP7188697B2 (en) truck
CN209176776U (en) The control structure and vehicle of wheel
JPH09193857A (en) Biaxial maneuvering trochoide self traveling vehicle