JPH04293687A - Walking robot - Google Patents

Walking robot

Info

Publication number
JPH04293687A
JPH04293687A JP3058909A JP5890991A JPH04293687A JP H04293687 A JPH04293687 A JP H04293687A JP 3058909 A JP3058909 A JP 3058909A JP 5890991 A JP5890991 A JP 5890991A JP H04293687 A JPH04293687 A JP H04293687A
Authority
JP
Japan
Prior art keywords
leg
robot
legs
walking robot
running
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3058909A
Other languages
Japanese (ja)
Inventor
Masayuki Kagoshima
昌之 鹿児島
Kohei Nishikawa
晃平 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3058909A priority Critical patent/JPH04293687A/en
Publication of JPH04293687A publication Critical patent/JPH04293687A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To determine the traveling attitude minimizing the torque applied to leg joint portions when a leg wheel type walking robot is horizontally traveled with wheels. CONSTITUTION:When a leg wheel type walking robot is horizontally traveled, the gravitational force mg and the inertial force ma are applied to a robot main body 7, and the excessive torque is applied to leg joint portions 8, 9. The angle of legs l, 2, 3, 4 is controlled in parallel with the resultant force direction of the gravitational force mg and the inertial force ma so that the torque applied to the joints 8, 9 is minimized in response to the walking speed (a) and the gravitational acceleration (g).

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は,脚の先端部に走行車輪
を有する脚車輪型の歩行ロボットに係り,水平走行時に
おける外力が少さくなるように脚角度を制御する歩行ロ
ボットに関するものである。
[Field of Industrial Application] The present invention relates to a leg-wheel type walking robot having running wheels at the tips of its legs, and to a walking robot that controls the leg angle so as to reduce external force when running horizontally. be.

【0002】0002

【従来の技術】障害物の跨ぎ越え動作を迅速に行って移
動することのできる移動装置の一つとして,図3に示す
ような脚aとその先端部に車輪b等の走行装置を有する
脚車輪型の移動装置,即ち脚車輪型の歩行ロボットcが
ある。この装置は,車輪bによる走行動作,脚aによる
歩行動作,あるいは,それらの組み合わせによって,平
地走行や不整地での移動,障害物の跨ぎ越えなどを迅速
に行うことができる。この歩行ロボットの不整地歩行に
おける脚の制御方法については,図4にさまざまな移動
の様子をパターン化して示すように,様々に脚の制御方
法が検討されている。(図4に示した不整地歩行のパタ
ーン図は,日本ロボット学会誌2巻3号から抜粋したも
のである)
2. Description of the Related Art As one of the moving devices capable of quickly moving over obstacles, there is a leg having a leg a and a running device such as a wheel b at its tip, as shown in FIG. There is a wheel-type moving device, that is, a leg-wheel type walking robot c. This device can quickly run on level ground, move on uneven ground, and straddle obstacles by running on wheels b, walking on legs a, or a combination thereof. As for how to control the legs of this walking robot when walking on uneven ground, various methods of controlling the legs have been studied, as shown in Figure 4, which shows various patterns of movement. (The pattern diagram of uneven ground walking shown in Figure 4 is extracted from the Journal of the Robotics Society of Japan, Volume 2, Issue 3)

【0003】0003

【発明が解決しようとする課題】しかしながら,従来か
ら歩行ロボットにおいては,脚による不整地歩行を重点
化するあまり,車輪による水平移動については充分な検
討が成されていなかった。例えば,脚先端部の車輪によ
る水平走行時の加減速の際に,脚関節を駆動するモータ
に過大なトルクが加わることがあり,そのため,脚関節
を駆動するモータに高トルク型のものを必要とし,必然
的に移動装置の重量が重くなるという課題を残していた
[Problems to be Solved by the Invention] However, in the past, walking robots have placed too much emphasis on walking on uneven ground using their legs, and insufficient consideration has been given to horizontal movement using wheels. For example, when the wheels at the end of the legs accelerate or decelerate horizontally, excessive torque may be applied to the motors that drive the leg joints, so a high-torque motor is required to drive the leg joints. However, the problem remains that the weight of the moving device inevitably increases.

【0004】0004

【課題を解決するための手段】上記課題を解決するため
に本発明は,任意の自由度を有する任意数の脚と,その
脚の先端部に走行用車輪とを有する歩行ロボットにおい
て,走行加速度と重力加速度に応じて,前記脚角度を該
脚の各関節に加わるトルクが最小となる方向に脚姿勢を
制御することを特徴とする。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a walking robot having an arbitrary number of legs having arbitrary degrees of freedom and running wheels at the tips of the legs. According to the gravitational acceleration, the leg angle is controlled in a direction in which torque applied to each joint of the leg is minimized.

【0005】[0005]

【作用】脚車輪型のロボットを水平走行させると,ロボ
ット本体には重力と慣性力がかかり,アーム長が長いと
これを支える脚の関節部分には過大なトルクが加わるが
,上記のように走行加速度と重力加速度に応じた脚角度
に姿勢制御することによって,関節部分に加わるトルク
を軽減することができる。従って,関節駆動用のモータ
を小型,軽量のものにすることができ,ロボットの軽量
化を図ることができる。
[Operation] When a leg-wheel type robot runs horizontally, gravity and inertia are applied to the robot body, and if the arm length is long, excessive torque is applied to the joints of the legs that support it. By controlling the posture of the legs to match the running acceleration and gravitational acceleration, the torque applied to the joints can be reduced. Therefore, the motor for driving the joints can be made smaller and lighter, and the weight of the robot can be reduced.

【0006】[0006]

【実施例】図1に本発明の実施例に係る歩行ロボットの
概念図を示す。4本の脚1,2,3,4は,それぞれ2
自由度を有する。図は走行方向の側面から見たものとし
て表しているため,片側側面のみの表示であるが,他側
側面も同一状態にあるものとする。2自由度を有する脚
は,それぞれ上リンク5と下リンク6から成り,その間
は中関節8で回動可能に接続され,上リンク5はロボッ
ト本体7と上関節9で回動可能に接続されている。また
下リンク6の下端部には車輪10が回転自在に取付けら
れ,脚車輪型の歩行ロボットを構成している。各関節8
,9及び車輪10には関節駆動用モータ(図示せず)が
装着されており,個々の関節8,9を自在に駆動して,
先に図4に例示したごとき不整地歩行をすると共に,車
輪10によって水平走行をすることができる。
Embodiment FIG. 1 shows a conceptual diagram of a walking robot according to an embodiment of the present invention. The four legs 1, 2, 3, and 4 are each 2
It has a degree of freedom. The figure is shown as viewed from the side in the running direction, so only one side is shown, but the other side is assumed to be in the same state. Each leg having two degrees of freedom consists of an upper link 5 and a lower link 6, which are rotatably connected at a middle joint 8, and the upper link 5 is rotatably connected to the robot body 7 at an upper joint 9. ing. Further, wheels 10 are rotatably attached to the lower end of the lower link 6, forming a leg-wheel type walking robot. Each joint 8
, 9 and the wheels 10 are equipped with joint drive motors (not shown), which freely drive the individual joints 8 and 9.
In addition to walking on uneven ground as shown in FIG. 4, the wheels 10 allow the robot to travel horizontally.

【0007】上記脚車輪型の歩行ロボットを水平走行さ
せるとき,ロボットの質量をm,走行加速度をa,重力
加速度をgとすると,ロボット本体7には重力mgと慣
性力maの合力がかかる。これを支える4本の脚1,2
,3,4には大きな負荷がかかり,それは各関節8,9
に過大なトルクとして加わる。そのため各関節8,9は
姿勢を保つため,各関節駆動モータに関節駆動に必要と
する以上の高トルク型のものを採用しなければならない
。それは歩行ロボット全体の重量増加を伴い,様々な動
作に支障をきたす原因となる。
When the above-mentioned leg-wheel type walking robot runs horizontally, assuming that the mass of the robot is m, the running acceleration is a, and the gravitational acceleration is g, a resultant force of gravity mg and inertial force ma is applied to the robot body 7. The four legs 1 and 2 that support this
, 3 and 4 are subjected to a large load, which is applied to each joint 8 and 9.
is added as excessive torque. Therefore, in order to maintain the posture of each joint 8, 9, it is necessary to use a high-torque motor for each joint drive motor, which is higher than that required for driving the joints. This is accompanied by an increase in the overall weight of the walking robot, causing problems in various movements.

【0008】本実施例においては,車輪10による水平
走行時に,上記した各関節8,9への負荷トルクを軽減
させるため,上リンク5,下リンク6を適切な走行角度
に制御している。即ち,図示するように重力mgと慣性
力maとの合力方向と平行に,各脚1,2,3,4の姿
勢を定めれば,脚にかかるモーメントをゼロにすること
ができる。このときの上リンク5の関節角θは,下記(
1)式で求められる。 θ=tan(a/g)…………(1) また,下リンク6については,下リンク6の関節軸と車
輪10の接地点yを結ぶ直線(破線で示す)が角度θで
あればいいので,下リンク6の長さをl,車輪の半径を
rとすると,下記(2)式を満たすθ´を求め,θ´を
下リンク6の関節角とすればよい。         tanθ=a/g=lsinθ´/(
lcosθ´+r)………(2)上記の脚姿勢の算定の
方法は,任意数の脚と各脚が任意の自由度を有する場合
にも適用できる。尚,図1に示した走行姿勢をとった場
合,ロボットの走行安定性が悪くなることがあるが,こ
のときには上リンク5の関節角をθ+180°となる脚
姿勢に制御することで解決できる。即ち,図2に示すよ
うなほふく姿勢をとれば,上記と同じ効果が得られ,尚
且つ安定性を向上させることができる。
In this embodiment, when the wheels 10 are horizontally traveling, the upper link 5 and the lower link 6 are controlled to appropriate traveling angles in order to reduce the load torque on the joints 8 and 9 described above. That is, by setting the posture of each leg 1, 2, 3, and 4 parallel to the direction of the resultant force of gravity mg and inertia force ma as shown in the figure, the moment applied to the legs can be made zero. The joint angle θ of the upper link 5 at this time is as follows (
1) It can be obtained using the formula. θ=tan(a/g)……(1) For the lower link 6, if the straight line (indicated by a broken line) connecting the joint axis of the lower link 6 and the grounding point y of the wheel 10 is at an angle of θ, then Therefore, if the length of the lower link 6 is l and the radius of the wheel is r, θ' that satisfies the following equation (2) can be found, and θ' can be taken as the joint angle of the lower link 6. tanθ=a/g=lsinθ'/(
l cos θ′+r) (2) The above method for calculating leg posture can be applied to cases where an arbitrary number of legs and each leg have an arbitrary degree of freedom. Note that when the robot takes the running posture shown in FIG. 1, the running stability of the robot may deteriorate, but this can be resolved by controlling the joint angle of the upper link 5 to a leg posture that is θ+180°. That is, by adopting a crouching posture as shown in FIG. 2, the same effect as described above can be obtained, and stability can also be improved.

【0009】[0009]

【発明の効果】以上の説明の通り本発明によれば,脚車
輪型の歩行ロボットを水平走行させるときに,脚角度を
走行加速度と重力加速度に応じた脚角度に姿勢制御する
ことによって脚関節部分に加わる過大なトルクを軽減す
ることができるので,関節駆動用のモータを関節駆動に
必要なだけの小型,軽量のものにすることができ,ロボ
ットの軽量化を図ることができる。それは,より自由・
自在な動きを可能にする効果として発揮される。
Effects of the Invention As described above, according to the present invention, when a leg-wheel type walking robot runs horizontally, the leg angles are controlled to be in accordance with the running acceleration and the gravitational acceleration. Since the excessive torque applied to the parts can be reduced, the motors for driving the joints can be made as small and lightweight as necessary for driving the joints, making it possible to reduce the weight of the robot. It is more free and
It is demonstrated as an effect that allows for free movement.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  実施例の脚車輪型ロボットの概念図。FIG. 1 is a conceptual diagram of a legged and wheeled robot according to an embodiment.

【図2】  同上の走行姿勢態様の概念図。FIG. 2 is a conceptual diagram of the running posture of the same as above.

【図3】  従来例の歩行ロボットの模式図。[Fig. 3] A schematic diagram of a conventional walking robot.

【図4】  歩行ロボットの不整地走行パターン図。[Figure 4] Diagram of the uneven terrain running pattern of the walking robot.

【符号の説明】[Explanation of symbols]

1,2,3,4…脚            7…ロボ
ット本体8…中関節                
    9…上関節10…車輪           
           θ…重力と慣性力の合力方向角
1, 2, 3, 4...legs 7...robot body 8...middle joint
9...Upper joint 10...Wheel
θ…Direction angle of resultant force of gravity and inertia force

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  任意の自由度を有する任意数の脚と,
その脚の先端部に走行用車輪とを有する歩行ロボットに
おいて,前記走行用車輪により水平走行するとき,走行
加速度と重力加速度に応じて,前記脚角度を該脚の各関
節に加わるトルクが最小となる方向に姿勢制御すること
を特徴とする歩行ロボット。
[Claim 1] An arbitrary number of legs having arbitrary degrees of freedom;
In a walking robot having running wheels at the tips of its legs, when the walking robot moves horizontally using the running wheels, the leg angle is adjusted so that the torque applied to each joint of the leg is minimized depending on the running acceleration and the gravitational acceleration. A walking robot that is characterized by its posture control in the direction in which it moves.
JP3058909A 1991-03-22 1991-03-22 Walking robot Pending JPH04293687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3058909A JPH04293687A (en) 1991-03-22 1991-03-22 Walking robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3058909A JPH04293687A (en) 1991-03-22 1991-03-22 Walking robot

Publications (1)

Publication Number Publication Date
JPH04293687A true JPH04293687A (en) 1992-10-19

Family

ID=13097944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3058909A Pending JPH04293687A (en) 1991-03-22 1991-03-22 Walking robot

Country Status (1)

Country Link
JP (1) JPH04293687A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090795A (en) * 2007-10-09 2009-04-30 Ihi Corp Multi-leg type traveling device
JP2009120101A (en) * 2007-11-16 2009-06-04 Ihi Corp Locomotive robot and its moving method
JP2011255426A (en) * 2010-06-04 2011-12-22 Tokyo Metropolitan Industrial Technology Research Institute Two-legged mobile device
CN105383582A (en) * 2015-12-14 2016-03-09 中国人民解放军装甲兵工程学院 Swinging arm type unmanned four-wheel driving platform
CN108528562A (en) * 2018-06-07 2018-09-14 张家港江苏科技大学产业技术研究院 A kind of robot climbing base apparatus
CN110304167A (en) * 2019-07-16 2019-10-08 深圳市爱因派科技有限公司 Wheel leg composite construction and the compound four-leg bionic robot of wheel leg

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090795A (en) * 2007-10-09 2009-04-30 Ihi Corp Multi-leg type traveling device
JP2009120101A (en) * 2007-11-16 2009-06-04 Ihi Corp Locomotive robot and its moving method
JP2011255426A (en) * 2010-06-04 2011-12-22 Tokyo Metropolitan Industrial Technology Research Institute Two-legged mobile device
CN105383582A (en) * 2015-12-14 2016-03-09 中国人民解放军装甲兵工程学院 Swinging arm type unmanned four-wheel driving platform
CN105383582B (en) * 2015-12-14 2018-06-01 中国人民解放军装甲兵工程学院 The unmanned 4 wheel driven platform of swing arm
CN108528562A (en) * 2018-06-07 2018-09-14 张家港江苏科技大学产业技术研究院 A kind of robot climbing base apparatus
CN108528562B (en) * 2018-06-07 2020-12-01 张家港江苏科技大学产业技术研究院 Robot climbing chassis device
CN110304167A (en) * 2019-07-16 2019-10-08 深圳市爱因派科技有限公司 Wheel leg composite construction and the compound four-leg bionic robot of wheel leg

Similar Documents

Publication Publication Date Title
US9346502B2 (en) Reconfigurable balancing robot and method for moving over large obstacles
JP4930003B2 (en) Mobile robot
Koshiyama et al. Design and control of an all-direction steering type mobile robot
Jeong et al. Wheeled inverted pendulum type assistant robot: inverted mobile, standing, and sitting motions
JP3435666B2 (en) robot
JP3918049B2 (en) Biped robot
CN108163080B (en) Electrically driven quadruped robot capable of adapting to high load capacity of complex rugged terrain
JPH023754B2 (en)
KR100515277B1 (en) Bipedal moving device, and device and method for controlling walking of the bipedal moving device
WO2011119599A2 (en) In-line legged robot vehicle and method for operating
CN113348129B (en) Gyroscope-stabilized leg type robot
JP2009113135A (en) Biped mobile mechanism
KR20100072587A (en) Robot and method for controlling balancing the same
US7878276B2 (en) Ambulatory vehicle
JP2009154256A (en) Transfer device comprising leg with wheel
CN108674513B (en) Variable-configuration wheel leg moving action robot
KR20100072588A (en) Robot and control method thereof
JPH04293687A (en) Walking robot
CN107856762A (en) A kind of motor cycle type robot
JP2004009205A (en) Two-foot walking robots
Kim et al. Development of a two-wheeled mobile tilting & balancing (MTB) robot
WO2015035095A1 (en) Three-wheeled mobile robot
JPH09167018A (en) Method for execution of combined motion of arbitray parallelmovement and arbitrary rotary movement to moving vehicle
JPS6237287A (en) Wheel running device
JPH0248283A (en) Walking leg movement locus controller