JPS595656B2 - Method for separating arsenic from acidic aqueous solution - Google Patents

Method for separating arsenic from acidic aqueous solution

Info

Publication number
JPS595656B2
JPS595656B2 JP55166332A JP16633280A JPS595656B2 JP S595656 B2 JPS595656 B2 JP S595656B2 JP 55166332 A JP55166332 A JP 55166332A JP 16633280 A JP16633280 A JP 16633280A JP S595656 B2 JPS595656 B2 JP S595656B2
Authority
JP
Japan
Prior art keywords
arsenic
concentration
amalgam
copper
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55166332A
Other languages
Japanese (ja)
Other versions
JPS5789445A (en
Inventor
美智夫 一條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP55166332A priority Critical patent/JPS595656B2/en
Publication of JPS5789445A publication Critical patent/JPS5789445A/en
Publication of JPS595656B2 publication Critical patent/JPS595656B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は酸性水溶液からその中に含まれるひ素イオンを
還元分離する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for reductively separating arsenic ions contained therein from an acidic aqueous solution.

ひ素は銅鉱石をはじめとして鉛鉱石や亜鉛鉱石その他各
種鉱石に広(含有され、これらを製錬する過程で、ひ素
はダストや硫酸廃液、粗銅、スパイスなどに分配される
Arsenic is widely contained in copper ore, lead ore, zinc ore, and various other ores, and in the process of smelting these ores, arsenic is distributed into dust, sulfuric acid waste, blister copper, spices, etc.

これらのダストや硫酸廃液、粗銅、スパイスなどはさら
に乾式あるいは湿式処理され、ひ素は亜ひ酸、ひ酸鉄、
ひ酸カルシウムあるいは硫化ひ素等の形として分離、回
収される。
These dusts, sulfuric acid waste, blister copper, spices, etc. are further processed dry or wet, and arsenic is converted into arsenite, iron arsenate,
It is separated and recovered in the form of calcium arsenate or arsenic sulfide.

このうち亜ひ酸や硫化ひ素については、これらを水溶液
から分離する場合に、固液分離性があまりかんばしくな
いので、現在いろいろ工夫はされているものの、更に効
率のよいひ素の分離法が望まれるところである。
Among these, when arsenous acid and arsenic sulfide are separated from aqueous solutions, the solid-liquid separation is not very easy, so although various efforts are currently being made, a more efficient arsenic separation method is desired. By the way.

またひ素をひ酸鉄やひ酸カルシウムの形として分離する
場合には、これらは固液分離性において亜ひ酸や硫化ひ
素に比べすぐれてはいるものの、多量の水酸化鉄や水酸
化カルシウムなどが同時に混ざって排出されて(るので
、量的にかさばり、難点が多い。
Furthermore, when arsenic is separated in the form of iron arsenate or calcium arsenate, although these have better solid-liquid separation properties than arsenous acid or arsenic sulfide, large amounts of iron hydroxide and calcium hydroxide Because they are mixed and discharged at the same time, the quantity is bulky and there are many difficulties.

本発明者はひ素を湿式処理するうえで、固液分離性がす
ぐれ、分離されたものができるだけかさばらないですむ
ひ素の形態と処理法についているいろと研究を重ねた結
果、ひ素は金属ひ素として水溶液から還元析出させる方
法が一番すぐれていることを発見するに至った。
As a result of repeated research into the form and processing method of arsenic, which has excellent solid-liquid separation properties and minimizes the bulk of the separated product in wet processing of arsenic, the present inventor found that arsenic can be processed as metallic arsenic. We have discovered that the best method is to perform reduction precipitation from an aqueous solution.

現在ひ素を水溶液から金属として還元析出させる方法と
しては、塩酸々性情液に塩化第一錫や次亜りん酸または
銅片を投入する方法が知られているが、これらは微量の
ひ素を定性分析するときの手法であり、これをそのまま
ひ素の分離、回収への経済的方法とするには、まだ難点
が多い。
Currently, known methods for reducing and precipitating arsenic as a metal from an aqueous solution include adding stannous chloride, hypophosphorous acid, or copper pieces to a hydrochloric-acidic solution, but these methods do not allow qualitative analysis of minute amounts of arsenic. However, there are still many difficulties in using this method as an economical method for separating and recovering arsenic.

塩化第一錫および銅片によるひ素の還元反応式を(1)
〜(4)式に示した。
The reaction formula for reduction of arsenic using stannous chloride and copper pieces is (1)
~ (4) It is shown in formula.

2AsC13+3SnC12=2As+3SnC14(
1)2HAsO2+3SnC12+6HC1=2As+
3SnC14+4H20(2)AsC13+3Cu−A
s+3CuC1(3)HAs02+3Cu+3HC1=
As+3CuC1+2H20(4)電解法によりひ素を
金属ひ素として分離する方法も考えられるが、実際に電
解法でひ素を金属ひ素の単体として採取している事例は
、現在みあたらない。
2AsC13+3SnC12=2As+3SnC14(
1) 2HAsO2+3SnC12+6HC1=2As+
3SnC14+4H20(2)AsC13+3Cu-A
s+3CuC1(3)HAs02+3Cu+3HC1=
As+3CuC1+2H20 (4) Although it is possible to separate arsenic as metal arsenic using an electrolytic method, there are currently no examples of actually collecting arsenic as a single metal arsenic using an electrolytic method.

ひ素を銅との合金として採取している事例は銅の電解精
製工程にみられる。
Examples of arsenic being extracted as an alloy with copper can be seen in the copper electrolytic refining process.

銅の電解精製工程で、陽極の粗銅に含まれるひ素は電解
の進行にともなって電解液中に一部溶出してくるので、
電解を繰返していくうちに電解液中のひ素濃度が上昇す
る。
During the copper electrolytic refining process, some of the arsenic contained in the blister copper at the anode is eluted into the electrolyte as the electrolysis progresses.
As electrolysis is repeated, the arsenic concentration in the electrolyte increases.

ひ素濃度があまり高(なると、陰極にひ素も電着しはじ
めるので、電気銅の純度が低下する。
If the arsenic concentration becomes too high, arsenic also begins to be deposited on the cathode, reducing the purity of the electrolytic copper.

そのため、銅の電解精製工程で脱銅膜び電解が行われる
が、この場合に銅とひ素の合金が電着し、金属ひ素の単
体は得られない。
Therefore, decoppering film electrolysis is performed in the copper electrolytic refining process, but in this case, an alloy of copper and arsenic is electrodeposited, and pure metallic arsenic cannot be obtained.

本発明者は塩化す) IJウム等を加えて水溶液の塩素
イオン濃度を高くし、液温50℃〜100℃好ましくは
80℃〜95℃で空気が入らないようにした槽内で、常
時攪拌しながら、銅、鉛、カドミウムの各アマルガムま
たは金属銅、金属カドミウムにより、ひ素イオンを沈降
性のすぐれた金属ひ素あるいはひ素アマルガムにまで還
元できることを発見した。
The chloride ion concentration of the aqueous solution is increased by adding IJum (the inventor has added IJum, etc.), and the solution is kept at a temperature of 50°C to 100°C, preferably 80°C to 95°C, and is constantly stirred in a tank that does not allow air to enter. However, they discovered that arsenic ions can be reduced to metallic arsenic or arsenic amalgam with excellent sedimentation properties using copper, lead, and cadmium amalgams, or metallic copper or metallic cadmium.

これによりひ素イオンを含む酸性水溶液からひ素を効率
よ(分離回収する方法が提供される。
This provides a method for efficiently separating and recovering arsenic from an acidic aqueous solution containing arsenic ions.

ひ素イオンを還元して水溶液中に溶出してくる銅、鉛な
どは、塩化ナトリウム等の塩素イオンによりクロロ錯体
となるので、還元反応は順調に進行する。
Copper, lead, etc., which are eluted into the aqueous solution by reducing arsenic ions, become chlorocomplexes with chlorine ions such as sodium chloride, so the reduction reaction proceeds smoothly.

(4)〜(8)式にはこれらの反応式を示した。HAs
’2+3Cu+3HC1=As+3CuC1+2H20
(4)(前出)CuC1+NaC1=NaCuC12(
5)2HAs02+3Pb+6HC1=2As+3Pb
C12+4H20(6)PbC12+NaC1=NaP
bC13(7)2HAs02+3 Cd+6HC1=2
As+3 CdCl2+4H20(8)液温は高い方
が、溶液中の各イオンの溶解度、各アマルガムの流動性
、ひ素の還元反応速度等に対して好結果を示すが、液温
を100℃以上にする場合にはオートクレーブ等を必要
とすることとなり、装置上または操作性上からも繁雑と
なる。
These reaction formulas are shown in formulas (4) to (8). HAs
'2+3Cu+3HC1=As+3CuC1+2H20
(4) (Previously) CuC1+NaC1=NaCuC12 (
5) 2HAs02+3Pb+6HC1=2As+3Pb
C12+4H20(6)PbC12+NaC1=NaP
bC13(7)2HAs02+3 Cd+6HC1=2
As+3 CdCl2+4H20 (8) A higher liquid temperature shows better results for the solubility of each ion in the solution, the fluidity of each amalgam, the reduction reaction rate of arsenic, etc., but when the liquid temperature is set to 100°C or higher This requires an autoclave or the like, which is complicated in terms of equipment and operability.

常圧下での最高温度は100℃であるが、工業的な還元
槽の材質等も考慮すると、液温は80℃〜95℃が最適
といえる。
The maximum temperature under normal pressure is 100°C, but when considering the material of the industrial reduction tank, etc., it can be said that the optimum liquid temperature is 80°C to 95°C.

次に本発明を実施例により更に詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例 1 3価のひ素0.5 P、NaC1100?を含むpH0
,5の酸性水溶液11に対し、銅4.01を含む銅アマ
ルガム40TLlを加え、これを空気が入らないように
したガラス槽内で常時攪拌しながら、液温90℃で3価
のひ素を還元したところ、反応時間15Mで溶液の3価
ひ素濃度は0.2′?/lを示した。
Example 1 Trivalent arsenic 0.5 P, NaC1100? pH0 including
, 40 TL of copper amalgam containing 4.01 copper was added to the acidic aqueous solution 11 of 5, and while stirring constantly in a glass tank that did not allow air to enter, trivalent arsenic was reduced at a liquid temperature of 90 ° C. As a result, the concentration of trivalent arsenic in the solution was 0.2' at a reaction time of 15M? /l was shown.

還元されたひ素は全量が銅アマルガム中に取り込まれ、
ひ素アマルガムとなった。
The entire amount of reduced arsenic is incorporated into the copper amalgam,
It became arsenic amalgam.

アマルガムの流動性はすぐれ、還元反応はほとんど理論
式どおり(重量比でCu/ As=2.54 )進行し
た。
The fluidity of the amalgam was excellent, and the reduction reaction proceeded almost according to the theoretical formula (Cu/As = 2.54 in weight ratio).

溶出した銅は1価の銅クロロ錯体として存在しているの
で、沈殿することもな(、溶液はほとんど無色透明であ
った。
Since the eluted copper existed as a monovalent copper chlorocomplex, it did not precipitate (the solution was almost colorless and transparent).

銅、ひ素アマルガムと溶液との分離性も良好であった。Separability between copper and arsenic amalgam and the solution was also good.

液温を50℃〜100℃と変化して同様の還元反応を繰
返したが、アマルガムの流動性や還元反応速度等の点か
らは、高温の方が良好であった。
The same reduction reaction was repeated by changing the liquid temperature from 50°C to 100°C, but higher temperatures were better in terms of fluidity of the amalgam, reduction reaction rate, etc.

工業的な還元槽の材質や操作性等から考えると、液温は
80〜95℃が最適といえる。
Considering the material and operability of industrial reduction tanks, it can be said that the optimum liquid temperature is 80 to 95°C.

実施例 2 3価のひ素濃度を0.1 ?/7310.01グ/11
NaC1濃度をO?/73.50 ?/73.100グ
/l、150 ’f!/lと変化し、そのほかは実施例
1と同じ条件でそれぞれの組合せにより3価のひ素を銅
アマルガムにより還元したところ、反応時間は15mV
tで十分であった。
Example 2 Trivalent arsenic concentration 0.1? /7310.01g/11
NaCl concentration O? /73.50? /73.100g/l, 150'f! /l, and when trivalent arsenic was reduced with copper amalgam using each combination under the same conditions as in Example 1, the reaction time was 15 mV.
t was sufficient.

溶液の残留ひ素は、ひ素の初濃度およびNaC1濃度に
より大きく影響され、NaC1濃度がO’if/l:の
場合はひ素は還元されずに、そのほとんどが溶液に残留
したっNaC1濃度が高くなれば、ひ素の還元率は増加
した。
The residual arsenic in the solution is greatly affected by the initial concentration of arsenic and the NaC1 concentration; if the NaC1 concentration is O'if/l, most of the arsenic remains in the solution without being reduced. , the reduction rate of arsenic increased.

NaC1濃度x’ooP/Aでひ素の初濃度が0.1′
?/lの場合は、溶液の残留ひ素濃度は0、04 ′?
/lを示し、ひ素初濃度0.01グ/lの場合には残留
ひ素濃度は5〜/lを示した。
The initial concentration of arsenic is 0.1' at NaC1 concentration x'ooP/A
? /l, the residual arsenic concentration in the solution is 0,04'?
/l, and when the initial arsenic concentration was 0.01 g/l, the residual arsenic concentration was 5~/l.

アマルガムおよび溶液の状態は実施例1の場合と同様で
、順調にひ素を含むアマルガムを溶液から分離すること
ができた。
The conditions of the amalgam and solution were the same as in Example 1, and the amalgam containing arsenic could be successfully separated from the solution.

実施例 3 溶液中に1価銅イオンや鉛イオン等が混在する場合、銅
アマルガムによるひ素の還元率は大きな影響を受け、混
在イオンの増加に伴い、残留ひ素置は高い値を示した。
Example 3 When monovalent copper ions, lead ions, etc. are mixed in the solution, the reduction rate of arsenic by the copper amalgam is greatly affected, and as the mixed ions increase, the residual arsenic content shows a high value.

1価銅イオン濃度が10?/lと高濃度の場合には、ひ
素はそのほとんどが溶液に残留したままであった。
Is the monovalent copper ion concentration 10? At a high concentration of /l, most of the arsenic remained in the solution.

ひ素濃度1.31グ/l、鉛濃度4.3グ/l、NaC
1濃度200 ?/lの溶液に銅アマルガムを加え、実
施例1と同様にして3価のひ素を還元した場合は、溶液
の残留ひ素濃度は0.98P/l、銅アマルガムから溶
出した銅による溶液の銅濃度はo、t1?/lを示した
Arsenic concentration 1.31 g/l, lead concentration 4.3 g/l, NaC
1 concentration 200? When trivalent arsenic is reduced by adding copper amalgam to a /l solution and reducing trivalent arsenic in the same manner as in Example 1, the residual arsenic concentration in the solution is 0.98P/l, and the copper concentration in the solution due to the copper eluted from the copper amalgam is 0.98P/l. is o, t1? /l was shown.

この場合もアマルガムお゛よび溶液の状態は実施例1と
同様であり、順調にアマルガムと溶液とを分離すること
ができた。
In this case as well, the conditions of the amalgam and solution were the same as in Example 1, and the amalgam and solution could be separated smoothly.

実施例 4 3価のひ素2.0?、NaC1100Pを含むpH0,
5の酸性水溶液11に対し、鉛12.(lを含む鉛アマ
ルガム40m1を加え、実施例1と同様にして3価のひ
素を還元したところ、反応時間151ruILで、溶液
の3価ひ素濃度は0.07 ?/lを示した。
Example 4 Trivalent arsenic 2.0? , pH 0 containing NaC1100P,
Lead 12. When 40 ml of lead amalgam containing 1 ml of lead amalgam was added and trivalent arsenic was reduced in the same manner as in Example 1, the concentration of trivalent arsenic in the solution was 0.07 ml/l at a reaction time of 151 ruIL.

還元されたひ素は鉛アマルガム中に取込まれるが、この
アマルガム中へのひ素の溶解度には限度があるため、過
剰の金属ひ素は溶液中にけん濁した。
The reduced arsenic is incorporated into the lead amalgam, but because the solubility of arsenic in this amalgam is limited, excess metallic arsenic was suspended in solution.

この金属ひ素の沈降性はすぐれ、溶液の攪拌を止めれば
、溶液は短時間で清澄となった。
This metallic arsenic had excellent sedimentation properties, and the solution became clear in a short time when stirring of the solution was stopped.

アマルガムの流動性はすぐれ、還元反応はほとんど理論
式どおり(重量比でpb/ As= 4.15 )進行
した。
The fluidity of the amalgam was excellent, and the reduction reaction proceeded almost according to the theoretical formula (weight ratio pb/As=4.15).

鉛、ひ素アマルガムと溶液中に析出した金属ひ素および
溶液との分離性は良好であり、また鉛、ひ素アマルガム
を布等でしぼれば、アマルガム中のひ素の大部分は布巾
に集めることができた。
Separability between the lead and arsenic amalgam and the metallic arsenic precipitated in the solution was good, and by squeezing the lead and arsenic amalgam with a cloth, most of the arsenic in the amalgam could be collected on the cloth. .

液温を50℃〜100℃と変化して同様の還元反応を繰
返したが、実施例1の場合のほかに、溶液中にけん濁の
金属ひ素の沈降性のうえからも、液温は高い方が良好で
あった。
The same reduction reaction was repeated by changing the liquid temperature from 50°C to 100°C, but in addition to the case of Example 1, the liquid temperature was high due to the sedimentation of metal arsenic suspended in the solution. It was better.

実施例 5 3価のひ素濃度1.3x?/l:でNaC1を含まない
溶液に対し、実施例4と同様にして鉛アマルガムにより
3価のひ素を還元させたところ、反応時間15m17!
での溶液の3価ひ素濃度は1.o?/lであった。
Example 5 Trivalent arsenic concentration 1.3x? /l: When trivalent arsenic was reduced with lead amalgam in the same manner as in Example 4 in a solution containing no NaCl, the reaction time was 15 m17!
The trivalent arsenic concentration of the solution is 1. o? /l.

銅アマルガムによる還元の場合と同様に、この場合もN
aC1濃度の影響を大きく受けた。
As in the case of reduction with copper amalgam, in this case too N
It was greatly influenced by aC1 concentration.

また溶液中の鉛イオン濃度の影響も受けて、前もって溶
液中の鉛濃度を7 ?/l:とじた場合には、鉛アマル
ガムをこれに投入しても、3価のひ素の還元はほとんど
進行しなかった。
Also, it is influenced by the lead ion concentration in the solution, and the lead concentration in the solution is set to 7? /l: In the case of closing, the reduction of trivalent arsenic hardly progressed even if lead amalgam was added thereto.

実施例 6 3価のひ素2.0す、NaC1100?/ lを含むp
H0,5の酸性水溶液11に対し、カドミウム6.0り
を含むカドミウムアマルガム401rLlを加え、実施
例1と同様にして3価のひ素を還元したところ、反応時
間15朋で溶液の3価ひ素濃度は0.04グ/lを示し
た。
Example 6 Trivalent arsenic 2.0s, NaC1100? / p containing l
When 401 rLl of cadmium amalgam containing 6.0 L of cadmium was added to 11 of the acidic aqueous solution of H0.5 and trivalent arsenic was reduced in the same manner as in Example 1, the trivalent arsenic concentration of the solution decreased after a reaction time of 15 mm. showed 0.04 g/l.

還元されたひ素はカドミウムアマルガム中に取込まれる
が、このアマルガム中へのひ素の溶解度には限度がある
ため、過剰の金属ひ素は溶液中にげん濁した。
The reduced arsenic was incorporated into the cadmium amalgam, but because the solubility of arsenic in this amalgam was limited, excess metallic arsenic was suspended in solution.

実施例4の場合と同様に、この金属ひ素の沈降性やアマ
ルガムの流動性もすぐれ、還元反応もほとんど理論式ど
おり(重量比でCd/As=2.25)進行した。
As in Example 4, the sedimentation properties of the metal arsenic and the fluidity of the amalgam were excellent, and the reduction reaction proceeded almost according to the theoretical formula (weight ratio Cd/As=2.25).

カドミウム、ひ素アマルガムと溶液中に析出した金属ひ
素および溶液との分離性は良好であり、またカドミウム
、ひ素アマルガムを布等でしぼれば、アマルガム中のひ
素の大部分は布巾に集めることができた。
The separation between the cadmium and arsenic amalgam and the metallic arsenic precipitated in the solution was good, and by squeezing the cadmium and arsenic amalgam with a cloth, most of the arsenic in the amalgam could be collected on the cloth. .

液温を同様に50℃〜100℃と変化して還元反応を繰
返したが、実施例4の鉛アマルガムの場合と同じく、液
温は高い方が良好であった。
The reduction reaction was repeated by changing the liquid temperature from 50°C to 100°C, but as in the case of the lead amalgam in Example 4, the higher the liquid temperature, the better.

実施例 7 3価のひ素濃度1.0?/lでNaC1を含まない溶液
に対し、実施例6と同様にしてカドミウムアマルガムに
よる3価のひ素の還元を行ったところ、反応時間15m
VLでの溶液の3価ひ素濃度は0.05?/lを示した
Example 7 Trivalent arsenic concentration 1.0? When trivalent arsenic was reduced using cadmium amalgam in the same manner as in Example 6 in a solution containing no NaC1 at a concentration of
Is the trivalent arsenic concentration in the solution at VL 0.05? /l was shown.

また3価のひ素濃度0.1グ/l、0.01グ/lで同
様に還元を行ったところ、ひ素濃度は5ynq/l以下
を示した。
Further, when reduction was performed in the same manner at trivalent arsenic concentrations of 0.1 g/l and 0.01 g/l, the arsenic concentration was 5 ynq/l or less.

銅アマルガムや鉛アマルガムによる還元の場合に比べ、
NaC1濃度の影響をあまり受けていない。
Compared to reduction with copper amalgam or lead amalgam,
Not significantly affected by NaCl concentration.

またカドミウムイオン濃度や亜鉛イオン濃度の影響もあ
まり受けていなかった。
Furthermore, it was not significantly affected by cadmium ion concentration or zinc ion concentration.

実施例 8 3価のひ素1.0 P、NaC1100?を含むpH0
,5の酸性水溶液11に対し、金属銅を小片(約5X3
X1mm)で101を加え、実施例1と同様にして3価
のひ素を還元したところ、反応時間1時間で溶液の3価
のひ素濃度は0.1P/lを示した。
Example 8 Trivalent arsenic 1.0 P, NaC1100? pH0 including
, 5 to the acidic aqueous solution 11, add a small piece of metallic copper (approximately 5 x 3
When the trivalent arsenic was reduced in the same manner as in Example 1, the trivalent arsenic concentration of the solution was 0.1 P/l after a reaction time of 1 hour.

還元された黒色の金属ひ素は金属銅板よりはがれ、溶液
にげん濁したが、沈降性はすぐれ、溶液の攪拌をやめれ
ば、溶液は短時間で清澄となった。
The reduced black metal arsenic peeled off from the metal copper plate and became cloudy in the solution, but its sedimentation properties were excellent, and when stirring of the solution was stopped, the solution became clear in a short time.

未反応の金属銅、析出金属ひ素および水溶液を容易に分
離することができた。
Unreacted metallic copper, precipitated metallic arsenic, and aqueous solution could be easily separated.

還元反応はほとんど理論式どおり進行した。The reduction reaction proceeded almost according to the theoretical formula.

実施例 9 実施例2と同様にして、3価のひ素濃度を1.0?/l
、0.1 f/73.0.01 ?/l、 NaC1濃
度を0グ/l、50グ/l、100グ/l、150グ/
lと変化し、そのほかは実施例8と同じ条件でそれぞれ
の組合せにより、3価のひ素を金属銅の小片で還元した
ところ、反応時間は約1時間を必要とした。
Example 9 In the same manner as in Example 2, the trivalent arsenic concentration was set to 1.0? /l
, 0.1 f/73.0.01? /l, NaCl concentration 0 g/l, 50 g/l, 100 g/l, 150 g/l
When trivalent arsenic was reduced with a small piece of metallic copper using each combination under the same conditions as in Example 8, the reaction time required about 1 hour.

NaC1濃度がo ?/l:の場合はひ素は還元されず
に、そのほとんどが溶液に残留した。
Is the NaCl concentration o? /l:, arsenic was not reduced and most of it remained in the solution.

NaC1濃度が高(なればひ素の還元率は銅アマルガム
による場合と同様に増加した。
If the NaCl concentration was high (the arsenic reduction rate increased as with copper amalgam).

NaCl3度100ft/lで、ひ素の初濃度が0.1
P/lの場合は、溶液の残留ひ素濃度は8〜/lを示し
、ひ索切濃度0.01グ/lの場合には、残留ひ素濃度
は0,8/n9/l:を示した。
The initial concentration of arsenic is 0.1 at 3 degrees NaCl and 100 ft/l.
In the case of P/l, the residual arsenic concentration in the solution was 8~/l, and in the case of a cord cutting concentration of 0.01 g/l, the residual arsenic concentration was 0.8/n9/l: .

この場合も容易に金属銅と析出金属ひ素および水溶液を
それぞれ分離することができた。
In this case as well, metallic copper, precipitated metallic arsenic, and aqueous solution could be easily separated.

実施例 10 3価のひ素濃度を2.3P/lと高濃度にした場合には
、析出して(る金属ひ素は黒白色を呈し、ひ素濃度が低
濃度の時に比べ、銅板より板状にカールしてはがれて(
る傾向を示した。
Example 10 When the trivalent arsenic concentration is as high as 2.3 P/l, the precipitated metallic arsenic exhibits a black and white color, and is more plate-like than a copper plate compared to when the arsenic concentration is low. Curled and peeled off (
showed a tendency to

またこのものを分析したところ、大体Cu2Asの成分
比を示した。
Further, when this material was analyzed, the component ratio was approximately Cu2As.

NaC1濃度200 ?/73のときの残留ひ素濃度は
1.、l/l:、銅濃度は2.21/lであった。
NaCl concentration 200? /73, the residual arsenic concentration is 1. , l/l: The copper concentration was 2.21/l.

また実施例3と同様にして1価銅イオンの影響をみたと
ころ、ひ素の還元率は1価銅イオン濃度の増加に伴い、
いちじるしく低下した。
In addition, when we looked at the influence of monovalent copper ions in the same manner as in Example 3, we found that the reduction rate of arsenic increased as the concentration of monovalent copper ions increased.
There was a significant decline.

NaC1濃度1001/l:でひ素濃度0.5ft/l
:のとき、1価銅イオン濃度が15 ?/lではすでに
金属ひ素の析出はほとんど観測されなかった。
NaCl concentration 1001/l: and arsenic concentration 0.5 ft/l
: When the monovalent copper ion concentration is 15? /l, almost no precipitation of metallic arsenic was observed.

実施例 11 3価のひ素2.Or、NaC1100?を含むpH0,
5の酸性水溶液11に対し、金属カドミウムの小粒20
Pを加え、実施例1と同様にして、3価のひ素を還元し
たところ、反応時間1時間で溶液の3価ひ素濃度は0.
4?/l:を示した。
Example 11 Trivalent arsenic 2. Or, NaC1100? pH0, including
For 11 of the acidic aqueous solution of 5, 20 of small particles of metal cadmium
When P was added and trivalent arsenic was reduced in the same manner as in Example 1, the trivalent arsenic concentration in the solution was reduced to 0.
4? /l: was shown.

還元された黒色の金属ひ素はカドミウム粒よりはがれ溶
液にげん濁したが、沈降性はすぐれていた。
The reduced black metal arsenic peeled off from the cadmium grains and became cloudy in the solution, but its sedimentation properties were excellent.

未反応の金属カドミウム、析出金属ひ素および水溶液を
それぞれに分離することができた。
It was possible to separate unreacted metal cadmium, precipitated metal arsenic, and aqueous solution.

また還元反応はほとんど理論式どおり進行した。Moreover, the reduction reaction proceeded almost according to the theoretical formula.

3価のひ素濃度0.1グ/l、0.0IP/lの場合も
順調に還元反応が進行した。
The reduction reaction proceeded smoothly also when the trivalent arsenic concentration was 0.1 g/l and 0.0 IP/l.

Claims (1)

【特許請求の範囲】[Claims] 1 ひ素イオンを含む酸性水溶液からひ素を分離するに
当たり、塩素イオンの存在下で、液温80℃〜95℃で
空気が入らないようにした槽内で、常時攪拌しながら銅
アマルガム、鉛アマルガム、カドミウムアマルガムまた
は金属銅、金属カドミウムにより、ひ素イオンを金属ひ
素まで還元した後、固液分離する酸性水溶液からのひ素
分離方法。
1. When separating arsenic from an acidic aqueous solution containing arsenic ions, copper amalgam, lead amalgam, A method for separating arsenic from an acidic aqueous solution in which arsenic ions are reduced to metallic arsenic using cadmium amalgam, metallic copper, or metallic cadmium, and then solid-liquid separation is performed.
JP55166332A 1980-11-26 1980-11-26 Method for separating arsenic from acidic aqueous solution Expired JPS595656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55166332A JPS595656B2 (en) 1980-11-26 1980-11-26 Method for separating arsenic from acidic aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55166332A JPS595656B2 (en) 1980-11-26 1980-11-26 Method for separating arsenic from acidic aqueous solution

Publications (2)

Publication Number Publication Date
JPS5789445A JPS5789445A (en) 1982-06-03
JPS595656B2 true JPS595656B2 (en) 1984-02-06

Family

ID=15829394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55166332A Expired JPS595656B2 (en) 1980-11-26 1980-11-26 Method for separating arsenic from acidic aqueous solution

Country Status (1)

Country Link
JP (1) JPS595656B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8936586B2 (en) 2013-03-08 2015-01-20 The Procter & Gamble Company Ergonomic grasping aids for reusable pull-on outer covers
US8974432B2 (en) 2010-07-22 2015-03-10 The Procter & Gamble Company Outer cover for an absorbent article
US8992497B2 (en) 2009-01-15 2015-03-31 The Procter & Gamble Company Two-piece wearable absorbent articles
US9060905B2 (en) 2013-03-08 2015-06-23 The Procter & Gamble Company Wearable absorbent articles
US9078792B2 (en) 2011-06-30 2015-07-14 The Procter & Gamble Company Two-piece wearable absorbent article having advantageous front waist region and landing zone configuration
US9078789B2 (en) 2013-03-08 2015-07-14 The Procter & Gamble Company Outer covers and disposable absorbent inserts for pants
CN110777260A (en) * 2019-10-10 2020-02-11 河南中原黄金冶炼厂有限责任公司 Wet processing technology for preparing simple substance arsenic

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4821239B2 (en) * 2005-09-30 2011-11-24 Dowaメタルマイン株式会社 Method for removing arsenic from germanium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8992497B2 (en) 2009-01-15 2015-03-31 The Procter & Gamble Company Two-piece wearable absorbent articles
US8974432B2 (en) 2010-07-22 2015-03-10 The Procter & Gamble Company Outer cover for an absorbent article
US9078792B2 (en) 2011-06-30 2015-07-14 The Procter & Gamble Company Two-piece wearable absorbent article having advantageous front waist region and landing zone configuration
US8936586B2 (en) 2013-03-08 2015-01-20 The Procter & Gamble Company Ergonomic grasping aids for reusable pull-on outer covers
US9060905B2 (en) 2013-03-08 2015-06-23 The Procter & Gamble Company Wearable absorbent articles
US9078789B2 (en) 2013-03-08 2015-07-14 The Procter & Gamble Company Outer covers and disposable absorbent inserts for pants
CN110777260A (en) * 2019-10-10 2020-02-11 河南中原黄金冶炼厂有限责任公司 Wet processing technology for preparing simple substance arsenic

Also Published As

Publication number Publication date
JPS5789445A (en) 1982-06-03

Similar Documents

Publication Publication Date Title
US4004991A (en) Two-stage pressure leaching process for zinc and iron bearing mineral sulphides
US4337128A (en) Cupric and ferric chloride leach of metal sulphide-containing material
JP3602329B2 (en) Method for recovering indium from indium-containing material
CA1094011A (en) Dichromate leach of copper anode slimes
US4389248A (en) Method of recovering gold from anode slimes
EP0065815B1 (en) Recovering zinc from zinc-containing sulphidic material
RU2135610C1 (en) Method of hydrometallurgical zinc sulfide-into-zinc sulfate conversion from zinc sulfide-containing ores and concentrates
CN107779599B (en) A kind of preparation and its application method of rare precious metal complex reducing agent
JPH085671B2 (en) Copper arsenate manufacturing method
JPS595656B2 (en) Method for separating arsenic from acidic aqueous solution
AU628200B2 (en) Process for producing electrolytic lead and elemental sulfur from galena
US3979265A (en) Recovery of metals from sulfur bearing ores
US5939042A (en) Tellurium extraction from copper electrorefining slimes
US3737381A (en) Apparatus for treating copper ores
GB1407520A (en) Electrolytic hydrometallurgical process to recover copper from sulphide ore concentrates
US4175014A (en) Cathodic dissolution of cobaltic hydroxide
EP0061468B1 (en) Recovery of silver from ores and concentrates
AU538566B2 (en) Cuprous chloride production from chalcopyrite
US3732094A (en) Process for preparing elemental mercury
JPH027377B2 (en)
US2695227A (en) Indium purification using proteinaceous materials
US3615190A (en) Oxidation of lead blast furnance matte
JPS6345130A (en) Removal of zinc from aqueous solution acidified with sulfuric acid
US2695226A (en) Indium purification using barium sulfate, strontium sulfate, or both
US1173467A (en) Process of treating zinc ores.