JPS5956180A - Radar device - Google Patents

Radar device

Info

Publication number
JPS5956180A
JPS5956180A JP16710282A JP16710282A JPS5956180A JP S5956180 A JPS5956180 A JP S5956180A JP 16710282 A JP16710282 A JP 16710282A JP 16710282 A JP16710282 A JP 16710282A JP S5956180 A JPS5956180 A JP S5956180A
Authority
JP
Japan
Prior art keywords
capacitor
magnetron
heater voltage
circuit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16710282A
Other languages
Japanese (ja)
Inventor
Hidetoshi Tanigaki
谷垣 英敏
Takeshi Iketani
池谷 武司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP16710282A priority Critical patent/JPS5956180A/en
Publication of JPS5956180A publication Critical patent/JPS5956180A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Abstract

PURPOSE:To obtain an optimum heater voltage corresponding to a pulse width, by detecting an electric power accumulated in a charging circuit which uses a magnetron as a load, and generating and supplying a heater voltage on the basis of the accumulated power. CONSTITUTION:An AC signal boosted by a transformer 1 is rectified and smoothed by diodes 2 and 3, a smoothing coil, and a capacitor 5. Charges in the capacitor 5 are transferred to a capacitor 9. The charges accumulated in the capacitor 9 are discharged through a thyristor 10 and the primary coil L1 of a transformer 11. The magnetron 12 is excited by the discharging. The amount of charge flowing through the capacitor 9 is detected by a smoothing circuit 14 and supplied to a control signal generating circuit 15. Then, a heater voltage generating circuit 16 outputs the heater voltage of the magnetron 12 on the basis of the output of the control signal generating circuit 15.

Description

【発明の詳細な説明】 本発明は、レーダー装置における探知用電波パルスを発
生するパルス変調回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pulse modulation circuit that generates detection radio wave pulses in a radar device.

を波パルス発生用としてのマグネトロンは、通常定格6
,3Vのヒーター電圧が印加されるが、マグネトロン駆
動時は自己加熱作用により上記電圧以下でも充分で且つ
寿命の点からも好ましいとされている。又、上記定格値
以下の印加は発生される電波パルスのパルス巾によって
影響を受け、パルス巾が長いほどヒーター電圧は低くて
済む。ところで、レーダー装置は、一般に探知信号のS
/N比向上の点から繰り返し周波数一定な特定の探知レ
ンジ群毎に若しくは個別に好適な電波パルスのパルス巾
が設定される。従って、上記パルス巾の変更毎にヒータ
ー印加電圧を好適値に切換える手段が要求され、この点
従来装Wは予め電圧値が設定された抜数個の電圧発生回
路が付勢されていた。
The magnetron used for wave pulse generation is usually rated 6
, 3V is applied, but when the magnetron is driven, a voltage lower than the above is sufficient due to the self-heating effect and is preferable from the viewpoint of longevity. In addition, the application below the above-mentioned rated value is affected by the pulse width of the generated radio wave pulse, and the longer the pulse width, the lower the heater voltage can be. By the way, radar equipment generally uses S of the detection signal.
In order to improve the /N ratio, a suitable pulse width of the radio wave pulse is set for each specific detection range group having a constant repetition frequency or individually. Therefore, a means is required to switch the voltage applied to the heater to a suitable value each time the pulse width is changed, and in this respect, in the conventional system W, several voltage generating circuits each having a preset voltage value are energized.

しかしながら、探知レンジ群及び切換可能なパルス巾と
に応じて予め定めた所定のヒーター電圧を切換送出せね
ばならず、又パルス巾の切換えが多数の場合やパルス巾
を連続的に可変することのできる方式では多数の電圧発
生回路が要求され、回路の複雑化等を招いていた。
However, it is necessary to switch and send out a predetermined heater voltage according to the detection range group and the switchable pulse width. However, the method that allows this requires a large number of voltage generating circuits, which leads to the complexity of the circuit.

本発明は、上記に鑑みてなされたもので、マグネトロン
を負荷とする充電回路に蓄積される電力を検出し、この
蓄積電力に基づいて拳適なヒータ−電圧を発生、供給す
る装置を提供するものである。
The present invention has been made in view of the above, and provides a device that detects electric power accumulated in a charging circuit with a magnetron as a load, and generates and supplies an appropriate heater voltage based on this accumulated electric power. It is something.

以下、図面の実施例に基づいて説明する。The following description will be made based on the embodiments shown in the drawings.

第1図において、1は電源からの交流信号を所定の値に
昇圧するトランスで、昇圧された交流信号はダイオード
2.3、平滑コイル4及びコンデンサ5で整流平滑され
る。従って、点Aには所定値の直流電圧が現われる。上
記コンデンサ5の充電電荷はインダクタンスの大きいコ
イル6、逆流防止用のダイオード7、コイル8を経てコ
ンデンサ9に充電される。このとき、コンデンサ5の放
電による点Aの電圧降下はコイル4側から供給され、結
果的に点Aの電位は一定に保たれる。コイル8及びコン
デンサ9は、図には示していないが複数個の素子から成
シ、パルス巾切換段に等しい数の発振周期が得られるよ
う切換接続される。
In FIG. 1, reference numeral 1 denotes a transformer that boosts an AC signal from a power source to a predetermined value, and the boosted AC signal is rectified and smoothed by a diode 2.3, a smoothing coil 4, and a capacitor 5. Therefore, a DC voltage of a predetermined value appears at point A. The charge in the capacitor 5 is charged to the capacitor 9 via a coil 6 having a large inductance, a diode 7 for preventing backflow, and a coil 8. At this time, the voltage drop at point A due to the discharge of capacitor 5 is supplied from the coil 4 side, and as a result, the potential at point A is kept constant. Although not shown in the figure, the coil 8 and the capacitor 9 are made up of a plurality of elements and are switched and connected to obtain the same number of oscillation cycles as the pulse width switching stage.

放電はコンデンサ9に蓄積された電荷が送信トリガパル
ス(第2図a)のサイリスタ1oのゲートへの送入によ
り、サイリスタ10を経てトランス11を形成する1次
コイルL1を流れることにょシなされる。上記放電時間
、すなわち送信パルス中はコイル8及びコンデンサ9に
基づく発振周期により決定される。この急激な放電によ
り、トランス11の2次、3次コイルIj2、l−18
は高電位にされてマグネトロン12をその間励振する。
The discharge is caused by the electric charge accumulated in the capacitor 9 flowing through the primary coil L1 forming the transformer 11 via the thyristor 10 by sending a transmission trigger pulse (FIG. 2a) to the gate of the thyristor 1o. . The discharge time, ie, during the transmission pulse, is determined by the oscillation period based on the coil 8 and capacitor 9. This rapid discharge causes the secondary and tertiary coils Ij2 and l-18 of the transformer 11 to
is set to a high potential and excites the magnetron 12 during that time.

そして、その後引き続いてコンデンサ9への充電が行わ
れる。上記充電はコイル6とコンデンサ9に基づく発振
周期で行われる(第2図b)。尚、上記発振周期に基づ
く充電期間(発振周期の1/4)は充電を補償する点か
ら送信の繰り返し周期より若干小さく設定しである(第
2図Cの充電電流波形参照)。
Then, the capacitor 9 is subsequently charged. The above charging is performed at an oscillation period based on the coil 6 and capacitor 9 (FIG. 2b). Note that the charging period (1/4 of the oscillation period) based on the oscillation period is set slightly smaller than the transmission repetition period in order to compensate for charging (see the charging current waveform in FIG. 2C).

さて、このようにしてコンデンサ9に流れる電荷量は前
述したようにコイル4側からコンデンサ5に流れ込む電
荷量に等しい。そして、この電流はコイル4よりコンデ
ンサ5を介して抵抗13へほぼ一定レベルで流れ、その
電流量は点DK’に圧として現われる。14はその流れ
込む電流を平滑して点D K ′3j1.われる上記電
圧の平均的電圧を検出する平滑回路である。
Now, the amount of charge flowing into the capacitor 9 in this way is equal to the amount of charge flowing into the capacitor 5 from the coil 4 side, as described above. This current flows from the coil 4 through the capacitor 5 to the resistor 13 at a substantially constant level, and the amount of current appears as pressure at point DK'. 14 smoothes the flowing current to point D K '3j1. This is a smoothing circuit that detects the average voltage of the above voltages.

ここにおいて、コンデンサ9に蓄積される電荷量、すな
わとマグネトロンの平均陽極入力電力、ΣOV”f はコンデンサ5に流れ込んだ電荷量と等しいがら上記平
均陽極入力電力と前記検出された平滑電圧とは比例する
。従って、例えば東芝マグネ)aン2J42において、
駆動時のヒーター電圧はこと表わされるから(東芝電子
管技術資料、マイクロ波管、第157頁、1976年9
月発行)、前記よシ、ヒーター電圧=6.3(1−平滑
電圧Xk)・・・・ (1)但し、kは比例定数 と表わされる。15は上記(1)式を計算し、デジタル
若しくはアナログでヒーター電圧又はこれに対応する信
号を送出する制御信号発生回路、16は上記制御信号に
基づいて所定のヒーター電圧をマグネトロン12のヒー
タに印加するヒーター電圧発生回路である。尚、図示し
ていないが、ヒータ電圧発生回路16はマグネトロン非
動作時は定格の6.3■が印加されておシ、駆動時のみ
前記所定のヒーター電圧が印加される如く切換手段が設
けである。この切換えは、例えばサイリスタ10のゲー
トへ入力される送信トリガパルス等に基づいて行われる
Here, the amount of charge accumulated in the capacitor 9, that is, the average anode input power of the magnetron, ΣOV"f, is equal to the amount of charge flowing into the capacitor 5, but the average anode input power and the detected smoothed voltage are Therefore, for example, in Toshiba Magne) a 2J42,
The heater voltage during operation is expressed as (Toshiba Electron Tube Technical Data, Microwave Tube, p. 157, 1976, 9)
As stated above, heater voltage = 6.3 (1 - smoothed voltage Xk)... (1) However, k is expressed as a proportionality constant. 15 is a control signal generation circuit that calculates the above equation (1) and sends out a heater voltage or a signal corresponding thereto in digital or analog form; 16 is a control signal generation circuit that applies a predetermined heater voltage to the heater of the magnetron 12 based on the control signal; This is a heater voltage generation circuit. Although not shown, a switching means is provided to the heater voltage generating circuit 16 so that the rated voltage of 6.3 mm is applied when the magnetron is not in operation, and the predetermined heater voltage is applied only when the magnetron is in operation. be. This switching is performed based on, for example, a transmission trigger pulse input to the gate of the thyristor 10.

このように本発明によれは、探知レンジ群は周波数fに
関与し、切換可能なパルス中はコンデンサ9の容[0に
関与するから、いずれも前記平均陽極人力゛電力、すな
わち(1)式によりその変更が表われることとなり、而
して自動的にその変更は平滑回路14で検出されて所定
のヒーター電圧が生成される。
According to the present invention, the detection range group is related to the frequency f, and during the switchable pulse, it is related to the capacitance [0] of the capacitor 9. This causes the change to appear, and the change is automatically detected by the smoothing circuit 14 to generate a predetermined heater voltage.

又、上記探知レンジ群、パルス中の種類が多段(若しく
はパルス中が連続的に)渡る場合でも従来の如き複雑な
回路は何等要求されることd、ない。
Further, even when the detection range group and the types of pulses are passed through multiple stages (or the pulses are continuous), there is no need for any complicated circuits as in the prior art.

尚、平均陽極入力電力とヒーター電圧との関係について
は、実施例で示したls’=I係に限定されることはな
く、使用されるマグネトロンの種類に応じて決まる関係
のいずれでも該関係に基づいて制御信号発生回路15を
設計すれは良い。
Note that the relationship between the average anode input power and the heater voltage is not limited to the relationship ls'=I shown in the example, but can be any relationship determined depending on the type of magnetron used. It is good to design the control signal generation circuit 15 based on this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す回路図で、紀2図は
その波形図である。 特許出願人 古野電気株式会社
FIG. 1 is a circuit diagram showing an embodiment of the present invention, and FIG. 2 is a waveform diagram thereof. Patent applicant Furuno Electric Co., Ltd.

Claims (1)

【特許請求の範囲】 パルス変調回路における放電を利用してマグネトロンを
励振し、所定の電波パルスを送出するレーダー装置にお
いて、 上記パルス変調回路への充電電力を検出する検出回路と
、 上記検出回路出力に基づいて上記充電電力が大きくなる
に従ってマグネトロンのヒーターへ印加電圧を低下させ
るごとく制御して供給する印加電圧供給回路とを備えた
レーダー装置。
[Scope of Claims] A radar device that excites a magnetron using discharge in a pulse modulation circuit and sends out a predetermined radio wave pulse, comprising: a detection circuit that detects charging power to the pulse modulation circuit; and an output of the detection circuit. and an applied voltage supply circuit that controls and supplies voltage to a heater of a magnetron in such a manner that the applied voltage is decreased as the charging power increases based on the above.
JP16710282A 1982-09-24 1982-09-24 Radar device Pending JPS5956180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16710282A JPS5956180A (en) 1982-09-24 1982-09-24 Radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16710282A JPS5956180A (en) 1982-09-24 1982-09-24 Radar device

Publications (1)

Publication Number Publication Date
JPS5956180A true JPS5956180A (en) 1984-03-31

Family

ID=15843461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16710282A Pending JPS5956180A (en) 1982-09-24 1982-09-24 Radar device

Country Status (1)

Country Link
JP (1) JPS5956180A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323289A (en) * 1976-08-13 1978-03-03 Raytheon Co Radar

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323289A (en) * 1976-08-13 1978-03-03 Raytheon Co Radar

Similar Documents

Publication Publication Date Title
JPS6072199A (en) X-ray apparatus
EP0137401B1 (en) Heating circuit for a filament of an x-ray tube
US4514795A (en) High-voltage generator, notably for an X-ray tube
US4761804A (en) High DC voltage generator including transition characteristics correcting means
US4648093A (en) Power supply for gas discharge lasers
US5739643A (en) Device for supplying electric power to flashlamp and method thereof
US4481447A (en) Power supply for a magnetron
KR940009519B1 (en) Apparatus for operating discharge lamp
JPH05276750A (en) Power supply circuit
US5189602A (en) High-voltage generator with selective half-bridge and full-bridge operation
US4839915A (en) Inverter type X-ray apparatus
US5675483A (en) Power supply comprising means for improving the power factor
JP2003299356A (en) Dc-dc converter control method
JPS5956180A (en) Radar device
JPH0993920A (en) Dc high voltage power supply for capacitive load
JPH11144860A (en) High frequency heating apparatus
JP3800114B2 (en) Pulse generator
JP3828304B2 (en) Power supply
JP2772175B2 (en) Discharge lamp lighting device
JP3672950B2 (en) Pulse generator
JP3693799B2 (en) DC high voltage generator
KR100202024B1 (en) Circuit for protecting power loss in a smps
JPH0117870Y2 (en)
JP2002093590A (en) Electric discharge lamp lighting equipment
JPS62126865A (en) Power source