JPS5956170A - Transfer function measuring instrument - Google Patents

Transfer function measuring instrument

Info

Publication number
JPS5956170A
JPS5956170A JP16737182A JP16737182A JPS5956170A JP S5956170 A JPS5956170 A JP S5956170A JP 16737182 A JP16737182 A JP 16737182A JP 16737182 A JP16737182 A JP 16737182A JP S5956170 A JPS5956170 A JP S5956170A
Authority
JP
Japan
Prior art keywords
peak
input
spectrum
frequency
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16737182A
Other languages
Japanese (ja)
Other versions
JPH0339270B2 (en
Inventor
Takahiro Yamaguchi
隆弘 山口
Masayuki Ogawa
政行 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Takeda Riken Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp, Takeda Riken Industries Co Ltd filed Critical Advantest Corp
Priority to JP16737182A priority Critical patent/JPS5956170A/en
Publication of JPS5956170A publication Critical patent/JPS5956170A/en
Publication of JPH0339270B2 publication Critical patent/JPH0339270B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/28Measuring attenuation, gain, phase shift or derived characteristics of electric four pole networks, i.e. two-port networks; Measuring transient response

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To measure a transfer function digitally with high precision, by finding frequencies of peak power spectra of an input and an output signals and those peak values, and performing averaging and dividing processing regarding only the peak values. CONSTITUTION:A sine wave signal from a sweep sine wave signal generator 11 is inputted to a body 12 to be measured and its input signal and output signals are written in buffer memories 22 and 24 through AD converters 21 and 23. Their sampled values are inputted to an FFT processor 29 through a multiplexer 25 to perform fast Fourier transform and then the product of the input and output spectrum is calculated to find a cross spectrum. Then, the frequencies and values of peak spectra are detected and when the peak value is greater than a specific level, the mean value of peak values so far is found. When sweep within a desired frequency range is completed, amplitude characteristics and phase characteristics are found by a CPU27 from the mean value of the input/ output power spectra of every frequency of each peak and the mean value of cross spectra.

Description

【発明の詳細な説明】 この発明は被測定物に信号を供給し、その入力信号と、
被測定物よりの出力信号とから、被測定物の伝達関数を
求める伝達関数測定器、特に高速フーリエ変換処理によ
りデジタル的に伝達関数を測定する測定器に関する。
[Detailed Description of the Invention] This invention supplies a signal to an object to be measured, and the input signal and
The present invention relates to a transfer function measuring device that determines the transfer function of a measured object from an output signal from the measured object, and particularly to a measuring device that digitally measures the transfer function using fast Fourier transform processing.

〈従来技術〉 伝達関数測定器は、第1図に示すように掃引正弦波信号
発生器11よりの掃引正弦波信号を被測定物12に入力
1〜、その入力信号のレベルで被測定物12の出力信号
のレベルを割算回路13で割算してCRT表示器14の
第1Y軸端子に供給し、又被測定物12に対する入力信
号と出力信号との位相差を位相差検出器15で検出して
CRT表示器14の第2Y軸端子に供給し、一方、掃引
W丑。
<Prior Art> As shown in FIG. 1, the transfer function measuring instrument inputs a swept sine wave signal from a swept sine wave signal generator 11 to a device under test 12, and outputs a signal to the device under test 12 at the level of the input signal. The level of the output signal is divided by the division circuit 13 and supplied to the first Y-axis terminal of the CRT display 14, and the phase difference between the input signal and the output signal to the object under test 12 is detected by the phase difference detector 15. The signal is detected and supplied to the second Y-axis terminal of the CRT display 14, while the signal is swept W.

波信号発生器11よりの周波数掃引信号をCRT表示器
14のX軸端子へ供給して、被111I定物12の振幅
(利得)特性を表示器14の表示面に曲線16として表
示すると共に、位相特性を曲線17として表示するよう
にされている。
The frequency sweep signal from the wave signal generator 11 is supplied to the X-axis terminal of the CRT display 14, and the amplitude (gain) characteristics of the 111I constant object 12 are displayed as a curve 16 on the display surface of the display 14. The phase characteristics are displayed as a curve 17.

このように伝達関数をアナログ的にo+す定する代りに
デジタル的に測定することにより、その後のデジタル的
処理が行いやすいようにしたものが提案されている。こ
れは入力信号及び出力信号を高速フーリエ変換して伝達
関数を求めるものである。
It has been proposed to measure the transfer function digitally instead of analogously determining o+, thereby facilitating subsequent digital processing. This is to obtain a transfer function by performing fast Fourier transform on input and output signals.

即ち入力信号のn +1julのサンプルより滑る時系
列を昼速フーリエ変換して、例えば第2図に示すように
その周波数成分Fl−Fnについてそれぞれ入力。
That is, the time series slipping from n+1jul samples of the input signal is subjected to daytime Fourier transform, and its frequency components Fl-Fn are respectively input as shown in FIG. 2, for example.

信号スペクト/l/ a + +ja + ’ 〜al
+j an ’及びそのパワーゝスペクトルA+−An
を得る。同様にして被測定物12の出力信号のn個のサ
ンプルよりなる時系列を高速フーリエ変換して周波数成
分F+−Fnによって出力信号スペクトルbs+jb+
’〜bn+jbn’を求め、これら入カスベクトル及び
出カスベクトルの対応する周波数の積であるクロススペ
クトルを周波数成分F1〜Fnについてc+−1−jc
+”〜Cn+jCn1を求める。このように入力信号及
び出力信号の各時系列毎に入カバワースベクトル及びク
ロススペクトルを求めると共に、その各対応する周波数
成分についての平均値を求め、負周波数成分ごとにその
平均されだ入カパワースペ、クトルによって平均された
クロススペクトルをそれぞれ割算して振幅(利得)特性
を求めると共に、各胤波数成分の平均クロススペクトル
の実数部と虚数部とから位相特性を求めている。
Signal spectrum/l/ a + +ja + '~al
+j an' and its power spectrum A+-An
get. Similarly, a time series consisting of n samples of the output signal of the object under test 12 is subjected to fast Fourier transform, and the output signal spectrum bs+jb+ is obtained using the frequency component F+−Fn.
'~bn+jbn' is obtained, and the cross spectrum, which is the product of the corresponding frequencies of these input and output waste vectors, is expressed as c+-1-jc for the frequency components F1 to Fn.
+"~Cn+jCn1. In this way, the input signal worth vector and cross spectrum are determined for each time series of the input signal and output signal, and the average value for each corresponding frequency component is determined, and for each negative frequency component, The amplitude (gain) characteristics are obtained by dividing the averaged input power spectrum and the averaged cross spectrum by the vector, and the phase characteristics are obtained from the real part and imaginary part of the average cross spectrum of each wave number component. There is.

このように従来においては高速フーリエ変換されたスペ
クトルの、すべての周波数成分についてそれぞれ平均し
ており、つまりパワーが小さいスペクトルも平均してお
り、限られたビット数で者数を表現するデジタル処理に
おいては小さいパワーによる割算は大きな誤差を伴い、
全体としての測定精度を低下させていた。
In this way, in the past, all frequency components of the fast Fourier transformed spectrum were averaged, that is, even the spectra with small power were averaged. Dividing by a small power involves a large error,
This lowered the overall measurement accuracy.

〈発明の概要〉 この発明の目的は高い精度で伝達関数をデジタル的に測
定することができ、ひずみ等の非直線的な影響のない伝
達関数測定器を提供することにある。
<Summary of the Invention> An object of the present invention is to provide a transfer function measuring instrument that can digitally measure a transfer function with high accuracy and is free from nonlinear effects such as distortion.

この発明によれば各入力信号及び出力信号の高速フーリ
エ変換時系列についてその入カバワースベクトルのピー
クの周波数及びそのピーク値を求める。そのピーク周波
数についてそれ甘でに得られている時系列毎のフーリエ
変換の対応する周波62のパワーのピーク値の平均及び
対応する周波数のクロススペクトルの平均をそれぞれ求
め、これら平均されたものによシ伝達特性を求める。こ
のようにピーク値についてのみ平均、割算処理が行われ
、低い誤差成分の多いレベルの低い周波数成分について
は、これらを無視することによって?Flj定精度を上
げている。入力信号は正弦波信号であって、そのスペク
トルは単一周波数のみに出るのが普通であり、前述のよ
うにピーク値の周波数成分のみの処理により高い精度の
測定が得られる。
According to the present invention, the peak frequency and peak value of the input coverworth vector are determined for the fast Fourier transform time series of each input signal and output signal. For that peak frequency, calculate the average of the power peak value of the corresponding frequency 62 of the Fourier transform for each time series that has been obtained, and the average of the cross spectrum of the corresponding frequency, and use these averages. Find the transfer characteristics. In this way, averaging and division processing is performed only on peak values, and low-level frequency components with many low error components are ignored? Flj constant accuracy has been improved. The input signal is a sine wave signal, and its spectrum usually only appears at a single frequency, and as described above, highly accurate measurement can be obtained by processing only the frequency component of the peak value.

〈実施例〉 第3図はこの発明による伝達関数測定器の一例を示す。<Example> FIG. 3 shows an example of a transfer function measuring device according to the present invention.

掃引正弦波信号発生器11よシの正弦波信号は被測定物
12に入力される。その入力信号は一定周期で標本化さ
れ、AD変換器21により各標本値がデジタル信号に変
換されて入力バッファメモリ22に書き込まれる。また
被測定物12の出力信号はAD変換器23により一定周
期毎の標本値がデジタル信号に変換されて出力バッファ
メモリ24に取込まれる。バッファメモリ22゜24の
読み出し出力側N″ll:マルチプレクサ25を通じて
バス26に接続される。中央処理装置いわゆるCPU2
7、全体の制御を行うプログラムが記憶された読み出し
専用メモリ28、高速フーリエ変換演算を行うFFTブ
ロセッザ29、高速フーリエ変換出力が記憶される変換
メモリ31、更に平均値が記憶される平均値メモリ32
等がバス26に接続されている。
A sine wave signal from the swept sine wave signal generator 11 is input to the object to be measured 12 . The input signal is sampled at regular intervals, and each sampled value is converted into a digital signal by the AD converter 21 and written into the input buffer memory 22. Furthermore, sample values of the output signal of the object to be measured 12 are converted into digital signals at regular intervals by an AD converter 23, and the digital signals are taken into an output buffer memory 24. Readout output side N''ll of buffer memory 22.24: connected to bus 26 via multiplexer 25. Central processing unit so-called CPU2
7. A read-only memory 28 in which a program for overall control is stored, an FFT processor 29 for performing fast Fourier transform operations, a transform memory 31 in which fast Fourier transform outputs are stored, and an average value memory 32 in which average values are stored.
etc. are connected to the bus 26.

CPU27はメモリ28のプログラムを読み出して解読
実行して制御処理を行うが、この処理は次のようなもの
である。即ちCPU27によりマルチプレクサ25を制
御して先づ入力バッファメモリ22からそれまでの例え
ばn個のサンプル値の時系列がCPU27に取込まれ、
その取込まれた時系列はこれよりFFTプロセッサ29
において高速フーリエ変換され、第2図について述べた
ように周波数成分F1〜Fnについて入カスベクトルa
l−1−jat ’ 〜an+jan’が演算され、更
にこれらよシバワースベクトルA1〜Anが演算さね、
こゎらけCPU27を介して変換メモリ31内の入カス
ベクトル領域31a及び入カッくワースベクトル頓域3
1bにそれぞれ記憶される。次にCP U27のill
 illにより出力バッファメモリ24から、前記入力
時系列と対応するn個のサンプル値よりなる時系列がC
PU27に取込まれ、更にFFTプロセッサ29によっ
て高速フーリエ変換される。これにより出カスベクトル
t)+十jbl’〜b2+jb2’  とそのパワース
ペクトルB1〜Hnがそれぞれ得られ、これも変換メモ
リ31の出カスベクトル領域31C及ヒ出カバワースベ
クトル31dにそれぞれ記憶される。
The CPU 27 reads out the program in the memory 28, decodes and executes it, and performs control processing, and this processing is as follows. That is, the CPU 27 controls the multiplexer 25 and first the time series of, for example, n sample values up to that point is taken in from the input buffer memory 22 to the CPU 27.
The imported time series is now processed by the FFT processor 29
As described in FIG. 2, the input loss vector a is
l-1-jat' ~ an+jan' are calculated, and furthermore, the Shibaworth vectors A1 ~ An are calculated,
The input waste vector area 31a and the input waste vector storage area 3 in the conversion memory 31 are processed via the CPU 27.
1b respectively. Next, CPU U27's ill
ill, a time series consisting of n sample values corresponding to the input time series is transferred from the output buffer memory 24 to C.
The signal is taken into the PU 27 and further subjected to fast Fourier transform by the FFT processor 29. As a result, output waste vectors t)+jbl' to b2+jb2' and their power spectra B1 to Hn are obtained, respectively, and these are also stored in the output waste vector area 31C and the output cover worth vector 31d of the conversion memory 31, respectively.

このように入力信号の1時系列と同時に得られた出力信
号の1時系列とを高速フーリエ変換して変換メモリ31
に記憶した後、その各変換周波数成分F1〜l’i’n
の対応するものについて入カスベクトルと出カスベクト
ルとの積を演算してクロススペクトルc+−4−jct
’〜cn+jcn’を求めて変換メモリ31中のクロス
スペクトル領域31eに記憶す次に変換メモリ31中の
入カバワースベクトルAI−AnをCPU27に順次読
み取りピーク値の周波数及びそのピーク値を検出し、そ
のピーク値が所定レベル以上であるか否かを判定し、所
定レベル以上の場合はそのピーク周波数におけるそtl
までの時系列について得られたピーク値との平均が行わ
れ、その平均結果は平均値メモリ32の対応する周波数
の部分に記憶される。その平均演豹はそれまでの平均値
を5とし、新だに得られたピーク値をXeとし、それま
での平均回数を1くとすると、次の式で行われる。
In this way, one time series of the input signal and one time series of the output signal obtained at the same time are fast Fourier-transformed and the transformation memory 31
After storing each converted frequency component F1 to l'i'n
The cross spectrum c+-4-jct is calculated by calculating the product of the input waste vector and the output waste vector for the corresponding one.
'~cn+jcn' is calculated and stored in the cross spectral region 31e in the conversion memory 31. Next, the input cover-worth vector AI-An in the conversion memory 31 is sequentially read by the CPU 27, and the frequency of the peak value and its peak value are detected. It is determined whether the peak value is above a predetermined level, and if it is above the predetermined level, the peak value at that peak frequency is determined.
The average with the peak values obtained for the time series up to this point is performed, and the average result is stored in the corresponding frequency portion of the average value memory 32. The average calculation is performed using the following formula, where the previous average value is 5, the newly obtained peak value is Xe, and the number of averages so far is subtracted by 1.

眉←Xo十  k この値を新たな平均値として平均値メモリ32の対応す
る周波数のところに記憶する。たソしl(の初期値は2
であり、かつ同一周波数のピーク値が連続して得られる
間そのl(を順次+1する4、このようにして、例えば
第4図に示す」:うに検出ピーク値の各周波数F+−F
nについての入カバワースベクトルの平均値A1出カバ
ワースベクトルの平均値テ、更にクロススペクトルの平
均値「+r1°がそれぞれ演算される。なおこの平均を
行うに当ってkがあらかじめ設定された値になると、そ
の周波数についての平均を中東する。
Eyebrow←Xo 1 k This value is stored as a new average value in the corresponding frequency of the average value memory 32. The initial value of tasoshi l( is 2
, and while the peak values of the same frequency are obtained continuously, the l( is sequentially +1).In this way, for example, as shown in FIG.
The average value A1 of the input Coverworth vector for n, the average value TE of the output Coverworth vector, and the average value "+r1°" of the cross spectrum are calculated respectively. In performing this averaging, k is a preset value. When it comes to the average frequency for the Middle East.

このようにして入力信号周波数を掃引し々から次々と入
力信号及び出力信号をサンプルして高速フーリエ変換を
行って各時系列毎についてのピニク値の周波数を求め、
その周波数についてそれまでの平均を求め、目的の周波
数範囲内の掃引が終了した時点でそれまで得られた各ピ
ークの周波数毎の入カバワースベクトルの平均値、出カ
バワースベクトルの平均値、クロススペクトルの平均値
から、入カバワースベクトルの平均値によシ、クロスス
ペクトルの平均値を割り算することを各周波数成分にて
求めて振幅(利得)特性を求め、更にクロススペクトル
の平均値の実数部と虚数部とから位相特性を求める。な
お必要に応じて入カバワースベクトル及び出カバワース
ベクトルよりその相関が各周波数成分ごとに演算される
In this way, the input signal frequency is swept, the input signal and the output signal are sampled one after another, and fast Fourier transform is performed to find the frequency of the Pinnick value for each time series.
The average value of that frequency up to that point is calculated, and when the sweep within the target frequency range is completed, the average value of the input coverworth vector, the average value of the output coverworth vector, and the cross From the average value of the spectrum, calculate the amplitude (gain) characteristic by dividing the average value of the cross spectrum by the average value of the input coverworth vector for each frequency component, and then calculate the real number of the average value of the cross spectrum. The phase characteristics are determined from the part and the imaginary part. Note that, if necessary, the correlation is calculated for each frequency component from the input coverworth vector and the output coverworth vector.

以上述べたようにこの発明の伝達関数測定器においては
その入カバワースベクトルのピーク値の周波数を検出[
2、そのピーク周波数についてそねまでの時系列毎に得
られている入カバワースベクトル、クロススペクトルの
各平均を求めているだめ、つまりパワースペクトルのす
べての周波数成分について平均をとるものではなく、小
さなレベルで大きな誤差を含む可能性のある成分につい
ては無視することによシ正しい測定結果を得る。このよ
うにピークの周波数についてのみ平均処理を行なっても
、本来は1周波数成分ごとの特性が得られればよく、測
定も正弦波信号を入力信号とし、その周波数を掃引する
が、瞬時的には一周波数成分のみが入力されており、そ
の成分についてのみ平均して特性が得られればよく、そ
れにより高い精度の測定が可能となる。しかも歪々どの
非直線的な結合の影響が彦<、その周波数成分について
のみの平均が行なわれることになる。
[
2. The average of the input coverworth vector and cross spectrum obtained for each time series up to the peak frequency is calculated. In other words, the average is not calculated for all frequency components of the power spectrum. Correct measurement results are obtained by ignoring components that may contain large errors at small levels. Even if average processing is performed only on the peak frequency in this way, it is only necessary to obtain the characteristics for each frequency component, and measurement is also performed by using a sine wave signal as an input signal and sweeping the frequency, but it is not possible to perform instantaneous measurement. Only one frequency component is input, and the characteristics need only be obtained by averaging only that component, which enables highly accurate measurement. Moreover, since the influence of non-linear coupling such as distortion is HIKO<, averaging is performed only for the frequency components.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はアナログ信号による伝達関数測定器を示すブロ
ック図、第2図はデジタル的処理にょる伝達関数の測定
に用いられるデータを示す図、第3図はこの発明による
伝達関数測定器の一例を示すブロック図、第41¥1は
その平均値メモリ32における記憶例を示す図である。 11:掃引正弦波信号発生器、12:′#測定物、21
.23:AD変換器、22 、24 :バツファメモリ
、25:マルチプレクサ、27 : CPU28ニブロ
グラム記憶メモリ、29:FFTプロセッサ、31:変
換メモ’J、32:平均値メモリ。 特許出願人  タケダ理研工業株式会社代理人 草野 
卓 7t=1  囮 2 4 沙 2 図 手続補正書(自発) 昭和57午11月8日 特許庁長官 殿 1事件の表示  特願昭57−167371、発明の名
称  1云達関数測定器 3補正をする者 @S件との関係  特許出願人 タケダ理研工業株式会社 5、補正の対象  明細書中発明の詳細な説明の欄6袖
正の内容 (])明細摺3頁13行、7頁16〜17行1入カスベ
クトル」を「人カスベクトルの複素共役」前述のように
」を「その線形応答のスペクトルは、この入力周波数の
みC二出てくる。従って前述のように」と訂正する。 (3)同書8頁10行「平均回数なk」を「平均回数な
に−1」と訂正する。 (4)同書8頁15行「初期値は2であり、」を。 [初期値は1であり、」と訂正する。 (5)同書8頁19行「平均値λ、」を「平均値心、」
と訂正する。 (6)同書9頁1〜2行「平均値B、・・・・・それぞ
れ演算される。」を1平均値B1、更にクロススペーー
ーー〒 クトルの平均値C; + J C+がそれぞれ演Wされ
る。」と訂正する。 (7)同書9百9〜10行「l」的の・・・・・得られ
た」を「掃引した周波数範囲のそれまで得られた」と訂
正する。 (8)  同書9頁15〜19行[振幅(利得)持す4
1を求め、・・・・・・演算される。」を「振幅(利得
)特性と、位相特性を求める。なお必要E l+j;じ
て人カバワースベクトル及び出カバワースベクトルクロ
ススペクトルのそれぞれの平均値よりその開速度関数が
各周波数成分ごとに演算される。」と訂正する。 (9)同書io頁16行「その周波数成分」を「その掃
引周波数成分」と訂正する。 以上
Fig. 1 is a block diagram showing a transfer function measuring device using analog signals, Fig. 2 is a diagram showing data used to measure a transfer function by digital processing, and Fig. 3 is an example of a transfer function measuring device according to the present invention. 41.1 is a block diagram showing an example of storage in the average value memory 32. 11: Sweeping sine wave signal generator, 12: '#Measurement object, 21
.. 23: AD converter, 22, 24: Buffer memory, 25: Multiplexer, 27: CPU 28 Niprogram storage memory, 29: FFT processor, 31: Conversion memo 'J, 32: Average value memory. Patent applicant Takeda Riken Kogyo Co., Ltd. Agent Kusano
Zhuo 7t=1 Decoy 2 4 Sha 2 Drawing procedure amendment (voluntary) Commissioner of the Japan Patent Office November 8, 1980 Indication of Tono 1 case Patent application 167371/1971, Title of invention 1 Correction of Yundatsu function measuring instrument 3 Relationship with Person @S Matter Patent applicant Takeda Riken Kogyo Co., Ltd. 5, subject of amendment Detailed explanation of the invention in the specification Column 6 Contents of the sleeve correction (]) Specification page 3, line 13, page 7, 16~ 17-line 1-input dregs vector'' is corrected to ``complex conjugate of human dregs vector'' as described above'' to ``The spectrum of its linear response comes out only at this input frequency C2.Therefore, as described above''. (3) In the same book, page 8, line 10, "average number of times k" is corrected to "average number of times -1". (4) The same book, page 8, line 15, ``The initial value is 2.'' [The initial value is 1," corrected. (5) The same book, page 8, line 19, “average value λ,” is replaced with “average value center,”
I am corrected. (6) Lines 1 and 2 of page 9 of the same book, "Average value B, ... are calculated respectively." 1 average value B1, and cross space - 〒 ctor average value C; + J C+, respectively. It will be played W. ” he corrected. (7) In lines 9-10 of the same book, ``obtained'' in ``l'' is corrected to ``obtained up to that point in the swept frequency range.'' (8) Ibid., p. 9, lines 15-19 [amplitude (gain) of 4
1 is calculated and... is calculated. '' to ``obtain the amplitude (gain) characteristics and phase characteristics.It is necessary to calculate the opening speed function for each frequency component from the average value of the human Coverworth vector and the output Coverworth vector cross spectrum. It will be corrected.” (9) Correct "the frequency component" in line 16 of page io of the same book to "the sweep frequency component". that's all

Claims (1)

【特許請求の範囲】[Claims] (1)  被測定物に供給する入力信号を高速フーリエ
変換する手段と、上記被測定物の出力信号を高速フーリ
エ変換する手段と、これら高速フーリエ変換された入力
信号スペクトルと出力信号スペクトルとの各対応する周
波数成分を掛算してクロススペクトルを求める手段と、
上記入力信号の変換されたスペクトル中のピークパワー
の周波数及びそのピーク値を検出する手段と、各入力信
号のサンプル時系列毎にそれまでに検出されたピーク周
波数におけるその入力信号のパワースペクトルの平均と
」二記クロススペクトルの平均とを求める手段と、その
得られた入力ピーク周波数のパワースペクトルの平均及
びクロススペクトルの平均から上記被測定物の伝達特性
を演算する手段とを具備する伝達関数測定器。
(1) Means for fast Fourier transforming an input signal supplied to an object to be measured, means for fast Fourier transforming an output signal of the object to be measured, and each of the input signal spectrum and output signal spectrum subjected to the fast Fourier transform. means for multiplying corresponding frequency components to obtain a cross spectrum;
Means for detecting the peak power frequency and its peak value in the converted spectrum of the input signal, and an average of the power spectrum of the input signal at the peak frequencies detected so far for each sample time series of the input signal. and means for calculating the average of the power spectrum of the input peak frequency and the average of the cross spectrum, and means for calculating the transfer characteristic of the object to be measured from the average of the power spectrum of the input peak frequency and the average of the cross spectrum. vessel.
JP16737182A 1982-09-24 1982-09-24 Transfer function measuring instrument Granted JPS5956170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16737182A JPS5956170A (en) 1982-09-24 1982-09-24 Transfer function measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16737182A JPS5956170A (en) 1982-09-24 1982-09-24 Transfer function measuring instrument

Publications (2)

Publication Number Publication Date
JPS5956170A true JPS5956170A (en) 1984-03-31
JPH0339270B2 JPH0339270B2 (en) 1991-06-13

Family

ID=15848468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16737182A Granted JPS5956170A (en) 1982-09-24 1982-09-24 Transfer function measuring instrument

Country Status (1)

Country Link
JP (1) JPS5956170A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2604528A1 (en) * 1986-09-25 1988-04-01 France Etat Method and device for the determination in digital form of the amplitude of the input-output transfer function of a quadripole
US4744041A (en) * 1985-03-04 1988-05-10 International Business Machines Corporation Method for testing DC motors
US4885708A (en) * 1987-11-20 1989-12-05 Advantest Corporation Apparatus and method for measuring frequency response function
JP2005308511A (en) * 2004-04-21 2005-11-04 Agilent Technol Inc Method and apparatus for measuring phase noise
JP2005308509A (en) * 2004-04-21 2005-11-04 Agilent Technol Inc Method and apparatus for measuring phase noise
JP2005308510A (en) * 2004-04-21 2005-11-04 Agilent Technol Inc Apparatus and system for measuring phase noise

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4744041A (en) * 1985-03-04 1988-05-10 International Business Machines Corporation Method for testing DC motors
FR2604528A1 (en) * 1986-09-25 1988-04-01 France Etat Method and device for the determination in digital form of the amplitude of the input-output transfer function of a quadripole
US4885708A (en) * 1987-11-20 1989-12-05 Advantest Corporation Apparatus and method for measuring frequency response function
JP2005308511A (en) * 2004-04-21 2005-11-04 Agilent Technol Inc Method and apparatus for measuring phase noise
JP2005308509A (en) * 2004-04-21 2005-11-04 Agilent Technol Inc Method and apparatus for measuring phase noise
JP2005308510A (en) * 2004-04-21 2005-11-04 Agilent Technol Inc Apparatus and system for measuring phase noise

Also Published As

Publication number Publication date
JPH0339270B2 (en) 1991-06-13

Similar Documents

Publication Publication Date Title
Stenbakken A Wideband Sampling Wattmeter1
US20060004300A1 (en) Multifrequency bioimpedance determination
JPH0750136B2 (en) Frequency measurement method
JPS6071966A (en) Digital spectrum analyzer
JP3234339B2 (en) Power measuring apparatus and method
JPH01143968A (en) Vector ammeter
JPS5956170A (en) Transfer function measuring instrument
Ramos et al. Comparison of frequency estimation algorithms for power quality assessment
US4223345A (en) Method and apparatus for camouflage signature measurement
JP2982612B2 (en) PQ calculation correction method
HU176053B (en) Method and measuring instrument for determining primary yield point measurable in loaded state
JPH029360B2 (en)
SU1157477A1 (en) Digital meter of harmonic factor
JPH06294826A (en) Effective/reactive current measuring method
SU1649566A1 (en) Device of calculation of signal spectrum
SU800965A1 (en) Frequency characteristic analyzer
Field A fast response low-frequency voltmeter
SU720371A1 (en) Method of measuring phase response of attenuator
SU661376A1 (en) Selective voltage meter
JPH0235949B2 (en)
Popov et al. Methods for increasing noise suppression of digital averaging devices based on adaptation of weighting functions to signal frequency and phase
JPH01298916A (en) Digital frequency relay
EP0465476A1 (en) A sampling circuit
SU934210A2 (en) Inclination angle measuring device
RU1780039C (en) Apparatus for measuring coefficient of harmonica