JPH06294826A - Effective/reactive current measuring method - Google Patents

Effective/reactive current measuring method

Info

Publication number
JPH06294826A
JPH06294826A JP5082949A JP8294993A JPH06294826A JP H06294826 A JPH06294826 A JP H06294826A JP 5082949 A JP5082949 A JP 5082949A JP 8294993 A JP8294993 A JP 8294993A JP H06294826 A JPH06294826 A JP H06294826A
Authority
JP
Japan
Prior art keywords
voltage
time
computer
algorithm
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5082949A
Other languages
Japanese (ja)
Inventor
Masami Akatani
正巳 赤谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANKOOSHIYA KK
Sankosha Co Ltd
Original Assignee
SANKOOSHIYA KK
Sankosha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANKOOSHIYA KK, Sankosha Co Ltd filed Critical SANKOOSHIYA KK
Priority to JP5082949A priority Critical patent/JPH06294826A/en
Publication of JPH06294826A publication Critical patent/JPH06294826A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accurately measure effective/reactive currents in a short time by an algorithm for equalizing a product of sampling times and sampling time at the time of reading to an integer-fold of a standard period of a commercial power source wave. CONSTITUTION:An amplifier Amp amplifies a secondary loading end voltage of a current transformer CT by a predetermined gain. This signal wave output Sig is input to an A/D converter of a computer Comp, set to a predetermined voltage by a transformer Tr from a commercial power source S, and a reference signal wave Ref as voltage and phase references is also input to the converter. The Comp discretely reads (samples) both the signals, calculates via a predetermined algorithm when it reads predetermined number, and displays a measured value on a display unit Disp. In order to rapidly measure via the computer, it is necessary to read (sample) the input signal in a necessary minimum shortest time and to accurately calculate a discrete sampled measured value in as short time as possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気配線の対地漏れ電
流や、負荷機器に流れる有効・無効分を計測する方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring an earth leakage current of an electric wiring and an effective / ineffective component flowing in a load device.

【0002】[0002]

【従来の技術】従来から、有効・無効分電流を計測する
方法として、電圧計・電流計・電力計を電線路に接続し
て計測するか、或いは、特開昭61−213676号公
報に開示されている「漏れ電流測定方式」のように、線
路を開かず活線のままで測定する方法が知られている。
2. Description of the Related Art Conventionally, as a method for measuring active / reactive currents, a voltmeter / ammeter / wattmeter is connected to an electric line for measurement, or disclosed in JP-A-61-213676. There is known a method of measuring a live line without opening the line, such as the "leakage current measuring method".

【0003】[0003]

【発明が解決しようとする課題】電圧計・電流計・電力
計を電線路に接続して計測する方法は、活線のままで測
定できず計測に手間及び時間がかかる等の問題があり、
また、上記の特開昭61−213676号公報に記載の
発明は、活線のままで測定ができるが、従来からの市販
のクランプ型電流変成器に若干の改良を要すること、コ
ンピュータ計測のほかに、コンピュータからの制御信号
を出す必要があること、一連の処理に多少の時間を要す
るなどの欠点があった。本発明の目的は、上記の従来の
有効・無効分電流を計測する方法の課題を解決し、有効
・無効電流を短時間に正確に計測処理できる有効・無効
分電流計測法を提供することにある。
The method of measuring by connecting a voltmeter / ammeter / wattmeter to an electric line has a problem that the measurement cannot be performed as a live line and it takes time and time.
In the invention described in the above-mentioned JP-A-61-213676, it is possible to perform measurement as it is with a live wire, but it is necessary to slightly improve a conventional commercially available clamp type current transformer, in addition to computer measurement. In addition, there are drawbacks such as the need to output a control signal from a computer and the series of processings need some time. An object of the present invention is to solve the above problems of the conventional method for measuring active / reactive current, and to provide an active / reactive current measuring method capable of accurately measuring and processing active / reactive current in a short time. is there.

【0004】[0004]

【課題を解決するための手段】本発明は上記の目的を達
成するために、コンピュータ計測処理において、独特の
アルゴリズムをプログラムに適用するとともに、該プロ
グラムを電流変成器・増幅器・参照信号変成器・AD変
換器を含むコンピュータ・計測値表示器に組み込んで本
発明の有効・無効分電流計測法を構成したものである。
In order to achieve the above object, the present invention applies a unique algorithm to a program in computer measurement processing, and the program is applied to a current transformer / amplifier / reference signal transformer / The present invention is incorporated into a computer including an AD converter and a measurement value display to constitute the active / reactive current measuring method of the present invention.

【0005】本発明に適用されるアルゴリズムの内容は
次のとおりである。 (1)電流変成器や増幅器を介した負荷電流の被計測信
号電圧と、商用電圧による参照信号電圧を、コンピュー
タのAD変換器の各ポートに入力してコンピュータで読
み込み、負荷電流のベクトル値を計測するシステムによ
り、読み込み時のサンプル数Nとサンプル時間tの積
が、商用電源波の標準周期Tの整数倍に等しくなるよう
に各定数を設定するアルゴリズム。
The contents of the algorithm applied to the present invention are as follows. (1) Input the measured signal voltage of the load current through the current transformer or amplifier and the reference signal voltage of the commercial voltage to each port of the AD converter of the computer and read it by the computer to obtain the vector value of the load current. An algorithm that sets each constant such that the product of the number of samples N at the time of reading and the sample time t is equal to an integral multiple of the standard period T of the commercial power wave, depending on the measuring system.

【0006】(2)上記のコンピュータの計算処理にお
いて、三角関数における加法定理及び座標軸回転の関係
式を利用して、商用電圧による参照信号電圧の位相と、
商用電圧波との位相差を求め、被測定電流の位相を基準
複素平面座標上に求めるアルゴリズム。
(2) In the calculation processing of the above computer, the phase of the reference signal voltage by the commercial voltage is utilized by using the addition theorem in the trigonometric function and the relational expression of the coordinate axis rotation,
An algorithm that finds the phase difference from the commercial voltage wave and finds the phase of the measured current on the reference complex plane coordinates.

【0007】[0007]

【作用】本発明は、前記のアルゴリズムを基に作成した
コンピュータのプログラムを使用して、被測定電流の有
効・無効分電流を計測処理するものである。本発明にお
いては、各信号電圧の読み込み時間が極力短くなり、ま
た位相差を求めるために各角度計算をするに必要な三角
関数の級数展開が不要になるので、計算処理時間の格段
の節約が図れる。
According to the present invention, the active / reactive current of the current to be measured is measured and processed by using the computer program created based on the above algorithm. In the present invention, the reading time of each signal voltage is shortened as much as possible, and the series expansion of the trigonometric function necessary for calculating each angle for obtaining the phase difference is not necessary, so that the calculation processing time is significantly saved. Can be achieved.

【0008】[0008]

【実施例】以下に、図面とともに本発明の実施例につい
て説明するが、本発明の趣旨を越えない限り何ら本実施
例に限定されるものではない。
EXAMPLES Examples of the present invention will be described below with reference to the drawings, but the present invention is not limited to these examples without departing from the gist of the present invention.

【0009】図1は本発明を構成するハードシステムで
ある。図1において、CTは電流変成器、Ampは、電
流変成器CTの二次負担端電圧を所定の利得に増幅する
増幅器である。この信号波出力Sigは、コンピュータ
CompのAD変換器のCH1に入力される。商用電源
SからはトランスTrにより、所定の電圧に設定され、
電圧および位相の基準としての参照信号波RefがAD
変換器のCH2に入力される。コンピュータCompで
は、両信号を離散的(サンプリング)に読み込み、所定
数を読み込めば、所定のアルゴリズムにより計算処理し
て、計測値を表示器Dispに表示する。
FIG. 1 shows a hardware system constituting the present invention. In FIG. 1, CT is a current transformer, and Amp is an amplifier that amplifies the secondary load end voltage of the current transformer CT to a predetermined gain. This signal wave output Sig is input to CH1 of the AD converter of the computer Comp. From the commercial power source S, a transformer Tr sets a predetermined voltage,
Reference signal wave Ref as a reference of voltage and phase is AD
Input to CH2 of the converter. In the computer Comp, both signals are read discretely (sampling), and if a predetermined number is read, calculation processing is performed by a predetermined algorithm and the measured value is displayed on the display device Disp.

【0010】本計測の目的は、この構成システムにおい
て、電流変成器CTの一次線に流れる電流のベクトル値
を測定することである。計測器として必要なことは、ハ
ードの構成ができるだけ簡素なこと、手軽に扱えるこ
と、スピーディーに計測値を表示することである。
The purpose of this measurement is to measure the vector value of the current flowing through the primary line of the current transformer CT in this system. What is needed as a measuring instrument is that the hardware configuration is as simple as possible, that it can be handled easily, and that measured values can be displayed quickly.

【0011】スピーディーにコンピュータ計測処理をす
るためには、入力信号を必要最小限の短時間にサンプリ
ング読み込みができることと、離散的サンプル計測値
を、極力短時間に正確に計算処理できることである。こ
の二点を満足させる有効・無効分電流計測法について説
明する。
In order to speedily perform the computer measurement process, the input signal can be sampled and read in the minimum necessary short time, and the discrete sample measurement value can be accurately calculated in the shortest possible time. An effective / reactive current measuring method that satisfies these two points will be described.

【0012】先ず、特許請求の範囲の請求項1に記載さ
れている有効・無効分電流計測法について説明する。一
般に時間的に波高値が変動する電圧(あるいは電流)に
おいて、特定の周波数の振幅および位相をコンピュータ
で計算する数理手法として、DFT(離散フーリエ変
換)さらにはFFT(高速フーリエ変換)のアルゴリズ
ムがある。一方商用電源はその実効値・周波数とも、標
準値を中心にしてたえず変動している。従って商用波の
スペクトル解析にも、普通上記のFFTのアルゴリズム
が適用される。
First, the effective / reactive current measuring method described in claim 1 will be described. Generally, there is a DFT (discrete Fourier transform) algorithm or an FFT (fast Fourier transform) algorithm as a mathematical method for calculating the amplitude and phase of a specific frequency by a computer in a voltage (or current) whose peak value fluctuates with time. . On the other hand, the commercial power supply is constantly fluctuating in its effective value and frequency around the standard value. Therefore, the above FFT algorithm is usually applied to the spectrum analysis of commercial waves.

【0013】ところで、商用波の周波数変動は標準値を
中心にして、10Sec当たり0.1Hz程度である。
この状態でコンピュータの読み込みが、商用波周期の数
倍程度と短い時間内であれば、定常波とみなして計算処
理しても誤差が実用上許容できることが分かった。定常
波の離散フーリエ解析の関係式は、次式で示される。
By the way, the frequency fluctuation of the commercial wave is about 0.1 Hz per 10 Sec, centering on the standard value.
In this state, if the reading of the computer is within a short time of several times the commercial wave period, it is found that the error is practically allowable even if it is regarded as a standing wave and is calculated. The relational expression of the discrete Fourier analysis of the standing wave is shown by the following expression.

【0014】[0014]

【数1】 [Equation 1]

【0015】この場合、サンプリング数NがN≒∞なら
ば、全次数のスペクトルが正確に計算される。しかし、
この場合は、商用波の基本波のスペクトル計算処理で
も、AD変換器の特性上長時間サンプルすることが必要
であり、実用的ではない。ここでサンプルk=N番目に
おけるxk=N と、サンプルk=0におけるxk =0のXη
に着目し、この間の波形のエンベロープが周期的である
ならば、サンプリング数が少ないNでもってしてもXη
が正確に求まることになる。これは、少ないNになるよ
うなサンプリング時間△tを選べばよいことになる。
In this case, if the sampling number N is N≈∞, the spectrum of all orders is accurately calculated. But,
In this case, even in the spectrum calculation process of the fundamental wave of the commercial wave, it is necessary to sample for a long time due to the characteristics of the AD converter, which is not practical. Here, x k = N at the sample k = N, and Xη at the sample k = 0 at x k = 0
If the envelope of the waveform during this period is periodic, X η
Will be accurately determined. This means that the sampling time Δt may be selected so that the number N is small.

【0016】この実際例を図2に示す。なお、図2にお
いて、丸付きドットは被測定信号(CH1)を表し、ド
ット(・)は参照信号(CH2)を表す。図2は、商用
波60Hzの1/7の周波数の波の第7次(即ち、商用
周波数)がk=0とk=N=90のとき等しい振幅にな
っていることがわかる。この関係を一般式で示せば、次
ぎのとおりである。 N×△t=n・T 但し、N :サンプル数 △t:サンプル時間 T :商用波の標準周期 n :整数。
An actual example of this is shown in FIG. In FIG. 2, circled dots represent the signal under measurement (CH1), and dots (•) represent the reference signal (CH2). It can be seen from FIG. 2 that the amplitude of the 7th order (that is, the commercial frequency) of the wave having a frequency of 1/7 of 60 Hz of the commercial wave is equal when k = 0 and k = N = 90. If this relation is shown by a general formula, it is as follows. N × Δt = n · T where N: number of samples Δt: sample time T: standard period of commercial wave n: integer.

【0017】次に、特許請求の範囲の請求項2に記載さ
れている有効・無効分電流計測法について説明する。前
述では、「読み込み時のサンプル数Nとサンプル時間t
の積が、商用電源波の標準周期Tの整数倍に等しくなる
ように各定数を設定したアルゴリズム」により読み込ん
だ各サンプル(Xη)は、図2に示されることを述べ
た。そこでこの各XηをCOS変換し、また、SIN変
換すると、このときの観測時の(見かけの)入力信号電
圧の実数分および虚数分が得られ、それぞれの二乗和の
平方根が、入力信号電圧の振幅値となる。数式で記述す
れば、つぎの通りである。
Next, the effective / reactive current measuring method described in claim 2 will be described. In the above, "the number of samples N at the time of reading and the sample time t
It has been stated that each sample (X η) read by the “algorithm in which each constant is set so that the product of is equal to an integral multiple of the standard period T of the commercial power wave” is shown in FIG. Then, when each of these Xη is subjected to COS conversion and SIN conversion, the real and imaginary parts of the (apparent) input signal voltage at the time of observation at this time are obtained, and the square root of each sum of squares of the input signal voltage is obtained. Amplitude value. The following is a mathematical description.

【0018】[0018]

【数2】 [Equation 2]

【0019】また、この入力信号は、負荷電流から作ら
れた被計測信号分と、電源電圧から作られた参照信号R
ef分の二種類であることは、前述したとおりである。
ところで参照信号電圧は、通常電源ライン電圧と同相で
はない。そのため、参照信号電圧の絶対位相(電源ライ
ン電圧を0度とした位相)を、前もって標準ライン電圧
と同相の電流により知っておく必要がある。この補正角
度をβとしておく(このβには、AD変換のCH1〜C
H2間の信号電圧読み取り時間差も含まれる)。
Further, this input signal is the measured signal component made up of the load current and the reference signal R made up of the power supply voltage.
As described above, there are two types of ef.
The reference signal voltage is not normally in phase with the power supply line voltage. Therefore, it is necessary to know in advance the absolute phase of the reference signal voltage (the phase where the power supply line voltage is 0 degree) from the current in phase with the standard line voltage. This correction angle is set to β (in this β, CH1 to C of AD conversion are
The signal voltage reading time difference between H2 is also included).

【0020】そこで、被計測信号電圧の絶対位相を求め
る通常の考え方を数式で記述する。 見かけの被計測信号電圧の位相:φa φa =tan-1(AXηs/AXηc) 但し、AXηs:被計測信号電圧のcos変換値 AXηc:被計測信号電圧のsin変換値 見かけの参照信号電圧の位相:φb φb =tan-1(BXηs/BXηc) 但し、BXηc:参照信号電圧のcos変換値 BXηs:参照信号電圧のsin変換値 絶対位相への補正角度:β 但し、参照信号電圧の絶対位相は進みとする。 被計測電流の絶対位相:Φa Φa =φa −φb +β この数式には、三角関数(この場合tan-1)の計算
が、その都度必要になる。コンピュータで演算する場合
には、級数に展開して計算をさせるので、演算処理時間
が極めて長くかかる欠点がある。この欠点を排除するた
めに考案したアルゴリズムが、次に説明する「三角関数
における加法定理および座標軸回転の関係式」を基本に
した数理内容に基づくものである。
Therefore, the usual way of finding the absolute phase of the signal voltage to be measured will be described by mathematical expressions. Apparent measured signal voltage phase: φ a φ a = tan −1 (AXηs / AXηc) where AXηs: cos converted value of measured signal voltage AXηc: sin converted value of measured signal voltage Apparent reference signal voltage Phase: φ b φ b = tan −1 (BXηs / BXηc) where BXηc: reference signal voltage cos conversion value BXηs: reference signal voltage sin conversion value Absolute phase correction angle: β However, reference signal voltage absolute The phase is advanced. Absolute phase of the measured current: The Φ a Φ a = φ a -φ b + β In this equation, the calculation of trigonometric functions (in this case tan -1), is required each time. In the case of calculation by a computer, there is a drawback that the calculation processing time is extremely long because the calculation is performed by expanding the series. An algorithm devised to eliminate this drawback is based on mathematical contents based on "additive theorem in trigonometric function and relational expression of coordinate axis rotation" described below.

【0021】図3は本数理を説明するための座標とベク
トル関係図である。先ず図3における記号の説明をする
と、 座標軸X,Y:ライン電圧をX軸にとった複素平面座標 座標軸x,y:観測時の座標 Ref:電源ライン電圧と比例した(例えば3%V)電
圧で、かつ、固有の位相差をもつパラメータ的参照信号
値 I0 :電源ライン電圧と同相で、電源電圧が標準値の
とき、標準の電流値(例えば3mA)である校正用信号
値 Sig:被計測信号値 β :電源電圧とRefの位相差 α :観測時のRefの見かけ上の位相 θ :θ=α−β 図3におけるベクトル相互の関係を展開すると、 (加法定理により) cosθ=cos(α−β)=cosα・cosβ+s
inα・sinβ sinθ=sin(α−β)=sinα・cosβ−c
osα・sinβ ここで、cosβ,sinβは、βが、ハード系により
元から決まっている固有値であるから、cosβ,si
nβも固有値である。
FIG. 3 is a coordinate and vector relationship diagram for explaining the mathematical theory. First, the symbols in FIG. 3 are explained: coordinate axes X, Y: complex plane coordinates with the line voltage taken as the X axis coordinate axes x, y: coordinates during observation Ref: voltage proportional to the power supply line voltage (for example, 3% V) , And a reference signal value I 0 having a specific phase difference: a calibration signal value S 0 : a standard current value (for example, 3 mA) when the power supply line voltage is in phase and the power supply voltage is a standard value. Measurement signal value β: Phase difference between power supply voltage and Ref α: Apparent phase of Ref at the time of observation θ: θ = α−β Expanding the mutual relationship of the vectors in FIG. 3, (by the addition theorem) cos θ = cos ( α-β) = cos α · cos β + s
in α · sin β sin θ = sin (α−β) = sin α · cos β-c
osα · sinβ where cosβ and sinβ are cosβ and si because β is an eigenvalue that is originally determined by the hardware system.
nβ is also an eigenvalue.

【0022】 cosα=BC/(BC2 +BS2 1/2 ≡CA sinα=BS/(BC2 +BS2 1/2 ≡SA 但し、BC:観測時座標において、Refのcos分の
スカラ値 BS:観測時座標において、Refのsin分のスカラ
値 また、座標軸回転の関係式により、P点(被計測信号値
sigと同じ)の座標を、観測時の座標xp , p から
絶対座標Xp , p に変換すると、 Xp =xp ・cosθ+yp .sinθ=XAC Yp =−xp ・sinθ+yp .cosθ=YAS 前式の加法定理の式を入れて、整理すると、 Xp =(xp ・cosα+yp .sinα)・cosβ
+(xp ・sinα−yp .cosα)・sinβ Yp =(−xp ・sinα+yp .cosα)・cos
β+(xp ・cosα+yp ・sinα)・sinβ ここで、Refの標準電圧を3Vに設定した場合、X
p , p を規準化する。
Cos α = BC / (BC 2 + BS 2 ) 1/2 ≡CA sin α = BS / (BC 2 + BS 2 ) 1/2 ≡SA However, BC is a scalar value BS of cos of Ref at the time of observation. : Scalar value of sin of Ref at the time of observation. Also, the coordinate of the point P (same as the measured signal value sig) is calculated from the coordinates x p, y p at the time of observation to the absolute coordinate X by the relational expression of the coordinate axis rotation. When converted into p and Y p , X p = x p · cos θ + y p . sin θ = XAC Y p = −x p · sin θ + y p . cos θ = YAS When the formula of the addition theorem of the previous formula is put and arranged, X p = (x p · cos α + y p .sin α) · cos β
+ (X p · sin α−y p .cos α) · sin β Y p = (− x p · sin α + y p .cos α) · cos
β + (x p · cos α + y p · sin α) · sin β Here, when the standard voltage of Ref is set to 3 V, X
Normalize p and Y p .

【0023】これをXAR,YAXとすると、 XAR=3/(BC2 +BS2 1/2 ・Xp =3・XA
C・CA/BC YAX=3/(BC2 +BS2 1/2 ・Yp =3・YA
S・SA/BS 即ち、規準化された被計測信号値を求める演算課程で
は、すべて三角関数値を計算する必要がないから、コン
ピュータ演算処理の時間が大巾に短縮できる。
Assuming that these are XAR and YAX, XAR = 3 / (BC 2 + BS 2 ) 1/2 · X p = 3 · XA
C ・ CA / BC YAX = 3 / (BC 2 + BS 2 ) 1/2・ Y p = 3 ・ YA
S · SA / BS, that is, in the calculation process for obtaining the standardized measured signal value, it is not necessary to calculate all trigonometric function values, so that the time for computer calculation processing can be greatly shortened.

【0024】本発明で使用されているアルゴリズムを適
用したコンピュータプログラムの例として、ベーシック
で記述したものを以下に示す。 10 REM"IA" 20 CLEAR ,&H1FE0:DEF SEG=&H1FE0 30 BLOAD "AD.BIN":ADCON=0 40 DIM A(100),B(100) 50 FOR N=0 TO 89 60 AD%=0 70 CALL ADCON(AD%) 80 AE%=1 90 CALL ADCON(AE%) 100 A(N)=AD% 110 B(N)=AE% 120 NEXT N 130 DIM C(100),S(100) 140 FOR N=0 TO 89 150 C(N)=COS(.48869219#*N) 160 S(N)=-SIN(.48869219#*N) 170 NEXT N 180 FOR N=0 TO 89 190 AC=AC+(((A(N)/4096*10)-5)*C(N)) 200 AS=AS+(((A(N)/4096*10)-5)*S(N)) 210 BC=BC+(((B(N)/4096*10)-5)*C(N)) 220 BS=BS+(((B(N)/4096*10)-5)*S(N)) 230 NEXT N 240 VA=2/90*SQR(1/2)*SQR(AC*AC+AS*AS) 250 VB=2/90*SQR(1/2)*SQR(BC*BC+BS*BS) 260 IAO=(VA/VB)*3 270 CA=BC/SQR(BC*BC+BS*BS) 280 SA=BS/SQR(BC*BC+BS*BS) 290 XAC=(AC*CA+AS*SA)*.993560226#+(AC*SA-AS*CA)*.1
13305236#300 YAS=(−AC*SA+AS*C
A)*.993560226#+(AC*CA+AS*
SA)*.113305236# 310 XAR=3*XAC*CA/BC 320 XAX=3*YAS*SA/BS 330 PHD=(ATN(XAX/XAR)/6.2
83185307#)*360 340 LPRINT ”AC=”AC,”AS=”A
S,”BC=”BC,”BS=”BS 350 LPRINT 360 LPRINT
”:::::::::::::::::::::::
:::” 370 LPRINT ”VA=”VA,”VB=”V
B 380 LPRINT 390 LPRINT ”!!!!!!!!!!!!!
!!!!!!!!!!!!!” 400 LPRINT ”IAO=”IAO,,”XA
R=”XAR,”XAX=”XAX 410 LPRINT 420 LPRINT ”$$$$$$$$$$$$$
$$$$$$$$$$$$$” 430 LPRINT ”PHD=”PHD 440 END 上記において、行番号50〜120行は被計測信号電圧
および参照信号電圧の90回サンプリング読み込みであ
る。140〜170行はCOS変換およびSIN変換用
テーブルの作成であり、150,160行の0.488
69219は2π・η/N=2π×7/90である。1
90〜220行はフーリエ変換である。
As an example of a computer program to which the algorithm used in the present invention is applied, a basic program described below is shown. 10 REM "IA" 20 CLEAR, & H1FE0: DEF SEG = & H1FE0 30 BLOAD "AD.BIN": ADCON = 0 40 DIM A (100), B (100) 50 FOR N = 0 TO 89 60 AD% = 0 70 CALL ADCON (AD%) 80 AE% = 1 90 CALL ADCON (AE%) 100 A (N) = AD% 110 B (N) = AE% 120 NEXT N 130 DIM C (100), S (100) 140 FOR N = 0 TO 89 150 C (N) = COS (.48869219 # * N) 160 S (N) =-SIN (.48869219 # * N) 170 NEXT N 180 FOR N = 0 TO 89 190 AC = AC + ((( A (N) / 4096 * 10) -5) * C (N)) 200 AS = AS + (((A (N) / 4096 * 10) -5) * S (N)) 210 BC = BC + ((( B (N) / 4096 * 10) -5) * C (N)) 220 BS = BS + (((B (N) / 4096 * 10) -5) * S (N)) 230 NEXT N 240 VA = 2 / 90 * SQR (1/2) * SQR (AC * AC + AS * AS) 250 VB = 2/90 * SQR (1/2) * SQR (BC * BC + BS * BS) 260 IAO = (VA / VB) * 3 270 CA = BC / SQR (BC * BC + BS * BS) 280 SA = BS / SQR (BC * BC + BS * BS) 290 XAC = (AC * CA + AS * SA) *. 993560226 # + (AC * SA-AS * CA) *. 1
13305236 # 300 YAS = (-AC * SA + AS * C
A) *. 9935602226 # + (AC * CA + AS *
SA) *. 113305236 # 310 XAR = 3 * XAC * CA / BC 320 XAX = 3 * YAS * SA / BS 330 PHD = (ATN (XAX / XAR) /6.2
83185307 #) * 360 340 LPRINT “AC =” AC, “AS =” A
S, "BC =" BC, "BS =" BS 350 LPRINT 360 LPRINT
”::::::::::::::::::::::::
::: "370 LPRINT" VA = "VA," VB = "V
B 380 LPRINT 390 LPRINT ”!!!!!!!!!!!!!!!
!! !! !! !! !! !! !! !! !! !! !! !! !! "400 LPRINT" IAO = "IAO ,," XA
R = “XAR,” XAX = ”XAX 410 LPRINT 420 LPRINT” $$$$$$$$$$$$$
$$$$$$$$$$$$$ "430 LPRINT" PHD = "PHD 440 END In the above, line numbers 50 to 120 are 90-time sampling readings of the measured signal voltage and the reference signal voltage. ~ 170 lines are the creation of COS conversion and SIN conversion tables, and 0.488 of 150,160 lines.
69219 is 2π · η / N = 2π × 7/90. 1
Lines 90 to 220 are Fourier transforms.

【0025】240〜320行が上記の「課題を解決す
るための手段」の項に記載した(2)に関するアルゴリ
ズムであり、290,300行にある定数(0.993
560226および0.113305236)は本ハー
ドで決まるCOSβ,SINβである。
Lines 240 to 320 are the algorithm relating to (2) described in the above-mentioned "Means for solving the problem", and the constants (0.993) in lines 290 and 300.
560226 and 0.113305236) are COSβ and SINβ determined by this hardware.

【0026】図4は、上記のプログラムを用いて計測処
理した試験成績結果を示したものであり、図5はその測
定回路である。この結果から、Ir:Icが1:20程
度までであれば僅かな誤差であり、十分実用に供しうる
ことがわかる。なお計測処理時間は1秒以内である。
FIG. 4 shows the results of the test results measured by the above program, and FIG. 5 shows the measurement circuit. From this result, it can be seen that if Ir: Ic is up to about 1:20, it is a slight error and can be sufficiently put to practical use. The measurement processing time is within 1 second.

【0027】[0027]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。
Since the present invention is constructed as described above, it has the following effects.

【0028】コンピュータプログラムに所定のアルゴリ
ズムを適用したために、必要最小限度のハードの構成に
より、商用波の有効・無効電流分を短時間に正確に計測
処理することができる。
Since the predetermined algorithm is applied to the computer program, the effective and reactive current components of the commercial wave can be accurately measured in a short time with the minimum necessary hardware configuration.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明を構成するハードシステムであ
る。
FIG. 1 is a hardware system constituting the present invention.

【図2】図2は本発明の各定数の関係を現実の波形で示
した例である。
FIG. 2 is an example showing the relationship of each constant of the present invention with an actual waveform.

【図3】図3は本発明の理論を説明するための各信号波
のベクトル図である。
FIG. 3 is a vector diagram of each signal wave for explaining the theory of the present invention.

【図4】図4は本発明の全システムを適用した試験成績
結果の一例である。
FIG. 4 is an example of test result results in which the entire system of the present invention is applied.

【図5】図5は図4の試験のための測定回路である。FIG. 5 is a measurement circuit for the test of FIG.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電流変成器や増幅器を介した負荷電流の被
計測信号電圧と、商用電圧による参照信号電圧を、コン
ピュータのAD変換器の各ポートに入力してコンピュー
タで読み込み、負荷電流のベクトル値を計測するシステ
ムにより、読み込み時のサンプル数Nとサンプル時間△
tの積が、商用電源波の標準周期Tの整数倍に等しくな
るように各定数を設定したアルゴリズムをコンピュータ
のプログラムに適用した有効・無効分電流計測法。
1. A vector of a load current, which is obtained by inputting a measured signal voltage of a load current through a current transformer or an amplifier and a reference signal voltage of a commercial voltage to each port of an AD converter of the computer and reading it by the computer. Depending on the system that measures the value, the number of samples N and sample time during reading △
An effective / reactive current measuring method in which an algorithm in which each constant is set so that the product of t becomes equal to an integral multiple of the standard period T of the commercial power wave is applied to a computer program.
【請求項2】三角関数における加法定理および座標軸回
転の関係式を利用して、商用電圧による参照信号電圧の
位相と、商用電圧波との位相差を求め、被測定電流の位
相を基準複素平面座標上に求めるアルゴリズムをコンピ
ュータのプログラムに適用した特許請求の範囲の請求項
1に記載の有効・無効分電流計測法。
2. A phase difference between a reference signal voltage due to a commercial voltage and a commercial voltage wave is obtained by using an addition theorem in a trigonometric function and a relational expression of coordinate axis rotation, and the phase of a measured current is used as a reference complex plane. The active / reactive current measuring method according to claim 1, wherein the algorithm obtained on the coordinates is applied to a computer program.
JP5082949A 1993-04-09 1993-04-09 Effective/reactive current measuring method Pending JPH06294826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5082949A JPH06294826A (en) 1993-04-09 1993-04-09 Effective/reactive current measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5082949A JPH06294826A (en) 1993-04-09 1993-04-09 Effective/reactive current measuring method

Publications (1)

Publication Number Publication Date
JPH06294826A true JPH06294826A (en) 1994-10-21

Family

ID=13788477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5082949A Pending JPH06294826A (en) 1993-04-09 1993-04-09 Effective/reactive current measuring method

Country Status (1)

Country Link
JP (1) JPH06294826A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2455491A (en) * 2007-10-02 2009-06-17 Deepstream Technologies Ltd Real current circuit protection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2455491A (en) * 2007-10-02 2009-06-17 Deepstream Technologies Ltd Real current circuit protection device

Similar Documents

Publication Publication Date Title
US7298128B2 (en) Method of detecting RF powder delivered to a load and complex impedance of the load
Chang et al. Measuring power system harmonics and interharmonics by an improved fast Fourier transform-based algorithm
Ferrero et al. A calibration procedure for a digital instrument for electric power quality measurement
CN108318852B (en) Square wave influence test method for intelligent electric energy meter
JPH08278333A (en) Generation device of signal expressing full-harmonic distortion of ac waveform
Cataliotti et al. Characterization and error compensation of a Rogowski coil in the presence of harmonics
US6944569B2 (en) Method and apparatus for generating an electronic test signal
Cataliotti et al. A virtual instrument for the measurement of IEEE Std. 1459-2000 power quantities
CN111505563B (en) Comprehensive error testing method for electric energy meter
EP2397864A1 (en) Electricity meter and method for determining a quantity
EP3051709B1 (en) De-embedding cable effect for waveform monitoring for arbitrary waveform and function generator
US20180106842A1 (en) Impedance Measurement through Waveform Monitoring
Ferrero et al. On the selection of the" best" test waveform for calibrating electrical instruments under nonsinusoidal conditions
JPH06294826A (en) Effective/reactive current measuring method
Aiello et al. A PC-based instrument for harmonics and interharmonics measurement in power supply systems
KR940002720B1 (en) Method and equipment for calibrating output levels of wave form analyzing apparatus
Oldham et al. Low-voltage standards in the 10 Hz to 1 MHz range
EP3942308B1 (en) Validating fundamental-only energy measurement
Georgakopoulos Uncertainties in the measurement of AC voltage using a programmable Josephson voltage standard and a phase-sensitive null detector
JPH0339270B2 (en)
Svensson Verification of a calibration system for power quality instruments
Arseneau et al. Comparison of nonsinusoidal calibration systems at NRC Canada and SP Sweden
Goswami et al. Power components measurement using S-ADALINE
Bergsten et al. An electrical power reference system up to 1 MHz
Gubisch et al. Power calibrator using sampled feedback for current and voltage