JPS5956067A - Zeolite ice-making refrigeration plant utilizing solar heat - Google Patents

Zeolite ice-making refrigeration plant utilizing solar heat

Info

Publication number
JPS5956067A
JPS5956067A JP57164771A JP16477182A JPS5956067A JP S5956067 A JPS5956067 A JP S5956067A JP 57164771 A JP57164771 A JP 57164771A JP 16477182 A JP16477182 A JP 16477182A JP S5956067 A JPS5956067 A JP S5956067A
Authority
JP
Japan
Prior art keywords
zeolite
heat
ice
making
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57164771A
Other languages
Japanese (ja)
Inventor
和夫 松本
大隅 正人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP57164771A priority Critical patent/JPS5956067A/en
Publication of JPS5956067A publication Critical patent/JPS5956067A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は太陽熱利用のゼオライト製氷冷蔵装置に関す
る。さらに詳しくは、この発明はヒートバイブ集熱器に
よるゼオライト充填部門のゼオライト加熱時に、ゼオラ
イトから冷却用ヒートノでイブを通して起る熱の損失を
防止し、再生吸着時のゼオライトの水分吸着量を多くし
て庫内の製氷冷蔵能力を回」二した太陽熱利用のゼオラ
イト製氷冷蔵装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a zeolite ice-making and refrigeration device that utilizes solar heat. More specifically, this invention prevents the loss of heat that occurs from the zeolite through the cooling heat tube when heating the zeolite in the zeolite filling section using a heat vib heat collector, and increases the amount of moisture adsorbed by the zeolite during regeneration adsorption. This invention relates to a zeolite ice-making and refrigeration device that utilizes solar heat and which can regenerate the ice-making and refrigeration capacity inside the refrigerator.

・第1図(a)は従来の太陽熱利用のゼオライ)Iff
氷冷蔵装置/、 (1,aJの再生時を示したもので、
ゼオライトを充填した集熱器(2a)に太陽(S)の光
が当るとゼオライトは約110°Cに加熱され、ゼオラ
イ、トに吸着されていた水分を蒸発する。蒸発した水分
は配管(3a)を通って凝縮器(4a)に移動し、ここ
で熱を放出して凝縮され、配管(3b)の管壁を伝わっ
て冷蔵庫(6a)内の蒸発器(5a)に溜められる。配
管(3a)、(3bJで接続された集熱器(2a)、凝
縮器(4a)および蒸発器(5a)は、内部の水分の蒸
気圧が5〜50 trr I−Tgに変化し、ゼオライ
トが約110°Cに加熱される上記再生時の蒸発した水
分の蒸気圧は丁度50 v−mI’Ey程度である。日
中ある程度以上の日射があると、ゼオライトからの水分
の蒸発は継続され、凝縮器(4a)で凝縮した水分は蒸
発器(5a)に溜りつづける。
・Figure 1 (a) shows the conventional solar heat utilization zeolite) Iff
Ice refrigerator/, (1, This shows the time of regeneration of aJ,
When sunlight (S) hits the heat collector (2a) filled with zeolite, the zeolite is heated to about 110°C, and the water adsorbed on the zeolite is evaporated. The evaporated water passes through the pipe (3a) and moves to the condenser (4a), where it emits heat and is condensed. ). The heat collector (2a), condenser (4a), and evaporator (5a) connected by pipes (3a), (3bJ) change the vapor pressure of the internal moisture to 5 to 50 trr I-Tg, and the zeolite The vapor pressure of the evaporated water during the above-mentioned regeneration, in which the zeolite is heated to about 110°C, is just about 50 v-mI'Ey.When there is solar radiation above a certain level during the day, the evaporation of water from the zeolite continues. The moisture condensed in the condenser (4a) continues to accumulate in the evaporator (5a).

夜になって日射がなくなり温度が下ると、第1FJ (
b)に示すように、集熱器(2a)は表面より対流。
At night, when there is no sunlight and the temperature drops, the 1st FJ (
As shown in b), convection flows from the surface of the heat collector (2a).

輻射によって熱を失い、配管(3a)、(3b)で接続
された系全体が外気温度と同イタ度まで冷却されて内部
の水蒸気圧力は5 mtnl■y程度と低(なる。この
ため、昼間に蒸発器(5a)番こ溜められていた水が蒸
発し、その水蒸気は配管(3b)から(3a)を経て集
熱器(28]内に上昇し、日中の水分の蒸発により吸湿
79’の低い状態にあるゼオライトに吸着される。蒸発
器(5a)内の水は蒸発するとき、残りの水および冷蔵
庫(6a)内から気化熱を奪い製氷、冷蔵を行う。この
再生、吸着過程のゼオライトの吸湿能力は、第3図の一
点鎖線で示す如(なる。
Heat is lost by radiation, and the entire system connected by pipes (3a) and (3b) is cooled down to the same temperature as the outside air, and the internal water vapor pressure is as low as 5 mtnl■y. The water stored in the evaporator (5a) evaporates, and the water vapor rises from the pipe (3b) through (3a) into the heat collector (28), absorbing moisture due to evaporation during the day. When the water in the evaporator (5a) evaporates, it absorbs the heat of vaporization from the remaining water and the refrigerator (6a) to perform ice making and refrigeration.This regeneration and adsorption process The moisture absorption ability of the zeolite is as shown by the dashed line in FIG.

しかし、上記のように集熱器(2a)の表面から直接ゼ
オライトを加熱する構成では、ゼオライトの加熱効率が
恕く、再生時のゼオライトの温度上昇が低いため、再生
吸着時の水分吸着量の差が小さくゼオライト製氷冷蔵装
gの能力を十分に大きくすることができない欠点があっ
た。
However, in the configuration in which the zeolite is heated directly from the surface of the heat collector (2a) as described above, the heating efficiency of the zeolite is poor and the temperature rise of the zeolite during regeneration is low, so the amount of water adsorption during regeneration adsorption is reduced. There was a drawback that the difference was small and the capacity of the zeolite ice making/refrigeration system could not be sufficiently increased.

この発明は上記欠点を改良することができるゼオライト
製氷冷蔵装置の提供を目的とするものである。
The object of the present invention is to provide a zeolite ice-making and refrigeration device that can improve the above-mentioned drawbacks.

この発明の実施例を第2図および第3図について詳述す
る。なお、これによってこの発明か限定を受番ブるもの
ではない。
An embodiment of the invention will be described in detail with reference to FIGS. 2 and 3. Note that this does not override the invention or its limitations.

第2図において、太陽熱利用のゼオライト製氷冷蔵装置
(1)は、真空ガラス管形ヒートパイプ集熱器(7)、
ゼオライト充填筒(2)、冷却用ヒートパイプ、flL
 凝縮器(4)、冷蔵庫(6)内に設置される蒸発器(
5)およびゼオライト充填筒(2)を凝縮器(4)を経
て蒸発器(5)に接続する配管(3)から構成されてい
る。
In Fig. 2, a zeolite ice making/refrigeration system using solar heat (1) includes a vacuum glass tube heat pipe collector (7),
Zeolite filling cylinder (2), cooling heat pipe, flL
Condenser (4), evaporator installed inside the refrigerator (6)
5) and a pipe (3) that connects the zeolite-filled cylinder (2) to the evaporator (5) via the condenser (4).

ヒートパイプ集熱器(7)には、蒸発部(8)が内蔵さ
イル1管外に出ている凝縮部(9)は、ゼオライト充填
筒(2)に収納されているゼオライ)(2A)に蒸発部
(8)より若干高く位置するように数句けられていて、
太陽(S)からの日射溝がある値以」二あるとき、ヒー
トパイプ集熱器(7)は集熱作用によって蒸発部(8)
内の熱媒を蒸発して凝縮819)の方へ移動し、周囲を
取囲んでいるゼオライ)(2AJに熱を与えゼオライト
C2k)に吸着されている水分を蒸発分離するとともに
、自身は凝縮されて重力番こより壁面に沿って再び蒸発
部(8)に戻されゼAライ1−(2AJの加熱を継続す
る。このようにヒー ドパイブ集熱器(7)として真空
ガラス管形を用い、ゼオライト(2A)内に差し込すれ
た凝縮部(9)でゼオライト(2人)を加熱するため、
再生時の条件を1.50°C、50tr−m11gまで
改善することができる。
The heat pipe heat collector (7) has an evaporating part (8) built in. The condensing part (9) that comes out of the tube is a zeolite (2A) housed in the zeolite filled cylinder (2). It is marked several times so that it is located slightly higher than the evaporation part (8),
When the solar radiation groove from the sun (S) is more than a certain value, the heat pipe collector (7) will cause the evaporation part (8) to
It evaporates the heat medium inside and moves toward condensation 819), gives heat to the surrounding zeolite (2AJ), evaporates and separates the water adsorbed on the zeolite C2k, and condenses itself. The zeolite is then returned to the evaporation section (8) along the wall surface by gravity and continues to heat the zeolite 1-(2AJ). In order to heat the zeolite (2 people) in the condensing part (9) inserted into (2A),
The regeneration conditions can be improved to 1.50°C and 50tr-ml11g.

夜になって日射がな(なった場合のゼオライト充填筒(
2)の冷却は、放熱部(11)と蒸発部0乃からなり途
中に?!電磁弁131を設けられた冷却用ヒートパイプ
(101により行われる。冷却用ヒートパイプ(10)
の蒸発部(1渇はゼオライト(2人)の内部に放熱部(
11)より低(なるように取付けられており、電磁弁(
13は制御部051が太陽電?+1(f14)からある
値以上の出力電流またはiit [、Eを検出する日中
には閉じられ、出力電流才たは電圧の検出がある値以下
になる夜間には開かれるように構成されている。この構
成の冷却用ヒートパイプ(101によれば、日中のゼオ
ライ)(2A)の加熱時に電磁弁031は閉じられ内部
の冷媒の移動が阻止されるため、冷却用ヒートパイプ(
11を通しての放熱を防+LL、ゼオライト(2AJの
加熱温度を高(することができる。また、夜間にはlt
M弁031は制御部側を介して太陽電池(1分により開
かれ、放熱部(11)で冷却して凝縮された冷媒が甫1
磁弁(13)を通って蒸発部(圀の方に移動され、ゼオ
ライ1−(2A)から気化熱を奪って冷却する。このた
め、糸全体が外気温と同程度の25℃まで冷却され、系
内の圧力は約51111111pとなり、再生吸着過程
のゼオライトの吸湿線図は第3図の実線で示す如くなる
Zeolite-filled cylinder when there is no solar radiation at night (
The cooling in 2) consists of the heat dissipation section (11) and the evaporation section 0, which is in the middle? ! Cooling heat pipe (101) provided with a solenoid valve 131. Cooling heat pipe (10)
There is a heat dissipation part (1) inside the zeolite (2 people).
11) It is installed so that the solenoid valve (
13 is the control unit 051 solar power? It is configured to be closed during the day when the output current or voltage exceeds a certain value from +1 (f14), and to open at night when the output current or voltage falls below a certain value. There is. When heating the cooling heat pipe (101, zeolite during the day) (2A) with this configuration, the solenoid valve 031 is closed and movement of the refrigerant inside is blocked, so the cooling heat pipe (
Prevent heat radiation through 11+LL, zeolite (2AJ heating temperature can be increased).
The M valve 031 is opened by the solar cell (1 minute) via the control unit side, and the refrigerant cooled and condensed in the heat radiation part (11) is
It passes through the magnetic valve (13) and is moved toward the evaporation section (field), where it removes the heat of vaporization from the zeolite 1-(2A) and cools it.As a result, the entire thread is cooled down to 25°C, which is about the same as the outside temperature. The pressure in the system becomes approximately 51111111p, and the hygroscopic diagram of the zeolite during the regeneration adsorption process becomes as shown by the solid line in FIG.

この発明の装置は、ゼオライト充填筒(2)に真空ガラ
ス管形ヒートパイプ集熱器(7)と冷却用ヒートパイプ
ααを数句けるとともに、冷却用ヒートパイプ(10の
放熱部(11Jと蒸発部(1りとの間に、太陽電池(1
41からの出力のイf勲によって閉じられたり開かれた
りする電磁弁03を設けたから、日中のヒートパイプ集
熱器(7)によるゼオライト(2人)の加熱時に冷却用
ヒートパイプ叫を通しての放熱を防止し、再生温度を高
くすることができるだけでなく、冷却用ヒートパイプ(
+01によってゼオライI−(2AJを冷却し、再生吸
着時のゼオライ1−(2A)の峡湿能力を太き(して製
氷冷蔵能力を著しく向上することができる。
The device of this invention has several vacuum glass tube heat pipe heat collectors (7) and several cooling heat pipes αα in a zeolite-filled cylinder (2), and also has several cooling heat pipes (10 heat radiation parts (11J and evaporation parts)). Between the part (1 part) and the solar cell (1 part
Since we have installed a solenoid valve 03 that is closed or opened according to the output from 41, when the zeolite (2 people) is heated by the heat pipe collector (7) during the day, the sound of the cooling heat pipe is used. In addition to preventing heat radiation and increasing the playback temperature, a cooling heat pipe (
+01 cools zeolite I-(2AJ) and increases the wetting capacity of zeolite 1-(2A) during regenerated adsorption, thereby significantly improving the ice-making and refrigeration capacity.

また、冷却用ヒートパイプ0(身に設けられた電磁弁(
13の開閉は、制御部叩がある値以」二の太陽電池(1
41の出力電流または電圧を検出することJこよって自
動的に行われ、外部tカあるいは電池等を不要にすると
ともに開閉に要する手数をも省略することができる。
In addition, cooling heat pipe 0 (a solenoid valve installed on the body)
The opening/closing of 13 is controlled by tapping the control unit.
Detection of the output current or voltage of 41 is therefore automatically performed, making it possible to eliminate the need for an external power supply, battery, etc., and also eliminate the trouble required for opening and closing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の一実施例を示ず機1能説明図で、(a)
は日中の加熱再生時、(b)は夜間の冷却吸着時を示す
。第2図はこの発明の一実施例を示す機能説明図、第3
り1は従来とこの発明のゼオライトの吸着能力をそれぞ
れ示した比較線図である。 (1)・・・ゼオライト製氷冷蔵装置、(2)・・・ゼ
オライト充填筒、 (2人)・・ゼオライト、 (3)・配管、(4)・・
・11縮器、    (5)・・・蒸発器、(6)・・
冷蔵庫、 (7)・・・真空ガラス管形ヒートパイプ集熱器、(8
)・・・蒸発部、    (9)・・・凝縮部、+IG
・・・冷却用ヒートバイブ、 (111・・・放熱部、    (12+・・・蒸発部
、梠・・・71c晶7で弁、    (1ル・・・太陽
TtL池、(151・・・制御部。
FIG. 1 is a functional explanatory diagram, not showing an example of the conventional technology, and (a)
(b) shows the heating regeneration during the day, and (b) the cooling adsorption during the night. Fig. 2 is a functional explanatory diagram showing one embodiment of the present invention;
1 is a comparison chart showing the adsorption capacity of the conventional zeolite and the present invention. (1) Zeolite ice making refrigerator, (2) Zeolite filling cylinder, (2 people) Zeolite, (3) Piping, (4)...
・11 condenser, (5)... evaporator, (6)...
Refrigerator, (7)...Vacuum glass tube heat pipe heat collector, (8
)...Evaporation section, (9)...Condensation section, +IG
...cooling heat vibrator, (111...heat dissipation section, (12+...evaporation section, gate...71c crystal 7 valve, (1ru...solar TtL pond, (151...control) Department.

Claims (1)

【特許請求の範囲】 1、蒸発部と凝縮部を有する真空ガラス管形のヒートパ
イプ集熱器の凝縮部をゼオライト充填筒に取付け、更に
このゼオライト充填筒に放熱部と蒸発部を備えた冷却用
ヒートパイプの蒸発部を取付けるとともに、そのゼオラ
イト充填筒を麟縮型を介して冷蔵庫内に配設される蒸発
器に直列接続し、前記冷却用ヒートパイプの放熱部と蒸
発部との間番こ、太陽電池からの出力がある値以上にな
ったときに自動的に閉じられる電磁弁を設けたことを特
徴とする太陽熱利用のゼオライト製氷冷蔵装置。 2、 ヒートバイブ集熱器の蒸発部がゼオライト充填筒
の外側に付荷し、ゼオライト内に差し込まれる凝縮部よ
り低く取付けられた特許請求の範囲第1項記載の太陽熱
利用のゼオライト製氷冷蔵装置。 3、冷却用ヒートパイプの放熱部かゼオライト充填筒の
外側に位置し、ゼオライト内に差し込まれる蒸発部より
高く取付けられた特許請求の範囲第1項または第2項記
載の太陽熱利用のゼオライト製氷冷蔵袋口。
[Claims] 1. A cooling device in which the condensing part of a heat pipe heat collector in the form of a vacuum glass tube having an evaporating part and a condensing part is attached to a zeolite-filled cylinder, and the zeolite-filled cylinder is further equipped with a heat radiation part and an evaporating part. At the same time, the zeolite-filled cylinder is connected in series to the evaporator installed in the refrigerator via a compression mold, and the distance between the heat radiation part and the evaporation part of the cooling heat pipe is adjusted. This is a zeolite ice-making and refrigeration device using solar heat, which is characterized by being equipped with a solenoid valve that automatically closes when the output from a solar cell exceeds a certain value. 2. The zeolite ice-making and refrigeration device using solar heat as claimed in claim 1, wherein the evaporating part of the heat-vib heat collector is attached to the outside of the zeolite-packed cylinder and is installed lower than the condensing part inserted into the zeolite. 3. A zeolite ice-making refrigerator using solar heat according to claim 1 or 2, which is located at the heat dissipation part of a cooling heat pipe or outside the zeolite-filled cylinder and is installed higher than the evaporation part inserted into the zeolite. Bag opening.
JP57164771A 1982-09-20 1982-09-20 Zeolite ice-making refrigeration plant utilizing solar heat Pending JPS5956067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57164771A JPS5956067A (en) 1982-09-20 1982-09-20 Zeolite ice-making refrigeration plant utilizing solar heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57164771A JPS5956067A (en) 1982-09-20 1982-09-20 Zeolite ice-making refrigeration plant utilizing solar heat

Publications (1)

Publication Number Publication Date
JPS5956067A true JPS5956067A (en) 1984-03-31

Family

ID=15799617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57164771A Pending JPS5956067A (en) 1982-09-20 1982-09-20 Zeolite ice-making refrigeration plant utilizing solar heat

Country Status (1)

Country Link
JP (1) JPS5956067A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5813248A (en) * 1995-11-01 1998-09-29 Zornes; David A. Balanced adsorbent refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5813248A (en) * 1995-11-01 1998-09-29 Zornes; David A. Balanced adsorbent refrigerator

Similar Documents

Publication Publication Date Title
US4548046A (en) Thermodynamic apparatus for cooling and heating by adsorption on a solid adsorbent and process for using the same
Li et al. A solar‐powered ice‐maker with the solid adsorption pair of activated carbon and methanol
US2138688A (en) Method and apparatus for the production of cold
JPS5956067A (en) Zeolite ice-making refrigeration plant utilizing solar heat
US2210609A (en) Refrigeration
US2167663A (en) Refrigeration
CN100491849C (en) Household solar adsorption central air conditioner
JPS5875675A (en) Air-cooling or refrigerating device utilizing solar heat
GB2044915A (en) Solar powered cooling system
US4354483A (en) Closed loop solar collector system with dual reservoirs and fluid bypass
US2386438A (en) Refrigeration
US4412529A (en) Closed loop solar collector system with dual reservoirs and fluid bypass
Bucher et al. Experimental data on an advanced solar-powered adsorption refrigerator
JPS5956068A (en) Zeolite ice-making refrigeration plant utilizing solar heat
JPS5751514A (en) Automobile cooler
JPS6023762A (en) Solar heat utilizing refrigerator using adsorbent
JPS60196566A (en) Solar-heat driving intermittent type absorption refrigerator
JPS5935764A (en) Refrigerator
JPH0442683Y2 (en)
JPS601542B2 (en) Absorption type thermal storage heating and cooling equipment
JPS6224213Y2 (en)
Pons et al. Solar Ice Maker Working with Activated Carbon-Methanol Adsorbent-Adsorbate pair
US1549990A (en) Refrigerating apparatus
JPS60174464A (en) Heat recovery device for double effect absorption refrigerator
JPS58190669A (en) Heat accumulation type cold water generator