JPS5955408A - Optical device - Google Patents

Optical device

Info

Publication number
JPS5955408A
JPS5955408A JP16613782A JP16613782A JPS5955408A JP S5955408 A JPS5955408 A JP S5955408A JP 16613782 A JP16613782 A JP 16613782A JP 16613782 A JP16613782 A JP 16613782A JP S5955408 A JPS5955408 A JP S5955408A
Authority
JP
Japan
Prior art keywords
light
film
optical
end surface
focused
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16613782A
Other languages
Japanese (ja)
Inventor
Shigeki Watanabe
茂樹 渡辺
Shoichi Miura
三浦 省一
Hideki Isono
秀樹 磯野
Yosuke Furuta
古田 洋介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16613782A priority Critical patent/JPS5955408A/en
Publication of JPS5955408A publication Critical patent/JPS5955408A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures

Abstract

PURPOSE:To branch, combine, and multiplex light with high precision through simple constitution by forming a convex lens on one end surface of a columnar photoconductor and a slanting plane where a semitransparent film is stuck at a specific angle on the other end surface. CONSTITUTION:The convex lens is formed on one end surface of the columnar optical element 20 and the semitransparent film or demultiplexing film 21 which is the slanting plane at the specific angle to the center axis is stuck to the other end surface. Light from a light source 22 is reflected by the film 21 and focused on a point B and the remaining light is transmitted through the semitransparent film 21 and focused on a point A, thus branching the light. Composite light of wavelengths lambda1 and lambda2 from the light source 21 is demultiplexed by the demultiplexing film 21 into light of wavelength lambda1 and light of wavelength lambda2. An optical element 20 is arranged as an optical multiplexer in the opposite direction and light beams from light sources 22 and 24 are focused on a point C by the semitransparent film 21. Thus, the area of the slanting plane is sufficiently large, so the film 21 is formed precisely and the light is branched, combined, and multiplexed with high precision through the simple constitution.

Description

【発明の詳細な説明】 (R)  発明の技術分野 本発明は光通信において、通信回線の分岐、合成に使用
するための光の分岐・合成・合波用の光学素子に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (R) Technical Field of the Invention The present invention relates to an optical element for branching, combining, and combining light for use in branching and combining communication lines in optical communications.

(b)  従来技術と問題点 第1Vから第4図までは従来の光デバイスであり、光分
岐合成器及び光合分波器を説明するための図である。第
1図は半透過膜又は分波膜を使用するレンズ構成型で、
図中1.2.3は光ファイバー、4.5.6はレンズ、
7は分波膜を添着した光学板、第2図は同じく半透過膜
又は分波膜を使用するファイバー加工型で、図中1、i
+、3は元ファイバー、8は分波膜を添着した光学板、
第3図は第1図のレンズを球形レンズに改めたもので、
図中1.2.3は光ファイ・;−17は分波1を添着し
た光学板、9.1O111は球形レンズ、第4図は第2
図のファイバー加工型に一部球形レンズを使用した図で
あり、図中1.2.3は元ファイバー、8は分波膜を添
着した光学板、9は球形レンズである。第1〜4図は何
れも分波器の例を示しているが分波膜の代わりに半透過
膜を凡用すれば光分岐器の例となる。
(b) Prior Art and Problems Figures 1V to 4 show conventional optical devices, and are diagrams for explaining an optical branching/combining device and an optical multiplexing/demultiplexing device. Figure 1 shows a lens configuration type that uses a semi-transmissive film or a splitting film.
In the figure, 1.2.3 is an optical fiber, 4.5.6 is a lens,
7 is an optical plate attached with a splitting film, and Fig. 2 is a fiber processing type that also uses a semi-transparent film or a splitting film.
+, 3 is the original fiber, 8 is the optical plate attached with a splitting film,
Figure 3 shows the lens in Figure 1 changed to a spherical lens.
In the figure, 1.2.3 is an optical fiber; -17 is an optical plate attached with a demultiplexer 1; 9.1O111 is a spherical lens;
This is a diagram in which a part of a spherical lens is used in the fiber processing type shown in the figure, and in the diagram, 1, 2, and 3 are original fibers, 8 is an optical plate attached with a splitting film, and 9 is a spherical lens. Although FIGS. 1 to 4 all show examples of branching filters, if a semi-transparent film is used in place of the branching film, it becomes an example of an optical splitter.

第1図は光分波器としての従来例の一つで3個のレンズ
4.5.6の略中央(こある光学板71こ誘電体多層膜
即ち分波膜を形成せしめる。即ち図の左側の光ファイバ
ー1を通って米る波長λ1及びλ2を含む光は左側のレ
ンズ4で集光されて分波膜7に邑る。光中波長λ1の成
分は分波膜を透過して右側レンズ5を経て、右側光ファ
イバー2に入る。一方波長λ2の成分は分波膜で反射し
下のレンズ6て集光し=ト那の光ファイバー3iこ入る
Fig. 1 shows one of the conventional examples of an optical demultiplexer, in which an optical plate 71 located approximately at the center of three lenses 4, 5, and 6 forms a dielectric multilayer film, that is, a demultiplexing film. The light containing wavelengths λ1 and λ2 that passes through the optical fiber 1 on the left side is focused by the left lens 4 and is delivered to the splitting film 7.The component of wavelength λ1 in the light passes through the splitting film and passes through the right lens. 5, it enters the right optical fiber 2. On the other hand, the component of wavelength λ2 is reflected by the splitting film, is focused by the lower lens 6, and enters the optical fiber 3i.

このw台分波膜カイ(、すに半透過膜をfl・用ずれは
第1図111光分岐器と在る。第2図はファイバー加工
型て、第2図において、九ファイバー1の一部に図のよ
うに分波膜8を配置をセ、二つの波長λ1゜λ24含1
−p)Y:は分波11jJlこより園]示のようtこ、
λ1は光ファイバ 2に、λ2は光ファイバー3(・こ
入る。第3図(I第1図の変形、第4図は第2図の変形
である。然しなから第1図、第3 FUIのレンズff
(成早は使用部品点数が多く、旧っレンズ9.1o、]
1及び分波膜を添着した光学板7のrI4]の相対位置
「9)係を機械的に正確に配置しなけtlにI“ならな
いのでj1M整箇所が多く、ゲ?て調整が困難で、小型
化が出Xず、高価格の欠点を持つ。一方f′B2図、第
4図の光フアイバー加工型は光フアイバー中tこhM)
で小をい分波膜即ち誘電体多層膜を・形成しなけれi+
:i’;&らず、分子fQ lii’、iの蒸着面積が
極端に小さいので安定したIll % (z4.が得か
1fいと云う欠点をもつでいる。半透過膜を使用する場
合も分波膜を使用する場合と全く同じ困AUに遭遇する
。尚うY;の合成、合波ζこついても同様で多・る。
This W splitting membrane is used as a semi-transmissive membrane. As shown in the figure, the wavelength splitting film 8 is placed in the section, and the two wavelengths λ1゜λ24 included 1
-p) Y: is the branch 11jJl Koyorien] As shown,
λ1 is inserted into the optical fiber 2, and λ2 is inserted into the optical fiber 3. lens ff
(Narihaya uses many parts, and is an old lens of 9.1o.)
1 and rI4] of the optical plate 7 attached with the splitting film.Since the relative position of ``9)'' must be mechanically accurately placed in order for tl to become ``I'', there are many j1M alignment points, and the difference between It has the drawbacks of being difficult to adjust, difficult to miniaturize, and high price. On the other hand, the optical fiber processing type shown in Figs.
A dielectric multilayer film, i.e., a dielectric multilayer film, must be formed.
:i';&, since the evaporation area of molecule fQlii',i is extremely small, it has the disadvantage of stable Ill % (z4. is only 1f). You will encounter exactly the same problem AU as when using a wave film.The same problem occurs when combining Y; and combining ζ.

(c)  発明の目的 本発明の目的は」−記の欠点を除去し、部片な機構で高
い効率の元デバイス即ち光分岐合成器及び光合分波器を
提供することである。
(c) Object of the Invention It is an object of the present invention to eliminate the drawbacks mentioned above and to provide a high-efficiency original device, that is, an optical branching/combining device and an optical multiplexing/demultiplexing device with a piecemeal mechanism.

(d)  発明の構成 に記の目的は本発明lこよれば、光の分岐、合成、分波
、合波を行う光学素子lこおいて、円柱状光導体の一端
面(こ凸レンズを形成せしめるとともlこ、他端面は該
円柱状光導体の中心軸に711.て所定角度を持つ斜平
面とし、該斜平面ζこ半透過膜又は分波膜を添着したこ
とを特徴とする光デバイスを提供すること(こよって達
成される。
(d) The object stated in the structure of the invention is to provide an optical element for branching, combining, demultiplexing, and multiplexing of light. In addition, the other end surface is an oblique plane having a predetermined angle 711 to the central axis of the cylindrical light guide, and a semi-transmissive film or a splitting film is attached to the oblique plane ζ. providing a device (thereby accomplished);

(e)  発明の実施例 以下本発明の実施例を図面(こよって詳述する。(e) Examples of the invention Embodiments of the present invention will be described in detail below with reference to the drawings.

第5図は本発明の基本となる光学素子の説明図で、図中
、20は本発明Iこよる光学素子、21は半透過H(又
は分波膜)、22は光源を示す。
FIG. 5 is an explanatory diagram of the optical element which is the basis of the present invention. In the figure, 20 is the optical element according to the present invention I, 21 is a semi-transmissive H (or splitting film), and 22 is a light source.

第6図の(a)、(b)、(c)図は本光学素子の製作
手順を示すもので、(a)図は円柱と片面が平面の凸レ
ンズとが接合したレンズて、これtこ対し点線1こそっ
て切断4−る。(b)図は切断を完了した図で、(c)
図は更にその斜Y面に半透過膜を添着し、た月を泳ず図
て、1を通銀を吹き伺υ1てイ′Lる。
Figures (a), (b), and (c) in Figure 6 show the manufacturing procedure of this optical element. On the other hand, cut along the dotted line 1. (b) shows the completed cutting, (c)
In the figure, a semi-transparent membrane is attached to the slanted Y surface, and a layer of silver is blown onto the surface of the surface.

第5図に卦いC,光源22がら出た光の一部は半透過膜
21て反射し、下側の平面を通って、B点に集光し、残
りの元は半透過膜21を透過し、A点lこ集光する。
In Figure 5, a part of the light emitted from the light source 22 is reflected by the semi-transparent film 21, passes through the lower plane, and is focused at point B, and the rest of the light passes through the semi-transparent film 21. It passes through and focuses on point A.

第7図、第8はこの光学素子を光分岐用として使用する
例を7賀すもので、図中、22はフY、源、1.2.3
は光ファイバー、2oは光学素子、21(1半透過膜、
7は光信号をηイ気信号lこ変換するための7オート・
ダイメート等の受光素子を夫々示す。
Figures 7 and 8 show seven examples of using this optical element for light branching.
is an optical fiber, 2o is an optical element, 21 (1 semi-transparent film,
7 is a 7 auto-converter for converting an optical signal into a η-like signal.
Light receiving elements such as Dimate are shown.

第7N、第8図て、光@、22がら出た光ファイバー1
t?、−より伝送れてきた光Poは光学素子2゜(こ添
着する半透過m1r2xcこより、透過光P1と反射光
I)、(こ分離され、第7図の部会は透過光P1は光)
rイバー2に集光さn1反射光P2は光ファイバー3に
集光され、そtLぞれ更に伝送きノする。
7N, 8th figure, optical fiber 1 coming out of light @, 22
T? , - The light Po transmitted from the optical element 2° (transmitted light P1 and reflected light I from the attached semi-transparent m1r2xc), (separated, the transmitted light P1 is light)
The n1 reflected light P2 is focused on the optical fiber 2, and is further transmitted to the optical fiber 3.

第8図の場合は透過光Plは光ファイバー2fこ集光さ
れて、伝播されてゆくが、反射光P2はフォート・ダイ
オード231c:集光されて電流に変換される。尚P1
 とP、との比は半透過IIIの透過率と反射率の比て
、半透堝j摸を・形成する】が程で半透過膜の厚薄(こ
より任意に選んで決めることが出来る。
In the case of FIG. 8, the transmitted light Pl is focused on the optical fiber 2f and propagated, but the reflected light P2 is focused on the fort diode 231c and converted into an electric current. Furthermore, P1
The ratio of P and P can be arbitrarily determined based on the ratio of the transmittance and reflectance of the semi-transmissive film III to form a semi-transparent chamber.

第9図は本発明を分波膜として使った例を示すもので、
この場合はf+M′面には例えば、TiO2とS i 
O!とから々る誘電体多層膜を分波膜として使用する。
Figure 9 shows an example of using the present invention as a wavelength splitting membrane.
In this case, for example, TiO2 and Si
O! A multi-layered dielectric film is used as a splitting film.

図中、22け光学素子、2]は分波II?、22(4波
長λ1.λ2の元を含む光源、1.2.3は光ファイバ
ーである。
In the figure, 22 optical elements, 2] are branching II? , 22 (a light source including elements of four wavelengths λ1 and λ2, 1.2.3 is an optical fiber.

第9図で波長λI、22からなる光源22からの光は元
ファイバー1により伝送され、光学素子20及び分波膜
211こより、波長λJの光のみを含む透過光と波長λ
2の光のみよりなる反射光とに分けられ、夫々光ファイ
バー2.31こ集yLさ′i′Lる。
In FIG. 9, light from a light source 22 having wavelengths λI and 22 is transmitted through the original fiber 1, and from an optical element 20 and a splitting film 211, transmitted light containing only light with wavelength λJ and wavelength λ
The reflected light consists of only 2 lights, and 2.31 optical fibers are collected, respectively.

第10図(丁4発明を反対向きに使った応用例を示す図
で、この場合は光合成器又は光合波器となる。第10図
で、20に本発明の光学素子、21は半透過膜、22.
24は光源である。
Figure 10 (This is a diagram showing an application example in which the invention is used in the opposite direction, in which case it becomes a light combiner or optical multiplexer. In Figure 10, 20 is the optical element of the present invention, and 21 is a semi-transparent film. , 22.
24 is a light source.

第101”、21fこおいて、光源227′+1ら出た
光の一部は半透過膜を透過信、光学素子20で象光され
、光源24から出た光の一部は栄透1局膜21で反引さ
れた後、光学素−7−2()で集光される。この際光源
22と24の位置を微調整することlこより上記二つの
九%C点(こ集光することが出来る。
101'' and 21f, part of the light emitted from the light source 227'+1 is transmitted through the semi-transparent film and imaged by the optical element 20, and part of the light emitted from the light source 24 is transmitted from the Eitsu 1 station. After being repulsed by the membrane 21, the light is focused by the optical element 7-2 ().At this time, the positions of the light sources 22 and 24 are finely adjusted. I can do it.

2′ル11図、第12図は光合成器としての実施1り1
1を示ず図で、第11図、第12図中、20(ゴ本発明
による光学素子、2■は半透過膜、1.2.3はうL〕
丁イバー、22.24は光源、251ニーにフォート・
ダイオード等のり8・光素子を示r0第11図、第12
図において、光源22からlflて、ガ、ファイバー1
1こより連1ql’ tqてきた光Pa’の透過光■)
」′とつで、源7から出て光ファイバー3Iこより運ば
れてきた光Po″の反射光P2′  をう“r−。
2' Figures 11 and 12 show implementation 1 as a photosynthesizer.
1 is not shown, and in FIGS. 11 and 12, 20 (G is an optical element according to the present invention, 2 is a semi-transparent film, and 1.2.3 is an L).
Ibar, 22.24 is a light source, 251 Knee is Fort.
Glue 8 and optical elements such as diodes are shown r0 Figures 11 and 12
In the figure, from the light source 22 to the fiber 1
1 strand 1 ql' tq Transmitted light of the coming light Pa' ■)
'', the reflected light P2' of the light Po' which has come out of the source 7 and is carried through the optical fiber 3I is 'r-.

学素子で集光する。第11図ではこのr〜′L置に4M
1フアイバー2を置いて、光p、/、p2/を更には措
さゼ、第12図ではこの位置にフォート・ダイオード2
5を置いて光信号を電気信号に変換する。
The light is focused by a scientific element. In Figure 11, 4M is placed at this r~'L position.
1 fiber 2 is placed, and the light p, /, p2/ is further removed. In Fig. 12, a fort diode 2 is placed at this position.
5 to convert the optical signal into an electrical signal.

この場合二つの入力光を一つの受光素子で一括して受光
することが出来る。
In this case, two input lights can be received at once by one light receiving element.

第13図は本発明を光合波器として使用する実施碗示す
図で、第13図中、20は本発明(こよる光学素子、2
Jは分波膜、22は波長λ1の光源、24は波長λ2の
元係、1.2.3は元ファイバーを示す。
FIG. 13 is a diagram showing an embodiment of the present invention used as an optical multiplexer. In FIG.
J is a splitting film, 22 is a light source with a wavelength λ1, 24 is a source with a wavelength λ2, and 1.2.3 is a source fiber.

第13図で光源22から出て、光ファイバー1で伝送さ
むてきた波長λ1の光(ズ分δζv21を透過し、光学
素子2(Hこより、光ファイバー2に集光される。一方
光源7から出て、)゛〔;ファイバー3で伝送でねでき
た波長λ2の元は分波膜2■て反射し、光学素子201
こより、元ファイバー2Iこ集光される。このよう−ζ
′y(−ファイバー2(こより波長λ1.λ2の二つの
光を同時に伝捕することが出来る。
In FIG. 13, light with a wavelength λ1 comes out from the light source 22, is transmitted through the optical fiber 1, passes through a portion δζv21, and is focused on the optical fiber 2 through the optical element 2 (H).On the other hand, the light that comes out from the light source 7 ,)゛[;The origin of the wavelength λ2 generated by transmission through the fiber 3 is reflected by the splitting film 2, and is transmitted to the optical element 201.
From this, the light is focused on the original fiber 2I. Like this −ζ
'y(-fiber 2) Two lights with wavelengths λ1 and λ2 can be simultaneously transmitted through the fiber 2.

V上詳述したように、が米の光学系に比して非常に簡単
な構成で光の分岐、合成、分波、合波することが出来る
上に本発明による光学素子の斜平面汀面積が広いので半
透過膜、分波膜を精度よく形成出来るので協い効率を得
ることが出来る。更に光分岐合成器及び光合分波器を構
成する際、部品点わが少ないため、小型で、低lii格
で単純でありながら応用範囲が大きいり (f)  発明の効架 り+許細lこ説明しへ二ように、本発明によ肛は伏雑l
光学系7二用いて行って来た光の分岐、合成、分波、合
波を上記の光学素子を使ってmIJ’+l hこ、しか
も高iヒ率で可断ζこするという効果大なるものである
As detailed above, the optical element according to the present invention can branch, combine, demultiplex, and multiplex light with a very simple configuration compared to the conventional optical system. Since the area is wide, it is possible to form a semi-transmissive film and a splitting film with high precision, thereby achieving cooperative efficiency. Furthermore, when constructing an optical branch/combiner and an optical multiplexer/demultiplexer, there are fewer parts, so they are small, low-grade, simple, and have a wide range of application. As explained above, the present invention allows the anus to be hidden.
Using the optical element described above, the branching, combining, demultiplexing, and multiplexing of light that has been performed using the optical system 72 can be performed with mIJ'+l h, and moreover, it has a great effect in that it can be split at a high rate. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

@1図から第4図才では光分岐合成器hびブ(二合分波
器を説明するためのヌ1で、第1図は半透過膜又は分波
膜を使用するレンズ宿成ルリ、第2図は同じく手透iM
 Hωヌは分波膜を使用するファイバー加工型、第3反
1iゴ第1図の」/ンズを球形レンズ(こ改めたもの、
第4図}(1第2図のファイバー加工311jに一部球
形レンズを使用した図である。 第5図は本発明の基本となる光学1子の説明図で、図中
、20は本発明による光学素子、21は半透過膜、22
は光源を示す。 第6図の(a)、(b)、(C)は本光学素子の製作手
順を示す図である。 第7図、第8はこの光学素子を光分岐用として使用する
例を示すもの、第9図は本発明を分波膜として使った例
を示すもの、第10図は本発明を反対向きlこ使った応
用例を示す図、第11図、第図である。 第1 図 Yλ2 第3図 第4図 20   躬S図 ノ 3 拓6図 十Me  nl!  Il−’pi−U、)B’S>4
.W ii’l’ I ’l長官殿 1・li f’lのli小 昭1157τli1.i’1))ii第jCGノ37)
)、(1山 111 6+・、’+  8・1f(1と
の閏If、      i l’、l’1出11と1人
1]1す111’、、\用11.1川1111:l山中
11111ノド1・111中1 Fl l !l Ki
 11!!(522) 名f1富1: 、1ifi l
:4、入会?14  代   理   人      
(■す1 神と・1甲−!、1111ih’、司I中1
i111−1−111中H]I5M地51111116
1′i11の11月 υ 不顕図田」第13図2別紙添イτ」の通り補正する
。 以」ニ
Figures 1 to 4 show a light branching/combining device (Nu 1 for explaining a two-way multiplexing/demultiplexing device), and Figure 1 shows a lens-containing Luli using a semi-transparent film or a splitting film. Figure 2 is also Tetoru iM
Hω-nu is a fiber-processed type that uses a splitting membrane, and a spherical lens (this is a modification of the ``/lens'' in Figure 1).
Fig. 4} (1 This is a diagram in which a spherical lens is partially used in the fiber processing 311j of Fig. 2. Fig. 5 is an explanatory diagram of an optical unit that is the basis of the present invention, and in the figure, 20 is a diagram showing the use of a spherical lens in the fiber processing 311j of Fig. 2. 21 is a semi-transparent film, 22
indicates a light source. FIGS. 6(a), (b), and (C) are diagrams showing the manufacturing procedure of this optical element. Figures 7 and 8 show an example in which this optical element is used for light branching, Figure 9 shows an example in which the present invention is used as a splitting film, and Figure 10 shows an example in which the present invention is used in the opposite direction. FIGS. 11 and 11 are diagrams showing application examples using this method. Fig. 1 Yλ2 Fig. 3 Fig. 4 Fig. 20 S Fig. 3 Taku 6 Fig. 10 Me nl! Il-'pi-U,)B'S>4
.. W ii'l' I 'l Secretary 1・li f'l's li Xiaosho 1157τli1. i'1)) ii No. jCG No. 37)
), (1 mountain 111 6+・, '+ 8・1f (interval with 1 If, i l', l'1 out 11 and 1 person 1] 1s 111',, \ for 11.1 river 1111: l Yamanaka 11111 Nodo 1・111 Middle 1 Fl l !l Ki
11! ! (522) Name f1 wealth 1: , 1ifi l
:4. Join? 14th Director
(■su1 God and 1K-!, 1111ih', Tsukasa I Junior High 1
i111-1-111 middle H] I5M ground 51111116
1'i11, November υ Unrevealed Zuden'' Figure 13 2 Attachment A τ'' is corrected. I”d

Claims (1)

【特許請求の範囲】[Claims] 光学素子lこおいて、円柱状光導体の一端面に凸レンズ
を形成せしめるとともに、他端面は該円柱状光導体の中
心軸に対して所定角度を持つ斜平面とし、該斜平面に半
透過膜又は分波膜を添着したことを特徴とする光デバイ
ス。
In this optical element, a convex lens is formed on one end surface of a cylindrical light guide, the other end surface is an oblique plane having a predetermined angle with respect to the central axis of the cylindrical light guide, and a semi-transparent film is provided on the oblique plane. Or an optical device characterized by having a wavelength splitting film attached thereto.
JP16613782A 1982-09-24 1982-09-24 Optical device Pending JPS5955408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16613782A JPS5955408A (en) 1982-09-24 1982-09-24 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16613782A JPS5955408A (en) 1982-09-24 1982-09-24 Optical device

Publications (1)

Publication Number Publication Date
JPS5955408A true JPS5955408A (en) 1984-03-30

Family

ID=15825718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16613782A Pending JPS5955408A (en) 1982-09-24 1982-09-24 Optical device

Country Status (1)

Country Link
JP (1) JPS5955408A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0631163A1 (en) * 1993-05-17 1994-12-28 Siemens Aktiengesellschaft Bidirectional optical transceiver

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0631163A1 (en) * 1993-05-17 1994-12-28 Siemens Aktiengesellschaft Bidirectional optical transceiver

Similar Documents

Publication Publication Date Title
US6441934B1 (en) Multiplexer and demultiplexer for single mode optical fiber communication links
US5629995A (en) Wavelength filter arrangements for use in fiber optics
US20030039437A1 (en) Multiplexer and demultiplexer for single mode optical fiber communication links
US6647209B1 (en) Multiplexer and demultiplexer for single mode optical fiber communication links
JP2002148459A (en) Array waveguide grating, optical transmitter and optical communication system
JPS60184216A (en) Hybrid optical multiplexer/demultiplexer
JPS5955408A (en) Optical device
US7277607B2 (en) Optical multiplexer/demultiplexer, optical device, and optical transmission system
JP4320304B2 (en) Wavelength multiplexing optical coupler and method of manufacturing the same
JP2004271743A (en) Optical device
EP1329046A2 (en) Multiplexer, demultiplexer and add/drop multiplexer for single mode optical fiber communication links
JP2002169054A (en) Device for multiplexing and branching wavelengths
JP2003066376A (en) Wavelength separation optical device and wavelength multiple optical transmission module
TW499581B (en) Planar waveguide diffractive beam splitter/beam coupler
JP3374029B2 (en) Optical coupler
JPS60191210A (en) Optical waveguide device
JP2004094242A (en) Optical module
JP2005123778A (en) Optical composite component and optical transmission system employing the same
JPS61223810A (en) Optical wavelength multiplexer/demultiplexer
JP2003149490A (en) Optical multiplexer and demultiplexer
JPS61270709A (en) Optical dimultiplexer
CN114764166A (en) Sparse wavelength division multiplexing, demultiplexer and transceiving integrated sparse wavelength division device
JP2002072008A (en) Optical branching filter and optical coupler
US6915034B1 (en) Multichannel optical multiplexing device using a single light bandpass filter
JP2002072009A (en) Optical branching filter/coupler