JPS5955085A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPS5955085A
JPS5955085A JP16611882A JP16611882A JPS5955085A JP S5955085 A JPS5955085 A JP S5955085A JP 16611882 A JP16611882 A JP 16611882A JP 16611882 A JP16611882 A JP 16611882A JP S5955085 A JPS5955085 A JP S5955085A
Authority
JP
Japan
Prior art keywords
layer
type
semiconductor
semiconductor layer
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16611882A
Other languages
Japanese (ja)
Other versions
JPS641074B2 (en
Inventor
Haruhiko Tabuchi
晴彦 田淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16611882A priority Critical patent/JPS5955085A/en
Publication of JPS5955085A publication Critical patent/JPS5955085A/en
Publication of JPS641074B2 publication Critical patent/JPS641074B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a basic zero order lateral mode having high quantum efficiency and high stability by arranging a striped semiconduct or layer, and further introducing a loss guide, thereby generating an ultrashort pulse light. CONSTITUTION:Both P type InP layers 15 and 14 have impurity density of 1X 10<18>cm<-3>, and an N type InGaAsP layer 16 has an impurity density of approx. 1X10<17>cm<-3>. Thus, the width Xn in the layer 16 of a depletion layer 20 expands approx. 10 times of the width Xp in the layers 15, 14, and if the applied voltage is maintained at the degree for causing an Avalanche breakdown when the thickness of the layer 16 between the layer 15 and the P type InGaAsP region 17 is 0.5-1mum, the layer 20 in the layer 16 reaches the P type region 17 to energize the pulse current. Since the layer 15 is striped, the current is effectively narrowed. Further, the forbidden band width of the layer 16 is narrower than the forbidden band width, and the loss guide that the light extended from the layer 13 is absorbed by the layer 16 is formed.

Description

【発明の詳細な説明】 (a)  発明の技術分野 1: 本発明は半導体発光装置、特にサブナノ秒の超短バルズ
光を優れた量子効率をもって発生し、かつ安定し九′基
本零次横モードが容易に得られる半導体発光装置に、関
する。■ (b) ”’ ”、m術の背景   ・1□光フナイ六
通信ジステムガとにおいて、半導体レーザの直接高速変
調動作とフォトダイオードの高速応′答・性が活用さ:
れそいるがこれらの動作は1乃至2 (GHz’)□以
下に正寸っている。   □斗 他方固短しニザ、色素レーザの分虹においては既にビジ
秒値域が開拓されて、計測、物性、核融合等の分野で大
きな役割を果たしつつある。
Detailed Description of the Invention (a) Technical Field 1 of the Invention The present invention relates to a semiconductor light emitting device, particularly a semiconductor light emitting device, which generates sub-nanosecond ultrashort pulse light with excellent quantum efficiency, and which is stable and has a 9' fundamental zero-order transverse mode. The present invention relates to a semiconductor light emitting device that can be easily obtained. ■ (b) ``''', Background of the m technique ・1□ In optical technology, the direct high-speed modulation operation of semiconductor lasers and the high-speed response characteristics of photodiodes are utilized:
However, these operations are exactly below 1 to 2 GHz'(GHz')□. □On the other hand, the bisecond range has already been developed in fixed-short nizor and dye laser spectroscopy, and is playing a major role in fields such as measurement, physical properties, and nuclear fusion.

半導体レニザは、□バンド間遷移を用いる丸めに利得帯
域幅が広く、□ま九利得が大で共振器長が短いために光
子寿命及び共振器定行l17.−間が著るしく短かく本
質的に超短パルス光発生に適L7ており、小形で直接変
調により簡便に動作する超短パルス光源として、前jF
2の利用分野はもとよシ超高速光伝送などへの応用も将
来予想されている。
Semiconductor lens lasers have a wide gain bandwidth due to rounding using band-to-band transitions, a large gain, and a short cavity length, resulting in short photon lifetimes and cavity regularization l17. - L7 is extremely short between L7 and L7, which is essentially suitable for generating ultrashort pulse light, and the previous jF
In addition to the fields of application of 2, applications such as ultra-high-speed optical transmission are expected in the future.

(c)従来枝術と問題点 超短パルス光を発生する半導体し・−ザの既に知らfl
でいる一例を第1図に断面図1によって示す。
(c) Conventional techniques and problems Semiconductors that generate ultrashort pulse light - the already known information
An example of this is shown in FIG. 1 as a sectional view 1.

図において、1はn枳ガリウム・砒素(GaAs )基
板、2はn型カリウム・アルミニウム・砒素(GaAA
!As)層、3はn型もしくはp型のGaAs活性1葎
、4はI) !+1!JGaAIAs層、5はn型Ga
As7ff、6は例えば亜鉛(Zn )拡散によって形
成されたp型GaAs領域、7はp側電極、8はn側電
極である。
In the figure, 1 is an n-type gallium arsenide (GaAs) substrate, 2 is an n-type potassium aluminum arsenide (GaAA) substrate, and 2 is an n-type potassium aluminum arsenide (GaAAs) substrate.
! As) layer, 3 is n-type or p-type GaAs active layer 1, 4 is I)! +1! JGaAIAs layer, 5 is n-type Ga
As7ff, 6 is a p-type GaAs region formed, for example, by zinc (Zn) diffusion, 7 is a p-side electrode, and 8 is an n-side electrode.

本従来例の半導体レーザにおいては、p型GaA s領
域6、n型GaAs層5及びp型GaAlAs層4によ
って、PnP接合が形成されており、p但1j電極7を
正、n側電極8を負とする電圧を電へ間に印加すれば、
n型GaAs /@i 5とp型GaAlAs m4と
の間のn−p接合は逆バイアスされてこの接合をはさん
で空乏層が形成される。印加電圧が大きくてこの空乏層
がpffi!GaAs領域6に達すi′+ば、とのp−
n−1)接合にサブナノ秒のパルス’に流がmじてGa
As活性層3において超短パルス光が発振される。
In the semiconductor laser of this conventional example, a PnP junction is formed by the p-type GaAs region 6, the n-type GaAs layer 5, and the p-type GaAlAs layer 4. If a negative voltage is applied between the electric current and the electric current,
The n-p junction between the n-type GaAs/@i 5 and the p-type GaAlAs m4 is reverse biased to form a depletion layer across this junction. When the applied voltage is large, this depletion layer becomes pffi! i'+ reaches the GaAs region 6, and p-
n-1) A sub-nanosecond pulse is applied to the junction, causing a flow of Ga.
Ultrashort pulse light is oscillated in the As active layer 3.

しか]〜ながら本従来例の半導体レーザにおいては、電
流狭窄はp型GaAs層6の不純物拡散幅のみに依存し
ていて、不純物拡散幅はり、在5〔μm〕程度が最小限
度であシ、更にレーザ光の横モードについては屈折率カ
イトを具備せず、電流集中による利得ガイドのみである
だめに、量子効率が低く、かつ横モードが不安定となる
欠点がある。
However, in the semiconductor laser of this conventional example, the current confinement depends only on the impurity diffusion width of the p-type GaAs layer 6, and the minimum impurity diffusion width is about 5 [μm]. Furthermore, since the transverse mode of the laser beam does not have a refractive index kit and only has a gain guide based on current concentration, the quantum efficiency is low and the transverse mode is unstable.

(d)  発明の目的 本発明はp−n−p接合を備えて超短パルス光を発生し
、量子効率が高くかつ安定した基本零次横モードが得ら
れる半へ・1体発光装置を提供することを目的とする。
(d) Purpose of the Invention The present invention provides a half-unit light-emitting device that is equipped with a p-n-p junction, generates ultrashort pulse light, and provides a stable fundamental zero-order transverse mode with high quantum efficiency. The purpose is to

(e)  発明の描成 本発明の前記目的は、第14電型の第1の半導3一 体層と、該第1の半導体層に接して該第1の半導体層よ
如禁制帯幅が小なる第2の半導体層と、該第2の半導体
層に接して該第2の半導体層よυ禁制帯幅が大にる第2
導電型の第3の半導体層と、該第3の生4j体層に接し
てストライプ状をなし、の半導体層を被覆し、且つ第3
及び第4の半導体層より禁制帯幅が小なる第1導電型の
第5の半導体層と、前記第4の半導体層に対応した領域
に該第5の半導体層を介して配設された第2樽電、型の
第6の半導体領域とを備えてなる半導体発光装置によυ
達成される。
(e) Description of the Invention The object of the present invention is to form a first semiconductor three-integrated layer of the 14th electric type, and to form a semiconductor layer in contact with the first semiconductor layer such that the forbidden band width is smaller than that of the first semiconductor layer. a second semiconductor layer that is in contact with the second semiconductor layer and has a larger forbidden band width than the second semiconductor layer;
a conductive type third semiconductor layer and a striped semiconductor layer in contact with the third organic layer;
and a fifth semiconductor layer of a first conductivity type whose forbidden band width is smaller than that of the fourth semiconductor layer, and a fifth semiconductor layer disposed in a region corresponding to the fourth semiconductor layer via the fifth semiconductor layer. A semiconductor light-emitting device comprising two barrels and a sixth semiconductor region of the type υ
achieved.

特に前記第5の半導体層の禁制帯幅を前記第2の半導体
層の禁制帯幅よシ小とすることによυ、光導波路に横方
向の損失ガイドが形成される。
In particular, by making the forbidden band width of the fifth semiconductor layer smaller than the forbidden band width of the second semiconductor layer, a lateral loss guide is formed in the optical waveguide.

更に前記第5の半導体層の不純物濃度を前記第3及び第
4の半導体層の不純物濃度よシ小とすることによシ、前
記第3の半導体層の厚さを小にすることが可能となって
前記損失ガイドの効果を充4− 分に生かすことができる。
Furthermore, by making the impurity concentration of the fifth semiconductor layer smaller than the impurity concentrations of the third and fourth semiconductor layers, it is possible to reduce the thickness of the third semiconductor layer. Therefore, the effect of the loss guide can be fully utilized.

(f)  発明の実施例 以下本発明を実施例により図面を参照して具体的に説明
する。
(f) Embodiments of the Invention The present invention will be specifically described below by way of embodiments with reference to the drawings.

第2図は本発明の第一の実施例を示す断面図である。FIG. 2 is a sectional view showing a first embodiment of the present invention.

図において、11は不純物濃度1×10“’Cc1n”
〕程度のn型インジウム・燐(InP)基板、12は不
純物濃度5X10’マ[m−”、:I程度のn型InP
/ijN、13はn型もしくはp型のインジウム・ガリ
ウム・砒素・燐(InGaAsP)活性層、14は不純
物濃度IXIQn(m−”)程度のp型InP層、15
はストライプ状をなすp型InP層であシ、本実施例に
おいては前記Ni14と組成及び不純物濃度が等しい。
In the figure, 11 is the impurity concentration 1×10"'Cc1n"
12 is an n-type InP substrate with an impurity concentration of about 5×10'm[m-'', :I].
/ijN, 13 is an n-type or p-type indium-gallium-arsenic-phosphorus (InGaAsP) active layer, 14 is a p-type InP layer with an impurity concentration of about IXIQn (m-''), 15
is a striped p-type InP layer, which in this embodiment has the same composition and impurity concentration as the Ni14.

り狭い組成が選択されている。17は不純物濃度I X
 10” (cm−”)程度のp型InGaAsP領域
、18はp側電極、19はn側電極である。
A narrower composition has been selected. 17 is the impurity concentration I
A p-type InGaAsP region of about 10"(cm-"), 18 is a p-side electrode, and 19 is an n-side electrode.

本実施例においては、n型InP基板11上に例えば液
相エピタキシャル成長法によって、n型InP層12を
厚さ1乃至2(μmE&i度に、I nGaAs P活
性層13を厚さ例えは0.1乃、至0,2〔μm〕程度
に、次いで層14及び15を一体化してp型InP層を
厚さ例えば1.5乃至2〔μm′1程度に順次形成する
In this example, an n-type InP layer 12 is formed on an n-type InP substrate 11 to a thickness of 1 to 2 μm (E&i degrees), and an InGaAs P active layer 13 is formed to a thickness of 0.1 μm, for example, on an n-type InP substrate 11 by liquid phase epitaxial growth. Then, the layers 14 and 15 are integrated to form a p-type InP layer with a thickness of, for example, about 1.5 to 2 [μm'1].

次いでフォトリングラフィ法と化学エツチング法を用い
て、前記p型InP層の断面形状を凸状とする。本実施
例の層14を構成する前記p型InP層の平坦部分は厚
さ0.2乃至0.5〔μm″1程度、M15を構成する
ストライプ状の曲部分は幅2乃至5〔μm〕程度である
Next, a photolithography method and a chemical etching method are used to make the cross-sectional shape of the p-type InP layer convex. The flat part of the p-type InP layer constituting the layer 14 of this embodiment has a thickness of about 0.2 to 0.5 [μm''1], and the striped curved part constituting M15 has a width of 2 to 5 [μm]. That's about it.

次いで再び液相エピタキシャル成長法によってn型In
GaAsP層16を最も厚い領域において、厚さ例えば
2乃至3〔μm〕に形成した後に、二酸化シリコン(S
in、)もしくは窒化シリコン(SijN4)等の皮膜
をマスクとして、前Hビn型InGaAsP層16の表
面より例えば亜鉛(Zn )等のアクセプタ不純物を熱
拡散させて、p型InGaAsP領域17を形成する。
Next, n-type In was grown again by liquid phase epitaxial growth.
After forming the GaAsP layer 16 to a thickness of, for example, 2 to 3 [μm] in the thickest region, silicon dioxide (S
Using a film of silicon nitride (SijN4) or silicon nitride (SijN4) as a mask, an acceptor impurity such as zinc (Zn) is thermally diffused from the surface of the previous H-bin type InGaAsP layer 16 to form a p-type InGaAsP region 17. .

ただし本実施例において、p型InGaAsP領域17
とp型InP層15と9間に残されたn型InGa−A
sP層16の厚さは0.5乃至1〔μm″1程度であり
、p型層 nGaAsP領域17の幅(ストライプ状を
なすp型InP層15の幅方向の長さ)は5乃至20〔
郁〕程度である。そしてp側電極18及びn側電極19
は従来技術によって形成される。尚、本実施例ではp型
InGaAsP領域17を拡散によってn型I nG−
aAsP層16内に形成したがn型I nGaAsP 
Jfi 16上に選択的又は全面にp型InGaAsP
層を積)−シてもよい。
However, in this embodiment, the p-type InGaAsP region 17
and the n-type InGa-A left between the p-type InP layers 15 and 9.
The thickness of the sP layer 16 is approximately 0.5 to 1 [μm''1], and the width of the p-type layer nGaAsP region 17 (length in the width direction of the striped p-type InP layer 15) is 5 to 20 [μm''.
Iku] degree. And p-side electrode 18 and n-side electrode 19
is formed by conventional techniques. In this embodiment, the p-type InGaAsP region 17 is made of n-type InGaAsP by diffusion.
Formed within the aAsP layer 16, n-type In nGaAsP
p-type InGaAsP selectively or entirely on Jfi 16
It is also possible to stack layers.

以上説明した本実施例の半導体発光装置にp側電極18
を正、n側電極19を負とする電圧Vを印加すれば、n
型I nGaAsP層16とpuInPffi15及び
14との間は逆バイアス状態となシ、そ1 の間の界面を挾んでw線で示されだ空乏層20が形成さ
れる。この空乏層20の幅をWS幅Wのうちp型層内の
幅をXp、n型層内の幅をXnと表わ7− NAXp=NDXTま ただし、  NA:アクセプタ不純物の濃度ND:ドナ
ー不純物の濃度 k :比例定数 であることが既に知られている。
In the semiconductor light emitting device of this embodiment described above, the p-side electrode 18
If a voltage V is applied that makes n-side electrode 19 positive and n-side electrode 19 negative, n
The type InGaAsP layer 16 and the puInPffi 15 and 14 are not in a reverse bias state, and a depletion layer 20 shown by the line W is formed across the interface therebetween. The width of this depletion layer 20 is expressed as WS width W, the width in the p-type layer is expressed as Xp, and the width in the n-type layer is expressed as Xn. Concentration k: It is already known that it is a proportionality constant.

本実施例においては、p型InP層15及び14の不純
物濃度、NAは1xLo”(m−”〕t  n型I n
GaAaP層16の不純物濃度NDは1xlO”(cm
−”)程度であるために、空:2層20のn型InGa
AsP層16内  1の幅Xnはp型InP層15及び
14内の幅Xpの  。
In this example, the impurity concentration and NA of the p-type InP layers 15 and 14 are 1xLo''(m-'')t n-type InP layers 15 and 14.
The impurity concentration ND of the GaAaP layer 16 is 1xlO" (cm
-”), empty: two-layer 20 n-type InGa
The width Xn of AsP layer 16 is equal to the width Xp of p-type InP layers 15 and 14.

約10倍に広がり、p型InP層15とp、 m I 
nG a−AsP領域17との間のn ’IJI In
GaAsP 導16の厚さが0.5乃至1〔μm〕であ
るとき、印加される電圧を2.5乃至5〔v〕にし、そ
の値に保持すると、即ちアバランシェ降伏が生じる程度
に電圧を保持すると、n型InGaAaP層16内の空
乏層20はp型InGaAsP領域17に到達してこの
半導体発光装置にパルス状の電流が通じる。
It spreads about 10 times, and the p-type InP layer 15 and p, m I
n'IJI In between nGa-AsP region 17
When the thickness of the GaAsP conductor 16 is 0.5 to 1 [μm], the applied voltage is set to 2.5 to 5 [V] and maintained at that value, that is, the voltage is maintained to the extent that avalanche breakdown occurs. Then, the depletion layer 20 in the n-type InGaAaP layer 16 reaches the p-type InGaAsP region 17, and a pulsed current flows through this semiconductor light emitting device.

8− この電流が通じる幅Sは、p型InP層15のストライ
プ幅を80とすればSo + 2Xn−i= So +
2 Wであって、例えば50=3〔μm〕、W−0.5
〔μm〕とすればS+4〔μm〕であシ、電流狭窄が有
効に行なわれている。
8- If the stripe width of the p-type InP layer 15 is 80, the width S through which this current flows is So + 2Xn-i= So +
2 W, for example 50=3 [μm], W-0.5
If it is [μm], it is S+4 [μm], and the current confinement is effectively performed.

本実施例においては、n型I nGaAs P層16の
禁制帯幅がInGaAsP活性層13の禁制帯幅よシ狭
(、InGaAsP活性層13からしみ出した光がp型
InP層15が存在!ない領域においてはn壓InGa
AsP層16によって吸収キれる損失ガイドが構成され
ている。特にp型InP[14の不純物濃度NAが先に
年明した如く高濃度であれはその内部での空乏10.の
幅Xpが小さく 、P By Xnp層14の厚さを例
えば0.2〔μm〕程度に薄くすることが可能であって
、前記損失ガイドの効果が充分に発揮される。
In this example, the forbidden band width of the n-type InGaAs P layer 16 is narrower than the forbidden band width of the InGaAsP active layer 13 (the light seeping out from the InGaAsP active layer 13 does not exist in the p-type InP layer 15! In the area n 壓 InGa
The AsP layer 16 constitutes a loss guide that can be absorbed. In particular, if the impurity concentration NA of p-type InP [14] is high as shown earlier in 2015, depletion within the p-type InP [10. Since the width Xp of the P By Xnp layer 14 is small, it is possible to reduce the thickness of the P By Xnp layer 14 to, for example, about 0.2 [μm], and the effect of the loss guide is fully exhibited.

第3図は本発明の第2の実施例を示す断面図であシ、第
2図と同一符号によシ同一対象部分を示す。
FIG. 3 is a sectional view showing a second embodiment of the present invention, and the same reference numerals as in FIG. 2 indicate the same parts.

本年2の実施例は、ストライプ状をなすp型半導イ、4
[15’がp型tnPJ偶14とは組成分光に−するp
型InGaAsPによって形成されている。
The second example of this year is a striped p-type semiconductor, 4
[15' is p type tnPJ even 14 means composition spectroscopy - p
It is formed of type InGaAsP.

すなわち本実施eoにおいては、エピタキシャル成長に
際してp型InP1巖14のhさを0.2乃至03〔μ
m〕程度に止め、続いてp型InGaAsP層15′を
厚さ例えば1.2乃至1.5[pm]程庶成長させて、
両層の組成の差により選択的にp型InGaAsP j
情15′をストライプ状にエツチングすることによって
、両層の形状を安定させている○ なお、p !s’i InGaAaP層15′が?請″
113よりしみ出してくる光を吸収することを防止する
ために、とが望ましい。
That is, in this embodiment EO, the h height of the p-type InP layer 14 is set to 0.2 to 0.3 μm during epitaxial growth.
m], and then a p-type InGaAsP layer 15' is gradually grown to a thickness of, for example, 1.2 to 1.5 [pm].
Due to the difference in composition between both layers, p-type InGaAsP j
The shape of both layers is stabilized by etching the layer 15' in a stripe pattern. s'i InGaAaP layer 15'? request
In order to prevent the light seeping out from 113 from being absorbed, it is desirable that the

(力 発明の詳細 な説明した如く本発明によれは、前記ストライプ状の半
層体層(15,15’)の配設によってターンオンされ
る空乏層の拡がシが制限されるだめに、充分な電流狭窄
が行なわれて量子効率が増大して少ない電流で大出力の
パルス光の発生を行なうことができる。
As described in the detailed description of the invention, according to the present invention, the arrangement of the striped half-layers (15, 15') is sufficient to limit the spread of the depletion layer turned on. The current confinement is performed to increase the quantum efficiency, and it is possible to generate high-output pulsed light with a small amount of current.

t&横モードについても利得ガイド効果が増大するが、
更に特に先に説明した扛i失カイトを導入することによ
って横モードが1?めで安定[−で、刀二本零次横モー
ドを容易に実現することができる。
The gain guiding effect also increases for the t & transverse modes, but
Furthermore, the transverse mode can be changed to 1 by introducing the above-mentioned ``kite''. It is stable [-, and the zero-order transverse mode of two swords can be easily realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鰺短パルス栄治1体レーザの従来例を示す断面
図、第2図は本発明の実が4例に示す断面図、第3図ζ
1本蜀、明の仙の実h[す例を示す断面図である。 図において、11はn型InP基板、]2はn丙−)I
nP屑、13 ’ti InGaAsP活性層、14け
p型InI)層、15はp型InP層、15′はp型I
nGaA+qP JH116はn型I nGaAsP層
、17はp型I nGaAs P領域、18はp側′市
極、19はn側電極、20は空乏層を示す。 沢                  燻コ 422−
Fig. 1 is a cross-sectional view showing a conventional example of the short-pulse Eiji one-body laser, Fig. 2 is a cross-sectional view showing four examples of the present invention, and Fig. 3 is a cross-sectional view showing four examples of the present invention.
This is a cross-sectional view showing an example of one Shu and Ming immortal fruit. In the figure, 11 is an n-type InP substrate, ]2 is n-)I
nP scrap, 13'ti InGaAsP active layer, 14 p-type InI) layer, 15 p-type InP layer, 15' p-type I
nGaA+qP JH 116 is an n-type InGaAsP layer, 17 is a p-type InGaAs P region, 18 is a p-side electrode, 19 is an n-side electrode, and 20 is a depletion layer. Sawa Sukiko 422-

Claims (1)

【特許請求の範囲】 (リ 第1導電壓の第1の半導体層と、該第1の半導体
層に接して該第1の半導体層よ#)禁制@幅が小な76
$2の半導体層と、該第2の半導体層に接して該第2の
半導体層よシ禁制帯幅が大なる第2導電型の第3の半導
体層と、該第3の半導体層に接してスト2・イブ状をな
し、該第2・の半導体層より禁制帯幅が大なる第2≠電
型の第4の半導体層と、該第3及び第4の半導体層を被
覆□し、且つ第3及び第4の半導体′層よΦ県制帯幅、
が小なるa^1導電型の第5の半導体′/fiそ、・前
記第4の半導体層に対応した領域に該第5の半導□体・
層を介して配設された第2導電型の第′6め半導体領域
とを□備えてなると左を特徴とする半導・体発光、装置
。□(2)前記記5の半導体層の禁制帯幅が、前記第2
の半導体層の禁制帯幅よ)小なることを特徴とする特許
請求の範囲第(1)項記載の半導体発光、装置。 (3)前記第5の半導体層の不純物濃度が前記第3及び
第4の半導体層の不純物濃度より小ガることを特徴とす
る特許請求の範囲第(1)項又は第(2)項記載の半導
体発光装置。゛
[Claims] (A first semiconductor layer of a first conductive layer and a first semiconductor layer in contact with the first semiconductor layer) Prohibited @ 76 with a small width
$2 semiconductor layer, a third semiconductor layer of a second conductivity type that is in contact with the second semiconductor layer and has a larger forbidden band width than the second semiconductor layer, and is in contact with the third semiconductor layer. a fourth semiconductor layer of the second ≠ electric type, which has a second semiconductor layer and has a larger forbidden band width than the second semiconductor layer, and covers the third and fourth semiconductor layers; and the third and fourth semiconductor layers have a predetermined band width of Φ,
A fifth semiconductor of the a^1 conductivity type '/fi with a small
A semiconductor/body light-emitting device characterized by □ a '6th semiconductor region of a second conductivity type disposed through a layer, as shown on the left. □(2) The forbidden band width of the semiconductor layer of 5 above is equal to that of the second semiconductor layer.
The semiconductor light emitting device according to claim 1, wherein the forbidden band width of the semiconductor layer is smaller than that of the semiconductor layer. (3) Claim (1) or (2), characterized in that the impurity concentration of the fifth semiconductor layer is lower than the impurity concentration of the third and fourth semiconductor layers. semiconductor light emitting device.゛
JP16611882A 1982-09-24 1982-09-24 Semiconductor light emitting device Granted JPS5955085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16611882A JPS5955085A (en) 1982-09-24 1982-09-24 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16611882A JPS5955085A (en) 1982-09-24 1982-09-24 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPS5955085A true JPS5955085A (en) 1984-03-29
JPS641074B2 JPS641074B2 (en) 1989-01-10

Family

ID=15825359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16611882A Granted JPS5955085A (en) 1982-09-24 1982-09-24 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPS5955085A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61100988A (en) * 1984-10-22 1986-05-19 Nec Corp Semiconductor laser
EP0411612A2 (en) * 1989-08-02 1991-02-06 Canon Kabushiki Kaisha Semiconductor light-emitting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5290280A (en) * 1976-01-22 1977-07-29 Nec Corp Semiconductor laser element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5290280A (en) * 1976-01-22 1977-07-29 Nec Corp Semiconductor laser element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61100988A (en) * 1984-10-22 1986-05-19 Nec Corp Semiconductor laser
EP0411612A2 (en) * 1989-08-02 1991-02-06 Canon Kabushiki Kaisha Semiconductor light-emitting device
US5107311A (en) * 1989-08-02 1992-04-21 Canon Kabushiki Kaisha Semiconductor light-emitting device

Also Published As

Publication number Publication date
JPS641074B2 (en) 1989-01-10

Similar Documents

Publication Publication Date Title
Namizaki Transverse-junction-stripe lasers with a GaAs pn homojunction
US4425650A (en) Buried heterostructure laser diode
US4360919A (en) Semiconductor light emitting device
JPH0381317B2 (en)
US4430741A (en) Semiconductor laser device
US4426700A (en) Semiconductor laser device
US4366568A (en) Semiconductor laser
US4545057A (en) Window structure of a semiconductor laser
US4546481A (en) Window structure semiconductor laser
JPS5955085A (en) Semiconductor light emitting device
JP2013229568A (en) Semiconductor optical device
JPS58207690A (en) Buried type semiconductor laser
JPS61102086A (en) Semiconductor laser
JPH03253089A (en) Semiconductor diode laser and manufacture thereof
JP2555984B2 (en) Semiconductor laser and manufacturing method thereof
JPH03133189A (en) Highly resistive semiconductor layer buried type semiconductor laser
JPS61242091A (en) Semiconductor light-emitting element
US4860299A (en) Semiconductor laser device
JPH09275237A (en) Semiconductor laser device
JP2014154798A (en) Semiconductor laser element and laser module
CA1125897A (en) Strip buried heterostructure laser
EP0144205A2 (en) Semiconductor laser
JPH0828553B2 (en) Semiconductor laser
JPH05129723A (en) Buried heterostructure semiconductor laser and manufacture thereof
Yamakawa et al. Fabrication and characteristics of GalnAsP/InP surface‐emitting laser with circular buried heterostructure