JPS5954908A - Surface position detecting method - Google Patents

Surface position detecting method

Info

Publication number
JPS5954908A
JPS5954908A JP57165738A JP16573882A JPS5954908A JP S5954908 A JPS5954908 A JP S5954908A JP 57165738 A JP57165738 A JP 57165738A JP 16573882 A JP16573882 A JP 16573882A JP S5954908 A JPS5954908 A JP S5954908A
Authority
JP
Japan
Prior art keywords
light
reflected
resist film
optical path
light path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57165738A
Other languages
Japanese (ja)
Inventor
Hiroshi Hashimoto
宏 橋本
Eiji Nishikata
西形 英治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57165738A priority Critical patent/JPS5954908A/en
Publication of JPS5954908A publication Critical patent/JPS5954908A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To eliminate positioning errors in focusing, by projecting a plurality of light beams having different wave lengths at specified angles from the side of the surface of a sample, detecting the respective positions, and performing computation. CONSTITUTION:A light path L10, which is inputted at an incident angle theta1 is divided into a light path L11, which is reflected by the surface of a resist film, and a light path, which is transmitted through a resist film 11 and reflected by the surface of an SiO2 film of a semiconductor wafer 4 (the bottom surface of the resist film). Refractive indexes are different in the resist film in response to the wavelengths of light. Therefore, the light having the wavelength of lambda is refracted at a refractive index theta, passes through a light path L12, and is reflected. The light having the wavelength lambda' is refracted at a refractive index theta', passes through a light path L13, and is reflected. The positions of the reflected light beams, which are actually detected, are based on the combined light paths of the light paths L11, L12 and L13. In this way, the position of the light path L11 from the surface of the resist film, which is not affected by the reflection intensity can be accurately corrected and obtained.

Description

【発明の詳細な説明】 (a)  発明の技術分野 本発明は表面位置検出方法にかくり、例えば縮小投影露
光装置における自・動焦点沿わせ(オートフォーカス)
法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a surface position detection method, such as automatic/dynamic focusing (autofocus) in a reduction projection exposure apparatus.
Concerning improvements in law.

(ハ)従来技術と問題点           □最近
、露光技術の進歩、に伴って従来の密着!光に代す、半
導体ウェハ□−上にマスクパターンヲ縮小投影して露光
する縮小露光即ちD S W (IllLrectS尼
ep on、 th”e Waf’θr)方式が用いら
れるようになっできた。これ、は、従来よシレチクμマ
スクを縮小駿てフオ、トマスクを作成するフォトレピー
タと同じ原理であシ、午の縮小露光法の汎用化は縮小レ
ンズの精度向占に負うところが大きく、マスクが損傷さ
れないなどや長所の多い方法であ、る。
(c) Conventional technology and problems □Recently, with the advancement of exposure technology, the conventional technology is closely adhered to! Instead of using light, a reduction exposure method, in which a mask pattern is projected in a reduced size onto a semiconductor wafer and exposed to light, has come to be used. This method is based on the same principle as the conventional photorepeater, which creates photomasks by reducing the size of the μ mask. This is a method that has many advantages, such as not being affected.

こ9ような縮小露光をおこなう露光装置においては、従
来のX軸、Y軸を調節して位置合わすするアフイメざト
轡構の他に、縮、小イ(ターンを被処理体上、即ち半導
疹ツエ、バー上に鮮明に結像させるための焦点合わ、<
4構が重要な要素となる。
In an exposure apparatus that performs such reduction exposure, in addition to the conventional AF point mechanism that adjusts the X and Y axes to align the Focusing to form a clear image on the bar, <
The four structures are important elements.

したがって、箸、真因の縮小投影露光装置の部分響摩図
、に、示すようにレンズコラム1の周囲にLED茫、ど
、の発堆源2をおき、尽射板8参利用臀て、半、導体ウ
ェハー4上に投射し、その反射光を叩じく反射板5を利
用し、て光検出器6に受光さす、その検出器の定位置指
示によって半導体ウェハー4の面上に絶えず焦点が合わ
されるようにステージ7をZ方向に微細に調節する自動
焦点合わせ機構が設けられている。 。
Therefore, as shown in the partial resonance diagram of the reduction projection exposure device which is the real cause of chopsticks, the emission source 2 of the LED light is placed around the lens column 1, and the emission plate 8 is used at the bottom. The light is projected onto the semiconductor wafer 4, and the reflected light is received by the photodetector 6 using a reflector 5, which continuously focuses the light on the surface of the semiconductor wafer 4 according to the fixed position instruction of the detector. An automatic focusing mechanism is provided that finely adjusts the stage 7 in the Z direction so that the images are aligned. .

ところでくこの焦点合わせ用として投射する光線の波長
(λ)は、当然半導体ウェハー面に塗布されたレジスト
膜を感光しない非感光性波長でなければならず、例えば
レジスト膜の露光用に波長・1360人の遠紫外(UV
)光が使用されていると、焦点合わせ用光線は波995
00λ程度の赤外光が用いられている。
By the way, the wavelength (λ) of the light beam projected for this focusing must naturally be a non-photosensitive wavelength that does not sensitize the resist film coated on the semiconductor wafer surface. Human far ultraviolet (UV)
) light is used, the focusing beam is a wave 995
Infrared light of about 00λ is used.

しかしながら、被処刑体である半導体ウェハー面上には
膜厚1μmあるいは数μmのレジスト膜が塗布されてい
て、第2図に示すように斜角から入口・1した光線の光
路L 10はレジスト膜11の表面で反射する表面反射
光の光路Lllと半導体ウェハー4に形成された例えば
二酸化シリコン(SJLO,)膜12面からのレジスト
底面反射光の光路TJ12との両反射光の合成として、
光検出器に反射することになり、しかも両反射光の反射
強度比の相異によって合成光路も変動し、焦点合わせの
誤差が生ずる欠点がある。即ち、半導体ウェハー表面に
被覆された膜が33.0m膜とアルミニウム(1’)膜
とでは反射率が大きく違って焦点合わせの距離が相異す
る問題もある。
However, a resist film with a thickness of 1 μm or several μm is coated on the surface of the semiconductor wafer, which is the object to be executed, and as shown in FIG. As a synthesis of the optical path Lll of the surface reflected light reflected from the surface of the semiconductor wafer 11 and the optical path TJ12 of the resist bottom surface reflected light from the silicon dioxide (SJLO,) film 12 surface formed on the semiconductor wafer 4,
The light will be reflected to the photodetector, and the combined optical path will also vary due to the difference in the reflection intensity ratio between the two reflected lights, resulting in a focusing error. That is, there is a problem that the reflectance of the 33.0 m film and the aluminum (1') film coated on the surface of the semiconductor wafer is greatly different, and the focusing distance is also different.

(C)発明の目的 本発明の目的は、上記のような焦点合わせの位置誤差を
なくし、反射強度に影響されない表面位置検出方法を提
案するものである。
(C) Object of the Invention An object of the present invention is to propose a surface position detection method that eliminates the above-mentioned focusing position error and is not affected by reflection intensity.

((1)  発明の溝数 このような[]的は、異なる波長をもった複数の光線を
側方よυ投射し、それら光線(レジスト膜に対し非感光
性の光線)の反射光のそれぞれの位置を検出し、その検
出位置よシ計算して正確な表面位置が検出される表面位
置検出方法で達成され、以下詳細に説明する。
((1) Number of grooves of the invention This [] target projects a plurality of light beams with different wavelengths from the side, and each of the reflected light beams (light beams that are insensitive to the resist film) This is achieved by a surface position detection method in which an accurate surface position is detected by detecting the position of the object and calculating the detected position, and will be described in detail below.

(e)  発明の実施例 第3図は本発明にか\る一実施例でおって、2つの波長
(λ、λ′)の光路を示し、入射角0】 で入射した光
路LIOはレジスト膜表面で反射する光路L 1.1 
と、レジスト膜11内を透過し、半導体ウェハー4のS
iO,膜面(レジスト膜底面)で反射する光路とに分れ
るが、レジスト膜内では屈折率が光の波長によって異な
るから、波長λの光は屈折率θ8で屈折して光路L12
を通って反射し、波長λ′の光は屈折率θ′2で屈折し
て光路TJ13を通って反射し、実際に検出される反射
光の位置はこれらの光路Lll 、L12 、T、−+
13の合成光路である。
(e) Embodiment of the Invention Figure 3 shows an embodiment of the present invention, in which the optical path of two wavelengths (λ, λ') is shown, and the optical path LIO incident at an incident angle of 0 is a resist film. Optical path L reflected on the surface 1.1
, the S of the semiconductor wafer 4 passes through the resist film 11.
iO, and an optical path that is reflected at the film surface (bottom surface of the resist film), but since the refractive index within the resist film differs depending on the wavelength of the light, the light with the wavelength λ is refracted with the refractive index θ8, and the optical path is L12.
The light with the wavelength λ' is refracted by the refractive index θ'2 and reflected through the optical path TJ13, and the position of the reflected light that is actually detected is along these optical paths Lll, L12, T, -+
13 combined optical paths.

しかし、このように異なる波長λ、λ′をもった光の合
成光路からは反射強度に影響を受けないレジスト膜面か
らの光路TJ 11の位置を正しく補正して求めること
が可能となる。以下にそれを説明すると、第4図(a)
に波長λの光の光路をモデル図で示しており、レジスト
膜の屈折率n=−fiηitでちS、Ln 02 す、光路TJ 11と光路L12の距離DIは2X (
ltan 02 X (!O8θ1である。
However, from the combined optical path of the lights having different wavelengths λ and λ', it is possible to correctly correct and determine the position of the optical path TJ 11 from the resist film surface, which is not affected by the reflection intensity. This will be explained below as shown in Figure 4 (a).
The optical path of light with wavelength λ is shown in a model diagram, and the refractive index of the resist film n=-fiηit, S, Ln 02 , and the distance DI between optical path TJ 11 and optical path L12 is 2X (
ltan 02 X (!O8θ1.

したがって、2つの波長(λ、ス′)を用いた場合の光
路■・11とL12および光路丁、11とLl3の距離
D1.D2は DI = 2a tan 02 ×OO801D2 =
 2(1,tanθ’ x cosθ1(但しd、;レ
ジスト膜厚) となる(第4図(b)参照)。実際には「JllとTJ
12及びTJ l 1とl113の合成された光路とし
て検出される強度比をa:bとして、TJ 11の光路
を基準にすると、LllとLIsの合成光路はLllの
光路位置からD’l = −”−−X 2 a tan
θ2Cosθ1a+b また、LllとLl、3の合成光路は同じくLllの光
路位置から r、/2= ’t)  X 2d tanθ’ヤcoS
O1+i+L) の距離となる(第4図(c)参照)。L 1 lとT、
12の合成光路と、LllとLl3の合成光路との差は
、(D′2−Dl)となる(第4図(d)#照)。求め
ようとするものは凡=柊宝p 2 、 D’】= 許口
D1であり、まが成り立つ・そのうち・a”+’b (
D2−Dl)Id、実際に測定できる関係値であシ、且
つ、 となって、tanθ’2 、 tanθ2は屈折率に依
存し、屈n x 1,7 jl、n’ 、= 1..7
.Q、、件し、2−01 mlloとすれば、しだがっ
て、L11+L11の合−−i装置と、IJ Ll。
Therefore, when two wavelengths (λ, S') are used, the optical path 11 and L12 and the distance D1 between the optical path 11 and L13. D2 is DI = 2a tan 02 ×OO801D2 =
2(1, tan θ' x cos θ1 (d,; resist film thickness) (see Figure 4(b)).
12 and TJ l If the intensity ratio detected as the combined optical path of 1 and l113 is a:b, and the optical path of TJ 11 is taken as a reference, the combined optical path of Lll and LIs is D'l = - from the optical path position of Lll. ”--X 2 a tan
θ2Cosθ1a+b Also, the combined optical path of Lll and Ll, 3 is also r from the optical path position of Lll, /2 = 't) X 2d tanθ'ya coS
O1+i+L) (see FIG. 4(c)). L 1 l and T,
The difference between the combined optical path of No. 12 and the combined optical paths of Lll and Ll3 is (D'2-Dl) (see # in FIG. 4(d)). What we are trying to find is ordinary = Hiiragiho p 2, D'] = Shuguchi D1, and Ma holds true, eventually, a''+'b (
D2-Dl)Id, is a relational value that can be actually measured, and tanθ'2, tanθ2 depends on the refractive index, and the refraction n x 1,7 jl,n', = 1. .. 7
.. Q. If the case is 2-01 mllo, then the combination of L11+L11--i device and IJ Ll.

となる。becomes.

+L1Bの合成光路位置との差aEb (D2−01)
が求められると、例えばb  1)、を求めることがで
き、 ′□α+b そのlD2だけシフトした位置に反射光がくるa十す ように補正すれば、正確な表面の位置検出をすることが
できる。
Difference aEb from +L1B combined optical path position (D2-01)
When , for example, b 1) can be obtained, and if the reflected light is corrected so that it comes to a position shifted by 1D2, accurate surface position detection can be performed. .

実用的には、1つの発光源よシ一定の入射角モvt)ス
ト膜面に投光呟その反射光を2つに別ブてそれぞれ波長
λ、λ′の単波長光を透過させるレイlシタを通して、
別々の光検出器で同時に受光してその位置を検出し、そ
の値から電算機によつヤレジスト膜表面からの反射位置
を算出して、その計算値よりステージを上下動させる方
法が採られる。
Practically speaking, one light emitting source emits light onto the film surface at a constant angle of incidence, and the reflected light is divided into two parts, each of which transmits single wavelength light with wavelengths λ and λ'. Through the top,
A method is adopted in which the light is simultaneously received by separate photodetectors and its position is detected, the position of reflection from the resist film surface is calculated by a computer from that value, and the stage is moved up and down based on the calculated value.

虻)発明の効果              □ 。g) Effect of invention           □.

以上の実施例による説明から判るように、異なる波長を
もつ複数の光線で検出すると、反射強度比に関係なく、
半透明膜をもった試料の正確な表、′i′ 面位置を検出することができる。したがって、本発明を
例えば縮小露光装置に適用すれば、露光精度が艮くなシ
、一層高精度なパターンを形成できる効果系あるもので
ある。
As can be seen from the explanation of the above embodiments, when multiple light beams with different wavelengths are detected, regardless of the reflection intensity ratio,
It is possible to accurately detect the position of the 'i' surface of a sample with a semi-transparent film. Therefore, if the present invention is applied to, for example, a reduction exposure apparatus, it will be possible to form a pattern with even higher precision without compromising exposure accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は縮小投影露光装置の自動焦点合わせ機構め概要
図゛、第2図は従来の1つの発光源から光線の光路図、
第3図は本発明にか−る2つの波長の光線の光路図、第
4図<a)〜蛙)は本発明にか\る、検出光路位置から
補正距離を求めるだめの参照用光路図である。 図中、1はレンズコラム、2は発光源、3・5は反射板
、4は半導体ウェハー、6は光検出器。 7はステージ、11はレジスト膜、12はSi、0g膜
、Lloは入射光の光路、Lllはレジスト膜表面から
の反射光の光路、 Lll!、LlBはレジスト膜を透
過して半導体ウェハー面からの反射光の光路を示す。
Figure 1 is a schematic diagram of the automatic focusing mechanism of a reduction projection exposure apparatus, and Figure 2 is a diagram of the optical path of a light beam from a single conventional light source.
Fig. 3 is an optical path diagram of light beams of two wavelengths according to the present invention, and Fig. 4 <a) to frog) are reference optical path diagrams for calculating the correction distance from the detection optical path position according to the present invention. It is. In the figure, 1 is a lens column, 2 is a light emitting source, 3 and 5 are reflective plates, 4 is a semiconductor wafer, and 6 is a photodetector. 7 is a stage, 11 is a resist film, 12 is a Si, 0g film, Llo is an optical path of incident light, Lll is an optical path of reflected light from the resist film surface, Lll! , LlB indicate the optical path of light transmitted through the resist film and reflected from the semiconductor wafer surface.

Claims (1)

【特許請求の範囲】[Claims] 半透明膜で表面が覆われた試料面の表面位置を検出する
に際し、該醪料面の側方よシ所定角度で試料面に異なる
波長をもった電数の光線を棹、射し、それら光線の反射
光のそれぞれの位置を検量、し、該検出位置よシ計算し
て正確、な表面装置を検出することを特徴とする表面位
置検出方法。
When detecting the surface position of a sample surface covered with a semi-transparent film, electric light beams with different wavelengths are beamed onto the sample surface at a predetermined angle from the side of the mortar surface, and the 1. A surface position detection method, comprising: calibrating each position of reflected light of a light beam, and calculating the detected position to accurately detect a surface device.
JP57165738A 1982-09-22 1982-09-22 Surface position detecting method Pending JPS5954908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57165738A JPS5954908A (en) 1982-09-22 1982-09-22 Surface position detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57165738A JPS5954908A (en) 1982-09-22 1982-09-22 Surface position detecting method

Publications (1)

Publication Number Publication Date
JPS5954908A true JPS5954908A (en) 1984-03-29

Family

ID=15818134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57165738A Pending JPS5954908A (en) 1982-09-22 1982-09-22 Surface position detecting method

Country Status (1)

Country Link
JP (1) JPS5954908A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170710U (en) * 1984-10-16 1986-05-14
JPS62140419A (en) * 1985-12-16 1987-06-24 Canon Inc Position detector of surface
JPS62182612A (en) * 1986-02-06 1987-08-11 Toshiba Corp Apparatus for measuring surface position of specimen
JPS62190410A (en) * 1986-02-18 1987-08-20 Toshiba Corp Measuring instrument for sample surface position
JPS62196615A (en) * 1986-02-13 1987-08-31 スペクトラ−テツク・インコ−ポレ−テツド Optical system and transmission of light beam
JPS62299716A (en) * 1986-06-19 1987-12-26 Nikon Corp Surface displacement detecting device
JPS6331117A (en) * 1986-07-15 1988-02-09 シ−メンス、アクチエンゲゼルシヤフト Aligner in lithography system and operation of the same
JPS6360527A (en) * 1986-08-27 1988-03-16 Yokogawa Hewlett Packard Ltd Focusing method for projection printer
US5162642A (en) * 1985-11-18 1992-11-10 Canon Kabushiki Kaisha Device for detecting the position of a surface

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170710U (en) * 1984-10-16 1986-05-14
US5162642A (en) * 1985-11-18 1992-11-10 Canon Kabushiki Kaisha Device for detecting the position of a surface
JPS62140419A (en) * 1985-12-16 1987-06-24 Canon Inc Position detector of surface
JPS62182612A (en) * 1986-02-06 1987-08-11 Toshiba Corp Apparatus for measuring surface position of specimen
JPS62196615A (en) * 1986-02-13 1987-08-31 スペクトラ−テツク・インコ−ポレ−テツド Optical system and transmission of light beam
JPS62190410A (en) * 1986-02-18 1987-08-20 Toshiba Corp Measuring instrument for sample surface position
JPS62299716A (en) * 1986-06-19 1987-12-26 Nikon Corp Surface displacement detecting device
JPS6331117A (en) * 1986-07-15 1988-02-09 シ−メンス、アクチエンゲゼルシヤフト Aligner in lithography system and operation of the same
JPH0770462B2 (en) * 1986-07-15 1995-07-31 シ−メンス、アクチエンゲゼルシヤフト Positioning device in lithographic apparatus and its operating method
JPS6360527A (en) * 1986-08-27 1988-03-16 Yokogawa Hewlett Packard Ltd Focusing method for projection printer

Similar Documents

Publication Publication Date Title
US5162642A (en) Device for detecting the position of a surface
JP3296239B2 (en) Proximity exposure apparatus with gap setting mechanism
US4748333A (en) Surface displacement sensor with opening angle control
TW201805741A (en) Mark detection apparatus, mark detection method, measurement apparatus, exposure apparatus, exposure method and method of manufacturing device
JP3008633B2 (en) Position detection device
JPS5954908A (en) Surface position detecting method
JP2998010B2 (en) Lithography wafer alignment system
JP2003007601A (en) Method of measuring interval between two objects, method of exposing semiconductor using the same, interval measuring instrument, and semiconductor exposure system
TWI358529B (en) Shape measuring apparatus, shape measuring method,
US11221565B2 (en) Level sensor and lithographic apparatus
JPS62140418A (en) Position detector of surface
JP3143514B2 (en) Surface position detecting apparatus and exposure apparatus having the same
JP2002005617A (en) Optical measurement device
JPH05182896A (en) Object-position detection apparatus
JP2698446B2 (en) Interval measuring device
JP2775988B2 (en) Position detection device
JP2692965B2 (en) Position detection device
JPH07311009A (en) Position detection device
JP4776321B2 (en) Interval measurement method and interval measurement device
JPH05267117A (en) Method and device for detecting and setting gap between mask and substrate
JP3222295B2 (en) Optical displacement sensor
JP2626077B2 (en) Interval measurement method
JP2903842B2 (en) Interval detection method and semiconductor device manufacturing method using the same
JPH0950135A (en) Alignment method
JPH0936036A (en) Method and apparatus for detecting at least either the inclination or height of an optically multilayer object