JPS5954737A - Restriction of thrust - Google Patents

Restriction of thrust

Info

Publication number
JPS5954737A
JPS5954737A JP16390282A JP16390282A JPS5954737A JP S5954737 A JPS5954737 A JP S5954737A JP 16390282 A JP16390282 A JP 16390282A JP 16390282 A JP16390282 A JP 16390282A JP S5954737 A JPS5954737 A JP S5954737A
Authority
JP
Japan
Prior art keywords
pressure
valve
thrust
low
balance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16390282A
Other languages
Japanese (ja)
Inventor
Soichi Kurosawa
黒沢 宗一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16390282A priority Critical patent/JPS5954737A/en
Publication of JPS5954737A publication Critical patent/JPS5954737A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate thrust variation and prevent breakage by controlling the air flow-rate in abnormal state in the case when an axial through load is controlled by introducing the air bleeded from a high-pressure side bleeding line into a low-pressure side balance piston part, in a biaxial gas turbine. CONSTITUTION:A thrust restricting valve 15 is installed in a balance air line 8 which is inserted into a balance piston 21 part at the outlet edge of a low-pressure turbine 5 after bleeding from a high-pressure compressor 1. A balance air line 16 which communicates from a balance piston 22 part at the discharge edge of a low-pressure compressor 6 to the inlet of the low-pressure compressor 6 is installed, and an ON/OFF valve 17 is installed midway. A limit valve 15 and the ON/OFF valve 17 operate to be perfecty opened and closed respectively during the rated operation, while when a load is cut-off, the ON/OFF valve 17 is immediately opened, and the limit value 15 is closed after the lapse of a predetermined time and closed to the minimum flow-rate level. Thus, the pressure succeeding to the limit valve 15 is reduced, and also the pressure in the line 16 is reduced, and thus thrust variation is suppressed.

Description

【発明の詳細な説明】 本発明は、二軸Φ再燃型ガスタービンのスラスト制限方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thrust limiting method for a two-shaft Φ reburning gas turbine.

第1図に従来のガスタービンの空気系統図を示す。この
ガスタービンは二軸再燃式であり、燃・l尭器を二個も
ち、父、高圧系と低圧系に各々圧縮機を持ち、二段圧縮
方式をとっおり、且つ、最高効率点を得るため、高ノI
:、圧縮機lと低圧圧縮機6の圧力配分を変えている。
FIG. 1 shows an air system diagram of a conventional gas turbine. This gas turbine is a twin-shaft reburning type, with two reburners, a compressor in the high-pressure system and a low-pressure system, and uses a two-stage compression system to achieve the highest efficiency point. Tame, Takano I
:, the pressure distribution between the compressor 1 and the low pressure compressor 6 is changed.

又、高圧系軸と低圧系軸を分け、回転数を変えることに
より1部分負萌における効率低下を最小限に抑えている
。このため。
In addition, by separating the high-pressure system shaft and the low-pressure system shaft and changing the rotation speed, the decrease in efficiency due to partial negative operation is minimized. For this reason.

第2図に示すように低圧系では、低1−E土縮11局6
の吐出圧lOが4.8 k f/cniであるのに対し
、低圧タービン5の入口圧9は8.8 KW/adと高
く、低圧tilj系の内部圧力バランスのみでは、流体
圧カルによって生じるスラストをバランスさぜることが
不Eす1j12である。このため、高圧圧縮機1の抽気
を利用しこれを低圧タービン5の出11端に設けたバラ
ンスピストン21に接続し、強制的なスラストバランス
を行なっていた。
As shown in Figure 2, in the low pressure system, there are 11 low 1-E earth shrinkage stations 6
The discharge pressure lO of is 4.8 kf/cni, while the inlet pressure 9 of the low pressure turbine 5 is as high as 8.8 KW/ad. It is 1j12 that it is impossible to balance the thrust. For this reason, the bleed air from the high-pressure compressor 1 is used and connected to a balance piston 21 provided at the output end of the low-pressure turbine 5 to perform forced thrust balance.

この場合、定格負荷点一点におけるスラストバランスは
、高圧圧縮機1の抽気点を顆ぶことによυ、バランスピ
ストン21に挿入する圧力を変えて、最適バランスを形
成することはljJ′[止である。
In this case, the thrust balance at one rated load point can be achieved by constricting the bleed point of the high-pressure compressor 1, and it is impossible to create the optimal balance by changing the pressure inserted into the balance piston 21. be.

しかし、負荷巡断時等の異常時には、低圧1抽糸のオー
バースピードを防止する/こめ、低圧圧縮陵6の吐出圧
を曲の圧力よりゆるやかに下げざる金得ず、q!r点の
圧力はリニアに変化1〜ない。全負荷・傾断時の圧力変
化を第2図に示す。また、この時の低圧軸系のスラスト
変化を第3図に示す。
However, in the event of an abnormality such as during load cycling, in order to prevent the overspeed of the low pressure 1 drawing, it is necessary to lower the discharge pressure of the low pressure compression ridge 6 more slowly than the bending pressure. The pressure at point r changes linearly from 1 to no. Figure 2 shows the pressure change under full load and tilting. Also, FIG. 3 shows the thrust change of the low-pressure shaft system at this time.

これより、定格負峙点におけるスラストかの26■(■
は発覗機側向きのスラストであることを示す)であるの
に対し、負F[i断6秒後には。
From this, the thrust at the rated negative point is 26■ (■
(indicates that the thrust is directed toward the peeping machine side), whereas negative F [i after 6 seconds.

○65■まで変化する。このため、スラスト軸受25は
8926°fからf−)65■までの荷重を許容する大
型スラスト軸受を用いる必要があり、且つ。
○Changes up to 65■. For this reason, it is necessary to use a large thrust bearing 25 that can tolerate loads from 8926°f to f-)65cm.

このように大きな変化が@、敞に89側からe側に起こ
るため、スラスト軸受25への#撃力がかかり。
Since such a large change occurs from the 89 side to the e side, an impact force is applied to the thrust bearing 25.

油膜切れ、軸受損傷に至り、ひいてはタービン破損に至
る可能性をもっている。又、第3図に示すように低圧タ
ービン5のスラストには、■87Tからe6Tまで変化
しておシ、低圧タービン5のケーシングも、その反動力
によシ、力の方向が■からeに変る。このため、クー7
ングを固定しているサポートを両方向固定としなければ
ならず。
This can lead to oil film failure, bearing damage, and even turbine damage. Also, as shown in Figure 3, the thrust of the low pressure turbine 5 changes from ■87T to e6T, and the casing of the low pressure turbine 5 also changes from ■ to e due to the reaction force. Change. For this reason, Ku7
The support securing the ring must be fixed in both directions.

製作及び組立上・非常に困難でるる。It is extremely difficult to manufacture and assemble.

本発明の目的は低圧軸系に発生する瞬時の過大なるスラ
スト変化を無くシ、異常状態でも安定なスラストバラン
スをもつfCIIII系を提供するにある。
An object of the present invention is to provide an fCIII system that eliminates instantaneous excessive thrust changes that occur in a low-pressure shaft system and has a stable thrust balance even under abnormal conditions.

本発明の要点は、低圧タービン出口端のバランスピスト
ンに挿入する空気流鼠を制限することにある。
The gist of the invention is to limit the air flow rod inserted into the balance piston at the outlet end of the low pressure turbine.

第4図に本発明の一実施例を示す。FIG. 4 shows an embodiment of the present invention.

高圧圧縮機1より抽気し、低圧タービン5の出ロ端バラ
ンスピストン21部に挿入するバランス空気ライン8に
おいて、空気ライン8途上にスラスト制限弁15を設け
る。又、低圧圧縮機6の吐filyffitバランスピ
ストン22部より低圧圧縮機6の入口へ結ぶバランス空
気ライン16を設け、その途上に開閉弁17を設置する
In a balance air line 8 that extracts air from the high-pressure compressor 1 and inserts it into the balance piston 21 at the output end of the low-pressure turbine 5, a thrust restriction valve 15 is provided midway through the air line 8. Further, a balance air line 16 is provided that connects the discharge fillyffit balance piston 22 of the low pressure compressor 6 to the inlet of the low pressure compressor 6, and an on-off valve 17 is installed on the way.

各弁の開閉手順を第5図に示す。The opening and closing procedure of each valve is shown in FIG.

定格運転中は、制限弁15は全開、開閉弁17は全閉と
しておく。この時点では両弁15,17の有無による影
響はなく、従来例と全く同一の偵能を示す。
During rated operation, the restriction valve 15 is kept fully open and the on-off valve 17 is kept fully closed. At this point, the presence or absence of both valves 15 and 17 has no effect, and the reconnaissance performance is exactly the same as that of the conventional example.

負荷遮断時、開閉弁17を開閉弁制御装置24により直
ちに開は始め、3秒後に全開とする。制限弁15は、制
限弁制御装置23により1秒後に閉、じ始め、5秒後に
最低流量レベルまで閉じる。
When the load is cut off, the on-off valve 17 starts to open immediately by the on-off valve control device 24, and is fully opened after 3 seconds. The restriction valve 15 begins to close after 1 second and closes to the lowest flow level after 5 seconds by the restriction valve controller 23.

この最低流量レベルは、低圧タービン5内部の軸封とし
ての最低必要流量として設定しておく。これにより、低
圧タービン5のバランス空気ライン8は、負荷遮断時、
1秒後から制限弁15閉により、バランス空気ライン8
の通過空気量が制限されるため、制限弁15以降の圧力
が降下し、低圧タービン5をe方向に押す力が弱まる。
This minimum flow rate level is set as the minimum required flow rate as a shaft seal inside the low pressure turbine 5. As a result, the balance air line 8 of the low pressure turbine 5 is
After 1 second, the restriction valve 15 is closed and the balance air line 8 is closed.
Since the amount of air passing through is restricted, the pressure after the restriction valve 15 decreases, and the force pushing the low-pressure turbine 5 in the e direction weakens.

又、低圧圧縮機6のバランス空気ライン16の圧力は、
開閉弁17を開くことにより、低圧圧縮機6の入口圧力
(大気圧)まで下がり、低圧タービンと同様にe方向の
スラストが減少する。
Moreover, the pressure of the balance air line 16 of the low pressure compressor 6 is
By opening the on-off valve 17, the inlet pressure of the low-pressure compressor 6 is reduced to the atmospheric pressure, and the thrust in the e direction is reduced similarly to the low-pressure turbine.

第6図に本発明を適用した場ばの圧力変化を示し、第7
図にその時のスラスト変化を示す。
Figure 6 shows the pressure change when the present invention is applied.
The figure shows the thrust change at that time.

これによりトータルスラスト14aは、Φ26■から、
負荷遮断6秒後に最低のe6Tまで変化するも、その変
*iは従来例に比し非常に小さくなる。且つ、低圧ター
ビン5のスラスト1,2a4゜@ 86 ’@’から、
Φ23Tの間で変動するのみでe方向にまで低下するこ
とはなくなる。このため。
As a result, the total thrust 14a is from Φ26■,
Although it changes to the lowest e6T 6 seconds after load shedding, the change *i is very small compared to the conventional example. And from the thrust 1,2a4°@86 '@' of the low pressure turbine 5,
It only fluctuates between Φ23T and does not decrease to the e direction. For this reason.

スラスト軸受25の容量は小さくてすみ、且つ、瞬時の
過大なスラスト変化が無くなu、l111+受り撰瘍は
回避され、又、低圧タービン5の固定もの方向のみを同
定する構造とすることで可能となる。
The capacity of the thrust bearing 25 can be small, instantaneous excessive thrust changes are eliminated, U, l111 + selection is avoided, and the structure is such that only the fixed direction of the low pressure turbine 5 can be identified. It becomes possible.

更に、各弁15.17は負荷遮断直後の変動がおさ−i
シ、金置屋状態入った淡、初期の状態にまで復帰式せる
ため、各弁の制御装置23.24によシ、60秒d径過
後、前述の開閉操作と全く逆の操作を行なうものとする
Furthermore, each valve 15.17 is susceptible to fluctuations immediately after load shedding.
After 60 seconds have elapsed, each valve's control device 23 and 24 is operated in the exact opposite manner to the opening/closing operation described above, in order to return the valve to its initial state. do.

なお1図中2は高圧燃焼器、3は高圧タービン、4は再
熱器、7は発゛畦礪、11は抽出空気ライン圧ツバ13
aは低圧圧縮機スラスト、18は制限弁開度、19は開
閉弁開度でめる。
In Figure 1, 2 is a high-pressure combustor, 3 is a high-pressure turbine, 4 is a reheater, 7 is a firing ridge, and 11 is an extraction air line pressure collar 13.
a is the low pressure compressor thrust, 18 is the limit valve opening degree, and 19 is the opening/closing valve opening degree.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のガスタービンの空気系統図、第2図は従
来の負#連断時の圧力変化特性図、第3図は従来の負荷
遮断時のスラスト特性図、第4図は本発明の空気系統図
、第5図は弁の開閉手順な・示す図、第6図は本発明適
用時の負荷遮断時の圧力変化特性図、第7図は本発明適
用時の負峙、!1457時のスラスト変化特性図である
。 8・・・抽出空気ライン、15・・・fljlJ限弁、
16・・・1ノド出空気うfン、17・・・開閉弁、2
3・・・制限弁制御11j装置置、24・・・開閉弁開
側1装置。 代理人 升理士 高晦明夫[、、。 1 “、パ□・1 v、10 ′$2図 ¥30 第 ジ閏 竿60 ′I  咽′ 第7閃
Figure 1 is a conventional gas turbine air system diagram, Figure 2 is a conventional pressure change characteristic diagram during negative # connection, Figure 3 is a conventional thrust characteristic diagram during load shedding, and Figure 4 is the present invention. Figure 5 is a diagram showing the valve opening/closing procedure, Figure 6 is a pressure change characteristic diagram during load shedding when the present invention is applied, and Figure 7 is a negative diagram when the present invention is applied. It is a thrust change characteristic diagram at the time of 1457. 8...Extraction air line, 15...fljlJ limit valve,
16...1 air outlet, 17...on/off valve, 2
3... Limiting valve control 11j device, 24... On-off valve opening side 1 device. Agent: Masu Rishi Akio Takaaki [,,. 1 ", Pa□・1 v, 10 '$2 Figure ¥30 60th jump 60 'I throat' 7th flash

Claims (1)

【特許請求の範囲】 1、二軸型ガスタービンで、高圧側油気ラインよシ抽出
した空気τ、低圧側バランスピストン部に導き、軸スラ
ストを調整する方法において、前記璧気ラインの空気量
を異常時に制御することを特徴とするスラスト制限方法
。 2、吐出端にバランスピストンをもった圧縮機で。 前記バランスピストンから低圧側に接続するラインの途
上で、異常時、このラインからの排出空気量を制御する
ことを特徴とするスラスト制限方法。
[Scope of Claims] 1. In a method of adjusting shaft thrust by introducing air τ extracted from a high-pressure side oil/air line to a low-pressure side balance piston in a two-shaft gas turbine, the amount of air in the oil/air line A thrust limiting method characterized in that the thrust is controlled at abnormal times. 2. A compressor with a balance piston at the discharge end. A thrust limiting method characterized by controlling the amount of air discharged from the line connecting the balance piston to the low pressure side in the event of an abnormality.
JP16390282A 1982-09-22 1982-09-22 Restriction of thrust Pending JPS5954737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16390282A JPS5954737A (en) 1982-09-22 1982-09-22 Restriction of thrust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16390282A JPS5954737A (en) 1982-09-22 1982-09-22 Restriction of thrust

Publications (1)

Publication Number Publication Date
JPS5954737A true JPS5954737A (en) 1984-03-29

Family

ID=15782993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16390282A Pending JPS5954737A (en) 1982-09-22 1982-09-22 Restriction of thrust

Country Status (1)

Country Link
JP (1) JPS5954737A (en)

Similar Documents

Publication Publication Date Title
US6226974B1 (en) Method of operation of industrial gas turbine for optimal performance
JP4897993B2 (en) Turbine sidewall cavity pressure modulation system and method
EP2365189B1 (en) Steam turbine system including valve for leak off line for controlling seal steam flow
JPS60543B2 (en) Control system of multistage axial flow compressor of gas turbine engine
US3971210A (en) Start-up compressed air system for gas turbine engines
JPS61237802A (en) Warming-up method for steam turbine
US6792760B2 (en) Method for operating a turbine
JP5486489B2 (en) Control method of turbo compressor
US20150330220A1 (en) Method for balancing thrust, turbine and turbine engine
US2651911A (en) Power plant having a common manual control for the fuel valves of the compressor and power turbines
JPS5954737A (en) Restriction of thrust
US6851927B2 (en) Fluid-flow machine with high-pressure and low-pressure regions
JPH11280408A (en) Control method of steam turbine
KR101243393B1 (en) Method for modifying a turbocompressor
JPH036334B2 (en)
JP2001153091A (en) Method of starting multi-stage compression system and multi-stage compression system
JP4127911B2 (en) Steam turbine ground steam pressure controller
JPS5810595B2 (en) Automatic operation control device for turbo compressor
JPS6350692A (en) Screw type expander compressor
RU2165547C2 (en) Aircraft engine multi-stage axial-flow compressor
JPH0749039A (en) Gas turbine
JPS61182491A (en) Automatic operation controller of turbocompressor
JPH0658156A (en) Exhaust gas switching valve for sequential turbo
JPH01203604A (en) Auxiliary steam control device for feed water pump driving turbine
JPS62153530A (en) Gas turbine