JPS5953091B2 - gas centrifuge - Google Patents

gas centrifuge

Info

Publication number
JPS5953091B2
JPS5953091B2 JP8830477A JP8830477A JPS5953091B2 JP S5953091 B2 JPS5953091 B2 JP S5953091B2 JP 8830477 A JP8830477 A JP 8830477A JP 8830477 A JP8830477 A JP 8830477A JP S5953091 B2 JPS5953091 B2 JP S5953091B2
Authority
JP
Japan
Prior art keywords
electrode
gas centrifuge
needle
gas
vacuum container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8830477A
Other languages
Japanese (ja)
Other versions
JPS5423269A (en
Inventor
久雄 大塚
隆男 小山
豊彦 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8830477A priority Critical patent/JPS5953091B2/en
Publication of JPS5423269A publication Critical patent/JPS5423269A/en
Publication of JPS5953091B2 publication Critical patent/JPS5953091B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Centrifugal Separators (AREA)

Description

【発明の詳細な説明】 本発明はガス遠心分離機に係り、特に最適な回転胴内温
度分布を生起させることにより分離性能の向上を達成し
うるガス遠心分離機に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas centrifuge, and more particularly to a gas centrifuge that can improve separation performance by creating an optimal temperature distribution within a rotating barrel.

ガス遠心分離機の分離性能を向上させるために、高速回
転胴内の被分離ガスの流れに対する種々の工夫が従来よ
りなされているが、その一つに被分離ガスの給排気によ
って定まる回転胴内の流れを、回転胴の上下に温度差を
与えることによって生ずる熱対流で増長させ、分離性能
を向上させる方法がある。
In order to improve the separation performance of gas centrifuges, various improvements have been made to the flow of gas to be separated within the high-speed rotating barrel. There is a method of increasing the flow of water using thermal convection generated by creating a temperature difference between the top and bottom of the rotary cylinder to improve separation performance.

第1図に給排気を行うための静止管を回転胴内に挿入し
たスクープ型遠心分離機の概略構造を示す。
FIG. 1 shows the schematic structure of a scoop-type centrifugal separator in which a stationary tube for supplying and exhausting air is inserted into a rotating barrel.

上、下仕切板1,2を内部に固定した回転胴3は、磁気
軸受4とピボット軸受5に支承され、真空容器6内で回
転駆動機構7によって高速回転される。
A rotary drum 3 having upper and lower partition plates 1 and 2 fixed therein is supported by a magnetic bearing 4 and a pivot bearing 5, and is rotated at high speed by a rotary drive mechanism 7 within a vacuum container 6.

被分離ガスGは回転胴3の中心軸上に設けた給気管8か
ら回転胴内に噴出した後、矢印で示したように循環し、
軽成分ガスと重成分ガスに分離され、軽成分ガスLはプ
ロダクトスクープ管9によって抜き出され、一方、重成
分ガスはウェストスクープ管10によって抜き出される
The gas G to be separated is ejected into the rotary shell from an air supply pipe 8 provided on the central axis of the rotary shell 3, and then circulates as shown by the arrow.
The light component gas and the heavy component gas are separated, and the light component gas L is extracted through the product scoop pipe 9, while the heavy component gas is extracted through the waist scoop pipe 10.

その際、上仕切板1とプロダクトスクープ管9、及び下
仕切板2とウェストスクープ管10との間に風損による
熱が発生し、上下仕切板1,2や回転胴3の両端部の温
度を上昇させる。
At that time, heat due to wind damage is generated between the upper partition plate 1 and the product scoop pipe 9, and between the lower partition plate 2 and the waist scoop pipe 10, and the temperature at both ends of the upper and lower partition plates 1, 2 and the rotating body 3 increases. to rise.

さらに、真空容器6内を高真空度に保持する為に設けた
分子ポンプ11の付近も回転胴3との風損により発熱す
る。
Further, the vicinity of the molecular pump 11 provided to maintain a high degree of vacuum inside the vacuum vessel 6 also generates heat due to windage damage with the rotary shell 3.

また、回転駆動機構7の発熱によって、回転胴3の下端
部も加熱される。
Furthermore, the lower end of the rotary drum 3 is also heated by the heat generated by the rotary drive mechanism 7.

このような回転胴3の温度上昇を、冷却水の通水、黒体
化及び油体化処理等によって抑え、分離性能向上に達し
た回転胴温度分布を得ようとしているが、顕著な効果は
得られず、第2図a、 l)に示すような温度分布及
び回転胴内流れを呈している。
Efforts have been made to suppress such temperature rise in the rotary drum 3 by passing cooling water, black body treatment, oil body treatment, etc., and to obtain a temperature distribution of the rotary drum that improves separation performance. However, the temperature distribution and the flow inside the rotating cylinder are as shown in Figure 2 a and l).

すなわち、温度分布は中だるみとなり、その為に回転胴
内流れは側壁熱対流が上下2つに分割され、熱対流の効
果が半減されて分離性能が低下する原因となっている。
In other words, the temperature distribution becomes sagging in the middle, and as a result, the side wall heat convection of the flow inside the rotary cylinder is divided into upper and lower halves, and the effect of heat convection is halved, causing a decrease in separation performance.

また、下仕切板2の真上付近の大きな温度傾斜も下仕切
板2の真上付近の流れを乱す原因となっている。
Further, a large temperature gradient in the vicinity directly above the lower partition plate 2 also causes disturbance of the flow in the vicinity directly above the lower partition plate 2.

本発明は、上記欠点を改善するためになされたものであ
り、最適な回転胴内温度分布が得られ、回転胴内に理想
的な熱対流を生起させて分離性能の向上を図ることを目
的とする。
The present invention has been made to improve the above-mentioned drawbacks, and aims to improve separation performance by obtaining an optimal temperature distribution within the rotating barrel and by generating ideal heat convection within the rotating barrel. shall be.

この目的を達成するため、本発明は、回転胴のバッフル
板取付位置に対向する真空容器の内面部に、回転胴と適
宜間隔を有して電極を設置し、この電極に負の直流電圧
を印加するように構成したことを特徴とする。
In order to achieve this object, the present invention provides an electrode that is installed on the inner surface of the vacuum container facing the baffle plate mounting position of the rotary drum at an appropriate distance from the rotary drum, and that a negative DC voltage is applied to the electrode. It is characterized in that it is configured to apply an electric current.

すなわち、本発明は、分子ポンプ等による発熱を、静電
冷却法によって除き、分離性能の向上が図れる回転胴温
度分布を得るものである。
That is, the present invention removes heat generated by a molecular pump or the like by an electrostatic cooling method, thereby obtaining a temperature distribution in the rotating body that can improve separation performance.

静電冷却法は(Kishi & Eda : Pr
acticalDevelopment in the
Machining Process byUse
of the Elec
trostaticCooling、Int、J、MT
DR,Vol、16 (1976)) にも記載されて
いるが、この原理は第3図に示すようなものである。
The electrostatic cooling method is (Kishi & Eda: Pr
actual development in the
Machining Process byUse
of the Elec
trostaticCooling, Int, J, MT
DR, Vol. 16 (1976)), this principle is as shown in FIG.

すなわち、第3図において、12は除熱すべき高温物体
で、この高温物体12に針状の電極13を接近させ、そ
の電極13に高電圧発生装置14により負の直流電圧を
かけ、一方正の電極15をアース16に接続する。
That is, in FIG. 3, 12 is a high-temperature object to be heat removed, a needle-shaped electrode 13 is brought close to this high-temperature object 12, a negative DC voltage is applied to the electrode 13 by a high voltage generator 14, and a positive DC voltage is applied to the electrode 13. The electrode 15 of is connected to ground 16.

以上の操作により、電極13からイオン風が生じ、この
イオン風が高温物体12の熱を奪い、これを冷却する。
By the above operation, an ion wind is generated from the electrode 13, and this ion wind removes heat from the high temperature object 12 and cools it.

本発明者らは、この冷却方法の実効を確認するため実験
を行ったので、その結果について説明する。
The present inventors conducted an experiment to confirm the effectiveness of this cooling method, and the results will be explained.

第4図は実験に供した装置の構成を示しており、雰囲気
圧力を変化させることのできる容器17内にヒータ18
内蔵の高温物体19を置き、そこから10mm離れた位
置に銅製の針状電極20を接近させておく。
FIG. 4 shows the configuration of the apparatus used in the experiment, in which a heater 18 is installed in a container 17 that can change the atmospheric pressure.
A built-in high temperature object 19 is placed, and a copper needle electrode 20 is brought close to it at a distance of 10 mm.

一方、高電圧発生装置27は、交流電源26と、昇圧ト
ランス23と、直流を得るための整流器21と、保護抵
抗22と、電圧計24と、電流計25とからなり、陰極
側を針状電極20に接続し、陽極側をアース16に接続
した。
On the other hand, the high voltage generator 27 includes an AC power supply 26, a step-up transformer 23, a rectifier 21 for obtaining DC, a protective resistor 22, a voltmeter 24, and an ammeter 25, and has a needle-shaped cathode side. It was connected to the electrode 20, and the anode side was connected to the ground 16.

この装置で容器17内の雰囲気圧力と印加電圧を変え、
ヒータ18により加熱した高温物体19の温度変化を熱
電対28により測定した。
This device changes the atmospheric pressure and applied voltage inside the container 17,
The temperature change of the high temperature object 19 heated by the heater 18 was measured by the thermocouple 28.

その結果は第5図に示すとおりである。The results are shown in FIG.

すなわち、雰囲気圧力が760Torrと2 X 10
’Torrのいずれの場合にも静電冷却の効果を示し
た。
That is, the atmospheric pressure is 760 Torr and 2 × 10
'Torr showed the effect of electrostatic cooling in both cases.

例えば、A点では、電圧7200v、電流2×1O−5
A、消費電力0、144Wで、4degの冷却効果を示
した。
For example, at point A, the voltage is 7200v, the current is 2 x 1O-5
A. Power consumption was 0, 144 W, and a cooling effect of 4 degrees was shown.

また、実際のガス遠心分離機においては、10−2〜I
Q−4Torrであるから、2 X 10 ’Torr
の場合にも図示のような冷却効果が得られることは、静
電冷却の原理を分子ポンプ部の冷却に応用しうろことを
意味する。
In addition, in an actual gas centrifuge, 10-2 to I
Since it is Q-4 Torr, 2 X 10'Torr
The fact that the cooling effect shown in the figure can be obtained even in the case of 1 means that the principle of electrostatic cooling can be applied to the cooling of the molecular pump section.

なお、使用しうる上限電圧は、グロー放電域からアーク
放電域に移る境界の電圧に相当し、この電圧は105■
以上である。
The upper limit voltage that can be used corresponds to the voltage at the boundary between the glow discharge region and the arc discharge region, and this voltage is 105
That's all.

アーク放電が生ずると、熱電子放射によって冷却しよう
とする物体が逆に加熱されることになる。
When an arc discharge occurs, the object that is intended to be cooled is heated by thermionic radiation.

次に上記冷却手段を設けた本発明によるガス遠心分離機
の一実施例を第6図及び第7図によって説明する。
Next, an embodiment of a gas centrifuge according to the present invention provided with the above cooling means will be described with reference to FIGS. 6 and 7.

第6図に示すように、回転胴3の上仕切板1の取付位置
の外面に対面するように、真空容器6の内面には分子ポ
ンプ11が設けられているが、この実施例においては、
この分子ポンプ11に、第7図に示すように針状電極2
9aを複数本内方に向けて突出させたかつ円環部を絶縁
材30で被覆した円環状導電体29を取付け、この円環
状導電体29に高電圧発生装置27の負の電源端子を導
線31により接続し、かつアース16と正の電源端子を
導線32に接続する。
As shown in FIG. 6, a molecular pump 11 is provided on the inner surface of the vacuum container 6 so as to face the outer surface of the mounting position of the upper partition plate 1 of the rotating body 3. In this embodiment,
This molecular pump 11 is equipped with a needle electrode 2 as shown in FIG.
An annular conductor 29 having a plurality of inward protrusions 9a and having an annular portion covered with an insulating material 30 is attached, and the negative power terminal of the high voltage generator 27 is connected to the annular conductor 29 as a conductor. 31 and connect the ground 16 and the positive power terminal to the conductor 32.

高電圧発生装置27は第4図に示したようにトランスと
整流器等からなるものである。
The high voltage generator 27 consists of a transformer, a rectifier, etc., as shown in FIG.

また絶縁材30は、セラミックや合成樹脂製のものであ
る。
Further, the insulating material 30 is made of ceramic or synthetic resin.

このようにして高電圧発生装置27により針状電極29
aに負の高電圧(5X103〜10”V)をかけると、
前に説明したように回転胴3と針状電極29aとの間に
イオン風を生じ、分子ポンプ11に対面する回転胴の部
分を冷却することができるから、回転胴内の温度分布を
第8図aの実線で示すように、中だるみのない温度分布
とすることができる。
In this way, the needle-like electrode 29 is
When applying a negative high voltage (5X103~10”V) to a,
As explained above, an ion wind is generated between the rotating body 3 and the needle electrode 29a, and the part of the rotating body facing the molecular pump 11 can be cooled, so the temperature distribution inside the rotating body can be As shown by the solid line in Figure a, a temperature distribution without any sag can be achieved.

なお、第8図aの点線は従来構造における温度分布であ
る。
Note that the dotted line in FIG. 8a represents the temperature distribution in the conventional structure.

また、第8図aの本発明による温度分布曲線において、
下仕切板2の真上付近の位置の温度分布も直線状となっ
ているが、これは下仕切板2を取付けた回転胴の部分に
対向する真空容器内面にも第6図及び第7図と同様の針
状電極を設けた場合を示したものであり、温度分布は、
針状電極の個数や回転胴との間隔及び印加電圧の高低に
よって変えることができる。
Furthermore, in the temperature distribution curve according to the present invention shown in FIG. 8a,
The temperature distribution at the position directly above the lower partition plate 2 is also linear, and this also applies to the inner surface of the vacuum vessel facing the part of the rotating body to which the lower partition plate 2 is attached, as shown in Figures 6 and 7. This figure shows the case where a needle-shaped electrode similar to that of
It can be changed by changing the number of needle electrodes, the distance from the rotating drum, and the level of applied voltage.

このような温度分布が得られるため、回転胴内の熱対流
は第8図すに示すように理想的な形のものが生起する。
Since such a temperature distribution is obtained, thermal convection within the rotary cylinder has an ideal shape as shown in FIG. 8.

従ってガス遠心分離機の分離性能の向上を図ることがで
きる。
Therefore, the separation performance of the gas centrifuge can be improved.

なお、針状電極は、第6図の2点鎖線で示すように、多
段にこれを配設することとすればより冷却効果を上げる
ことが可能である。
Incidentally, if the needle electrodes are arranged in multiple stages as shown by the two-dot chain line in FIG. 6, it is possible to further improve the cooling effect.

以上述べたように、本発明は、静電冷却手段をガス遠心
分離機に組み込んだものであり、回転胴内の温度分布を
改善することができるから、分離機能を向上させること
ができる。
As described above, the present invention incorporates an electrostatic cooling means into a gas centrifuge, and the temperature distribution within the rotary drum can be improved, so that the separation function can be improved.

しかも静電冷却のための消費電力は小さくてすむ(1w
以下)から、運転コストを低減することができる。
Moreover, the power consumption for electrostatic cooling is small (1w
(below), operating costs can be reduced.

また、回転胴と電極との間隔が変化すると、冷却効果が
変る(間隔が小である程冷却効果大)ので、回転胴の仕
切板取付位置近傍の温度を検出する温度検出器を設けて
おいて、その温度変化を検知することにより、回転胴の
軸心の位置ずれあるいは振動振幅を知ることも可能とな
る。
Additionally, if the distance between the rotary drum and the electrodes changes, the cooling effect will change (the smaller the distance, the greater the cooling effect), so a temperature detector is installed to detect the temperature near the location where the partition plate is attached to the rotary drum. By detecting the temperature change, it is also possible to know the positional deviation of the axis of the rotating body or the vibration amplitude.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のスクープ型ガス遠心分離機の構造を示す
縦断面、第2図a、 l)はそれぞれ第1図の回転胴
内に生ずる温度分布及び熱対流を示す図、第3図は静電
冷却法の原理図、第4図は静電冷却法の実験装置の構成
図、第5図は第4図の実験装置による実験結果を示す図
、第6図は本発明によるガス遠心分離機の一実施例の要
部を示す縦断面図、第7図は本発明において用いる電極
の詳細例を示す平面図、第8図a、 l)はそれぞれ
本発明のガス遠心分離機の回転胴内の温度分布及び熱対
流を示す図である。 1・・・・・・上仕切板、2・・・・・・下仕切板、3
・・・・・・回転胴、・・・・・・真空容器、8・・・
・・・給気管、9・・・・・・プロダクトスクープ管、
10・・・・・・ウェストスクープ管、11・・・・・
・分子ポンプ、27・・・・・・高電圧発生装置、29
・・・・・・円環状導電体、29a・・・・・・針状電
極、30・・・・・・絶縁材。
Figure 1 is a vertical cross-section showing the structure of a conventional scoop-type gas centrifuge, Figure 2 a and l) are diagrams showing the temperature distribution and heat convection that occur inside the rotating barrel of Figure 1, respectively, and Figure 3 is A diagram of the principle of the electrostatic cooling method, Fig. 4 is a configuration diagram of the experimental equipment for the electrostatic cooling method, Fig. 5 is a diagram showing the experimental results using the experimental equipment of Fig. 4, and Fig. 6 is a diagram showing the gas centrifugation according to the present invention. FIG. 7 is a plan view showing a detailed example of the electrodes used in the present invention, and FIGS. It is a figure showing the temperature distribution and thermal convection inside. 1...Top partition plate, 2...Bottom partition plate, 3
...Rotating cylinder, ...Vacuum container, 8...
...Air supply pipe, 9...Product scoop pipe,
10...West scoop tube, 11...
・Molecular pump, 27...High voltage generator, 29
. . . Annular conductor, 29a . . . Needle electrode, 30 . . . Insulating material.

Claims (1)

【特許請求の範囲】 1 給排気を行わせるための静止管を挿入した回転胴を
真空容器内に回転自在に収容したガス遠心分離機におい
て、回転胴のバッフル板取付位置に対向する前記真空容
器の内面部に、回転胴と適宜間隔を有して電極を設置し
、この電極に負の直流電圧を印加するように構成したこ
とを特徴とするガス遠心分離機。 2 真空容器上部内面に設けられた分子ポンプに前記電
極を設置したことを特徴とする特許請求の範囲第1項記
載のガス遠心分離機。 3 電極が針状電極であって、該針状電極を複数個周方
向並びに軸方向に配列して設置したことを特徴とする特
許請求の範囲第1項記載のガス遠心分離機。 4 針状電極を円環状導電体の内周に突出させて形成し
たことを特徴とする特許請求の範囲第3項記載のガス遠
心分離機。
[Scope of Claims] 1. In a gas centrifuge in which a rotating barrel into which a stationary tube for air supply and exhaust is inserted is rotatably housed in a vacuum container, the vacuum container is located opposite to the baffle plate attachment position of the rotating barrel. 1. A gas centrifuge, characterized in that an electrode is installed on the inner surface of the rotating body at an appropriate distance from the rotating body, and a negative DC voltage is applied to the electrode. 2. The gas centrifuge according to claim 1, wherein the electrode is installed in a molecular pump provided on the inner surface of the upper part of the vacuum container. 3. The gas centrifuge according to claim 1, wherein the electrode is a needle-like electrode, and a plurality of needle-like electrodes are arranged and installed in the circumferential direction and the axial direction. 4. The gas centrifuge according to claim 3, wherein the needle electrode is formed to protrude from the inner periphery of the annular conductor.
JP8830477A 1977-07-25 1977-07-25 gas centrifuge Expired JPS5953091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8830477A JPS5953091B2 (en) 1977-07-25 1977-07-25 gas centrifuge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8830477A JPS5953091B2 (en) 1977-07-25 1977-07-25 gas centrifuge

Publications (2)

Publication Number Publication Date
JPS5423269A JPS5423269A (en) 1979-02-21
JPS5953091B2 true JPS5953091B2 (en) 1984-12-22

Family

ID=13939179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8830477A Expired JPS5953091B2 (en) 1977-07-25 1977-07-25 gas centrifuge

Country Status (1)

Country Link
JP (1) JPS5953091B2 (en)

Also Published As

Publication number Publication date
JPS5423269A (en) 1979-02-21

Similar Documents

Publication Publication Date Title
EP0187020B1 (en) High-intensity x-ray source
JP5324596B2 (en) Winding type vacuum processing equipment
US4046527A (en) Apparatus for the stable confinement of an ionized gas column inside a magnetic field
US7232975B2 (en) Plasma generators, reactor systems and related methods
US20050211383A1 (en) Magnetron plasma-use magnetic field generation device
KR940004734A (en) Plasma generator
KR0155567B1 (en) Plasma apparatus and method and system for extracting electrical signal of member to which high-frequency wave is applied
US2219615A (en) Electrical discharge apparatus
US20040100159A1 (en) Electrical current collector cleaning and cooling for high voltage rotating machines
GB640694A (en) Improvements in x-ray apparatus
JPS5953091B2 (en) gas centrifuge
US3628948A (en) Electric arc vacuum melting processes
TW201832451A (en) Cooling structure for motor and method thereon
JPH08255586A (en) Rotor assembly
US20220221222A1 (en) Device, system and method for industrial drying of a suspension or solution
US3129351A (en) Multielectrode arc assembly
US3505460A (en) Electric arc vacuum furnace employing nonconsumable electrode
US3452239A (en) Multi-electrode arc heaters
SU954780A1 (en) Centrifugal heat pipe
JPS5625359A (en) Rotary rectifier of brushless rotary electric machine
US3686420A (en) Furnace and electrode apparatus
SU1261060A1 (en) Homopolar electric machine
JP4183059B2 (en) High frequency power supply rod and plasma processing apparatus
JPH09983A (en) Centrifuge
JPS63171139A (en) Current collector for rotary electric machine