JPS5953033B2 - Microbial culture method - Google Patents

Microbial culture method

Info

Publication number
JPS5953033B2
JPS5953033B2 JP16990279A JP16990279A JPS5953033B2 JP S5953033 B2 JPS5953033 B2 JP S5953033B2 JP 16990279 A JP16990279 A JP 16990279A JP 16990279 A JP16990279 A JP 16990279A JP S5953033 B2 JPS5953033 B2 JP S5953033B2
Authority
JP
Japan
Prior art keywords
sophorolipid
water
medium
growth
hydrocarbons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16990279A
Other languages
Japanese (ja)
Other versions
JPS5692786A (en
Inventor
進 伊藤
恵雄 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Soap Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Soap Co Ltd filed Critical Kao Soap Co Ltd
Priority to JP16990279A priority Critical patent/JPS5953033B2/en
Publication of JPS5692786A publication Critical patent/JPS5692786A/en
Publication of JPS5953033B2 publication Critical patent/JPS5953033B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】 本発明は炭化水素或いは炭化水素誘導体を主炭素源とし
て微生物を培養するに際し、その培地中にトルロプシス
(Torulopsis)属酵母が産生する糖脂質を添
加して微生物を培養する方法に関する。
Detailed Description of the Invention The present invention involves culturing microorganisms using hydrocarbons or hydrocarbon derivatives as the main carbon source, by adding glycolipids produced by yeast of the genus Torulopsis to the culture medium. Regarding the method.

炭化水素又はその誘導体を主炭素源とする発酵生産研究
は近年著しい進歩を遂げ、微生物菌体蛋白質の生産が実
用化段階に達しているのを筆頭に、各種アミノ酸、核酸
関連物質、ビタミン、有機酸、糖質或いは抗生物質等の
生理活性物質の生産等幅広く多岐に渡っており、従来、
糖質を主炭素源とする発酵により生産されていたものは
殆んどその糖質を炭化水素に代替することが可能になっ
てきている。
Fermentation production research using hydrocarbons or their derivatives as the main carbon source has made remarkable progress in recent years, with the production of microbial proteins reaching a stage of practical use, as well as various amino acids, nucleic acid-related substances, vitamins, and organic It is widely used in the production of physiologically active substances such as acids, carbohydrates, and antibiotics.
It has become possible to replace most of the carbohydrates produced by fermentation using carbohydrates as the main carbon source with hydrocarbons.

一方炭化水素又はその誘導体は、炭素と水素のみを構成
元素とするか、或いはこれらを主構成元素とし、その他
の若干の元素、例えば酸素、ハロゲン等を含むものであ
り、多数の酸素を含む糖質に比べて、単位重量当りの有
効炭素の存在量が約2倍であり、発酵炭素源としては、
糖質より明らかに有利である。
On the other hand, hydrocarbons or their derivatives either have carbon and hydrogen as their only constituent elements, or contain these as their main constituent elements and some other elements, such as oxygen and halogens. The amount of effective carbon per unit weight is about twice that of the quality of carbon, and as a fermentation carbon source,
It has clear advantages over carbohydrates.

しかしながら、炭化水素又はその誘導体を炭素源として
発酵を行う場合には、その物理的、化学的性質から、次
に掲げるような問題点を有する。
However, when fermentation is carried out using hydrocarbons or derivatives thereof as carbon sources, the following problems arise due to their physical and chemical properties.

その1つは、炭化水素又はその誘導体は分子中に酸素を
含まないか、含んでも僅かであるために、微生物を生育
させるためには非常に多量の酸素の供給を必要とするこ
とであり、もう1つは、炭化水素又はその誘導体は水に
不溶性であるために、微生物による取り込み様式が糖質
等の水溶性炭素源とは異なっており、取り込み速度が小
さく、生育速度は一般的には糖質炭素源による場合の約
半分であると言われている。
One of these is that hydrocarbons or their derivatives do not contain oxygen in their molecules, or even if they do contain a small amount, they require a very large amount of oxygen to be supplied in order to grow microorganisms. Another reason is that hydrocarbons and their derivatives are insoluble in water, so the uptake mode by microorganisms is different from that of water-soluble carbon sources such as carbohydrates, and the uptake rate is low, and the growth rate is generally low. It is said that this is about half of that from carbohydrate carbon sources.

第1の酸素供給の問題に対しては、近年、培養工学の著
しい進歩によって、効率の良い酸素供給を行える発酵槽
の工夫改良によって解決されつつある。
The first problem of oxygen supply is being solved in recent years, due to remarkable advances in culture engineering, by devising and improving fermenters that can supply oxygen efficiently.

しかし第2の問題である炭化水素又はその誘導体を微生
物に効率良く取り込ませる点については、水不溶性基質
と微生物との単純な機械的接触チャンスの頻度に依るも
のと考えられ、水不溶性基質のi機械的物理的乳化分散
方法、ii界面活性剤等による物理化学的乳化分散方法
の工夫にその努力が集中されてきたが、いずれも限定さ
れた微生物に応用できるにすぎない。
However, the second problem, the efficient uptake of hydrocarbons or their derivatives by microorganisms, is thought to depend on the frequency of simple mechanical contact between the water-insoluble substrate and the microorganisms. Efforts have been concentrated on devising mechanical and physical emulsification and dispersion methods, and (ii) physicochemical emulsification and dispersion methods using surfactants, but both can only be applied to limited microorganisms.

このような炭化水素又はその誘導体のような水不溶性基
質を強制的に微生物に取り込ませる人為的な方法は、微
生物自体の生理的性質を無視した方法であり、実用的に
はあまり成果のないものであった。
These artificial methods of forcing microorganisms to incorporate water-insoluble substrates such as hydrocarbons or their derivatives ignore the physiological properties of the microorganisms themselves, and are not very successful in practice. Met.

これら結果は、水不溶性基質の微生物による取り込み機
構は、主として、微生物自身の生理的性質に基づくもの
であることを示唆するものであり、本発明者らは、この
観点から検討を加えた結果、水不溶性基質を資化する微
生物は、次のいずれかの水不溶性基質を取り込む固有の
機構を有していることがわかった。
These results suggest that the uptake mechanism of water-insoluble substrates by microorganisms is mainly based on the physiological properties of the microorganisms themselves.As a result of our studies from this perspective, the present inventors found that: It has been found that microorganisms that utilize water-insoluble substrates have the following unique mechanisms for taking in water-insoluble substrates.

即ちi微生物自身が細胞表層に水不溶性基質と親和性の
大きな組織体を有していること、ii微生物自身が菌体
外に水不溶性基質を取り込み運搬(transport
)する機能を有する物質を産生じ、積極的な取り込みを
行っていることである。
In other words, i. the microorganism itself has an organization on its cell surface that has a high affinity for water-insoluble substrates, and ii.
), and actively incorporates substances that have the function of

iの機構はその微生物の本来の機能であって、人為的に
調整することのできないものと考えられるが、iiの機
構は、その物質を把えてコントロールすれば調整可能で
あると考えられる。
Mechanism i is considered to be an original function of the microorganism and cannot be adjusted artificially, but mechanism ii can be adjusted by understanding and controlling the substance.

本発明者らは以上の考察をもとにさらに検討した結果、
炭化水素或いはその誘導体を主炭素源として微生物を培
養する際に、培地に下記の一般式(I)で表わされる糖
脂質を添加すれば、これらの炭素源がすみやかに取り込
まれ、微生物の生育が促進されることを見出し本発明を
完成した。
As a result of further study based on the above considerations, the present inventors found that
When culturing microorganisms using hydrocarbons or their derivatives as the main carbon source, if a glycolipid represented by the following general formula (I) is added to the medium, these carbon sources will be taken up quickly and the growth of the microorganisms will be inhibited. The present invention was completed based on the discovery that the present invention can be promoted.

(式中R1、R2はH又は−COCH3、R3はH又は
−CH3、R4は、R3がHのときは炭素数12〜16
の飽和又は不飽和の炭化水素基、R3が−CH3のとき
は炭素数11〜15の飽和又は不飽和の炭化水素基を示
す。
(In the formula, R1 and R2 are H or -COCH3, R3 is H or -CH3, and R4 has 12 to 16 carbon atoms when R3 is H.
When R3 is -CH3, it represents a saturated or unsaturated hydrocarbon group having 11 to 15 carbon atoms.

)一般式(I)で表わされる糖脂質は、トルロプシス(
Torulopsis)属のある種の酵母、例えば、ト
ルロプシス・マグノリエ(T、 magnoliae)
、トルロプシス・アビコーラ(T、 apicola)
、トルロプシス・グロツペンギーゼリ (Togropengiersseri)、トルロプシ
X−ボンヒコーラ(T、 bombicola)等によ
って産生されることが知られている (J、F、T、5
pencer et al。
) The glycolipid represented by the general formula (I) is derived from Torulopsis (
Certain yeasts of the genus Torulopsis, such as Torulopsis magnoliae (T, magnoliae)
, Torulopsis apicola (T. apicola)
, Torulopsis grotspengiersseri , Torulopsis X-bonbicola (T, bombicola), etc. (J, F, T, 5
pencer et al.

Canadian Journal of Ch
emistry 39 、 846(1961))。
Canadian Journal of Ch.
emistry 39, 846 (1961)).

この場合、産生される糖脂質は、次の式(I)及び(I
I)で表わされる化合物、及び式(II)の糖ラクトン
結合位置の異なる異性体(III)からなる混合物であ
る。
In this case, the glycolipids produced are of the following formulas (I) and (I
It is a mixture consisting of a compound represented by I) and an isomer (III) of formula (II) with different sugar lactone bonding positions.

以下本明細書では、これらを総称してソホロリピッド(
SLと略すことがある)と呼ぶ。
Hereinafter, these will be collectively referred to as sophorolipids (
(sometimes abbreviated as SL).

式(I):■−a;R1=R2=COCH3■−b;R
1−COCH3、R2= H I−C;R□=H,R2−C0CH3 I −d ; R1=R2=H (式中R3及びR4は前記に同じ) II−a;R1−R2=C0CH3 II −b : R1=COCH3、R2= HII−
C;R1=H,R2−C0CH5 II d ; R1= R2= H ソホロリピツドは、例えば、トルロプシス・ボンビコー
ラの培養液から、酢酸エチル、クロロホルム或いはエチ
ルエーテル等の糖脂質を溶解する有機溶媒で抽出するか
、ソホロリピッドが培養液中で沈殿する性質を利用して
分離することによって粗ソホロリピツドを得、これに培
養液の成分、例えば脂溶性の物質が爽雑している場合は
、ソホロリピツドを溶かさず、脂溶性物質のみを溶解す
る有機溶媒、例えば、n−ヘキサン、石油エーテル等で
数回洗浄して精製するのが望ましい。
Formula (I): ■-a; R1=R2=COCH3 ■-b; R
1-COCH3, R2=H I-C; R□=H, R2-C0CH3 I-d; R1=R2=H (in the formula, R3 and R4 are the same as above) II-a; R1-R2=C0CH3 II- b: R1=COCH3, R2=HII-
C; R1=H, R2-C0CH5 II d ; R1= R2= H Sophorolipids can be extracted, for example, from the culture solution of Torulopsis bombicola with an organic solvent that dissolves glycolipids, such as ethyl acetate, chloroform, or ethyl ether. , crude sophorolipids are obtained by separating sophorolipids by taking advantage of their tendency to precipitate in a culture solution, and if the culture solution is contaminated with components such as fat-soluble substances, the sophorolipids are not dissolved and lipids are removed. It is desirable to purify by washing several times with an organic solvent that dissolves only soluble substances, such as n-hexane, petroleum ether, etc.

本発明においては、式(I)で表わされる糖脂質を含む
上記ソホロリピッド混合物をそのまま添加しても良いし
、ソホロリピッド混合物から、式(I)で表わされる糖
脂質を分離して用いても良い。
In the present invention, the sophorolipid mixture containing the glycolipid represented by formula (I) may be added as is, or the glycolipid represented by formula (I) may be separated from the sophorolipid mixture and used.

式(I)で表わされる糖脂質は、例えば、上記ソホロリ
ピツド混合物を、水中に分散溶解させ、放置して沈殿す
る成分(主に式(II)及び(III)から成る、以下
本明細書中では水不溶性ソホロリピツドと呼ぶことがあ
る)と、水中に溶解している成分(主に式(I)で表わ
される糖脂質からなる、以下本明細書中では水溶性ソホ
ロリピツドと呼ぶことがある)とに分画することによっ
て混合物から分離することができる。
The glycolipid represented by formula (I) is, for example, a component (mainly composed of formulas (II) and (III)) that precipitates by dispersing and dissolving the above sophorolipid mixture in water and leaving it to stand. (sometimes referred to as water-insoluble sophorolipids) and components dissolved in water (mainly consisting of glycolipids represented by formula (I), hereinafter sometimes referred to as water-soluble sophorolipids). It can be separated from the mixture by fractionation.

分画に当っては、一般的には、ソホロリピツド混合物を
水中に分散溶解させることによって行うことができるが
、処理時間を短くするためには、温水中にソホロリピツ
ド混合物を超音波処理等によって強制的に分散溶解させ
、次いで低温に放置して水不溶性ソホロリピットを沈殿
させ、ろ過等によってろ液と沈殿に分け、ろ液を減圧蒸
留により大部分の水を除き、真空乾燥する等9方法によ
り水溶性ソホロリピツドの固体を得るのが適当である。
Fractionation can generally be carried out by dispersing and dissolving the sophorolipid mixture in water, but in order to shorten the treatment time, the sophorolipid mixture can be forcibly placed in warm water by ultrasonication etc. Then, the water-insoluble sophorolipits are precipitated by standing at a low temperature, separated into filtrate and precipitate by filtration, etc., the filtrate is distilled under reduced pressure to remove most of the water, and dried under vacuum. It is appropriate to obtain a solid form of sophorolipid.

また前記ソホロリピツド混合物を、メタノール、エタノ
ールなどの低級アルコール水溶液に溶解させ、水酸化ナ
トリウム、水酸化カリウム等のアルカリ試薬と共に加熱
して、ソホロリピツドのグリコシド結合を分解せずに機
上のアセチルエステル結合及びラクトン結合のみを切断
(加水分解)してほぼ全量を式CI−d)で表わされる
糖脂質(以下本明細書ではアシッドソホロリピッドと呼
ぶことがある)に変換して使用することもできる。
Alternatively, the sophorolipid mixture is dissolved in an aqueous solution of a lower alcohol such as methanol or ethanol, and heated with an alkaline reagent such as sodium hydroxide or potassium hydroxide to remove the acetyl ester bond on the machine without decomposing the glycosidic bond of the sophorolipid. It is also possible to cleave (hydrolyze) only the lactone bond and convert almost the entire amount into a glycolipid represented by formula CI-d (hereinafter sometimes referred to as acid sophorolipid) for use.

本発明の式(I)で表わされる糖脂質による微生物の炭
化水素又はその誘導体の取り込み促進機構は、通常の合
成界面活性剤が有する非水溶性基質である炭化水素又は
その誘導体を乳化分散させる作用機能とは全く異なるも
のであることがわかった。
The mechanism of promoting the uptake of hydrocarbons or derivatives thereof by microorganisms by the glycolipid represented by formula (I) of the present invention is the effect of emulsifying and dispersing hydrocarbons or derivatives thereof, which are water-insoluble substrates, which ordinary synthetic surfactants have. It turns out that the functionality is completely different.

即ち、n−パラフィン培地で慣習的に用いられている非
イオン性合成界面活性剤であるポリオキシエチレンアル
キル(C工2−02゜)エーテル、ポリオキシエチレン
アルキル(C8C9)フェニルエーテル、ポリオキシエ
チレン高級脂肪酸(0□2 C1)エステル、ソルビ
タン高級脂肪酸(C12−C18)エステル、ポリオキ
シエチレンソルビタン高級脂肪酸(C1□−018)エ
ステル、ポリオキシエチレンソルビトール高級脂肪酸(
C1□−C□8)エステル、高級脂肪酸(C12−01
8)モノグリセリド、及び高級脂肪酸(C1゜−C18
)ショ糖エステル等を同条件で添加しても、本発明の糖
脂質のような微生物促進効果は得られない。
That is, polyoxyethylene alkyl (C2-02°) ether, polyoxyethylene alkyl (C8C9) phenyl ether, polyoxyethylene, which are nonionic synthetic surfactants conventionally used in n-paraffin media. Higher fatty acid (0□2 C1) ester, sorbitan higher fatty acid (C12-C18) ester, polyoxyethylene sorbitan higher fatty acid (C1□-018) ester, polyoxyethylene sorbitol higher fatty acid (
C1□-C□8) ester, higher fatty acid (C12-01
8) Monoglycerides and higher fatty acids (C1°-C18
) Even if sucrose ester or the like is added under the same conditions, the microorganism-promoting effect like the glycolipids of the present invention cannot be obtained.

主炭素源として使用される炭化水素又はその誘導体には
、一般的に水不溶性炭素源として使用されるものはいず
れも含まれるが、炭素数8〜20の炭化水素又はその誘
導体が適当であり、特に炭素数10〜18のn−アルカ
ンが好適であり、著しい促進効果が見られる。
Hydrocarbons or derivatives thereof used as the main carbon source include any that are generally used as water-insoluble carbon sources, but hydrocarbons having 8 to 20 carbon atoms or derivatives thereof are suitable; In particular, n-alkanes having 10 to 18 carbon atoms are suitable, and have a remarkable promoting effect.

炭化水素は単品として用いても良く、それらを含有する
混合物である石油留分(例えば灯油、ケロシン留分等)
でも良いことは勿論である。
Hydrocarbons may be used singly or as mixtures containing them, such as petroleum fractions (e.g. kerosene, kerosene fraction, etc.)
But of course it's a good thing.

さらに不飽和結合を有する炭化水素類(アルケン、α−
オレフィン)、酸素を有する誘導体(アルコール、脂肪
酸、脂肪酸エステル等)、ハロゲン原子を有する誘導体
(アルキルハライド等)を主炭素源として用いても本発
明の微生物促進効果が見られる。
In addition, hydrocarbons with unsaturated bonds (alkenes, α-
The microorganism-promoting effect of the present invention can also be seen when using as the main carbon source a derivative having oxygen (alcohol, fatty acid, fatty acid ester, etc.), or a derivative having a halogen atom (alkyl halide, etc.).

これらの炭素源は、培地中に0.2〜10%wt/v存
在させるのが適当である。
It is appropriate that these carbon sources be present in the medium at 0.2 to 10% wt/v.

式(I)で表わされる糖脂質は、培地中に0、0027
%wt/v以上添加すれば有効であることがわかった。
The glycolipid represented by formula (I) is present in the medium at 0.0027
It was found that adding %wt/v or more is effective.

従って、水溶性ソホロリピツドを添加する場合はこの量
以上で有効であり、また、これを含む混合vIJ(ソホ
ロリピツド混合物)を添加する場合には、その含有率7
よ種々に変わり得るので、水溶性ソホロリピツドに換算
して上記の量以上を使用すれば有効である。
Therefore, when adding water-soluble sophorolipids, it is effective at this amount or more, and when adding a mixed vIJ (sophorolipid mixture) containing water-soluble sophorolipids, the content is 7.
Since the amount may vary, it is effective to use an amount greater than the above amount in terms of water-soluble sophorolipid.

添加量を増加すれば生育促進効果は向上するが、実用上
水溶性ソホロリピツドとして0.0027〜0.2%w
t/v添加するのが良い。
The growth promoting effect will improve if the amount added is increased, but in practice it is 0.0027-0.2%w as a water-soluble sophorolipid.
It is better to add t/v.

本発明による微生物の培養にあたって、その他の培養条
件は、炭化水素又はその誘導体を主炭素源とする微生物
培養に採用される通常の条件で行うことができる。
In culturing the microorganism according to the present invention, the other culture conditions can be the usual conditions employed in microbial culture using hydrocarbons or derivatives thereof as the main carbon source.

例えば窒素源としてはペプトン、酵母エキス、肉エキス
、コーンスチープリカー、アミノ酸、カザミノ酸、硝酸
アンモニウム等を用いることかで゛き、またカリウム、
ナトリウム、マグネシウム、リン等の無機イオン等も通
常使用されるものを使用することができる。
For example, peptone, yeast extract, meat extract, corn steep liquor, amino acids, casamino acids, ammonium nitrate, etc. can be used as nitrogen sources, and potassium,
Commonly used inorganic ions such as sodium, magnesium, and phosphorus can also be used.

培養温度も通常の温度で浪いが、18〜37℃程度が好
適である。
The culture temperature may be a normal temperature, but a temperature of about 18 to 37°C is suitable.

式(I)で表わされる糖脂質の添加による炭化水素又は
その誘導体を主炭素源とする微生物発育促進効果は、広
く炭化水素又はその誘導体を資化する微生物に見られる
が、具体例を挙げれば、酵母では、子のう菌酵母に属す
る炭化水素資化性酵母の例としては、メチニコビア (Metshnikowia)属に属するメチニコヒア
・プルヒエリマ(Metschnikowia pul
cherrima)、ピヒア(Pichia)属に属す
るピヒア・ファリノーザ(Pichia farino
sa)等があり、またウステイラジイナーL/ ス(U
stilaginales)酵母に属する炭化水素資化
性酵母の例としては、ロドスポリデイウム(Rhodo
sporidium)属酵母があり、また無胞子酵母に
属する炭化水素資化性酵母の例としては、キャンデイダ
(Candida)属に属するキャンデイダ・モギー(
Candida mogii)、キャンテ゛イダ・リポ
リテイカ (Candida 1ipo1ytica)
、)/1,1ニア7゜シス(Torulopsis)属
に属するトルロプシス・ボンビコーラ(Torulop
sis bombicola)、トルロプシX−グロツ
ペンギーゼリ (Torulopsisgropeng
iesseri )、トルロプシス・アヒコーラ(To
rulopsis apicola)、トルロプシス・
マグソリy−(Torulopsis magnoli
ae)等がある。
The effect of promoting the growth of microorganisms using hydrocarbons or derivatives thereof as the main carbon source by adding the glycolipid represented by formula (I) is widely seen in microorganisms that assimilate hydrocarbons or derivatives thereof. Among yeasts, an example of a hydrocarbon-assimilating yeast belonging to Ascomycete yeast is Metschnikowia pulhierima belonging to the genus Metshnikowia.
cherrima), Pichia farino which belongs to the genus Pichia
sa), etc., and there is also a Ustei Rajina L/su (U
An example of a hydrocarbon-assimilating yeast belonging to the yeast family S. stilaginales is Rhodosporidium (Rhodosporidium).
There are yeasts of the genus Sporidium, and examples of hydrocarbon-assimilating yeasts that belong to the non-sporulating yeasts include Candida mogi (that belong to the genus Candida).
Candida mogii), Candida lipolytica (Candida 1ipolytica)
)/1,1nia7° Torulopsis bombicola (Torulopsis) belonging to the genus Torulopsis
sis bombicola), Torulopsis
iesseri), Torulopsis ahicola (To
rulopsis apicola), Torulopsis
Torulopsis magnoli
ae) etc.

本発明によれば、従来炭素源たる炭化水素又はその誘導
体の取り込みが遅く、従って微生物の生育速度が遅く、
そのため培養に長時間を要していたものが、大いに短縮
されることとなった。
According to the present invention, the uptake of hydrocarbons or derivatives thereof, which are conventional carbon sources, is slow, and therefore the growth rate of microorganisms is slow.
As a result, the time required for culturing was greatly shortened.

以下に本発明をさらに良く理解できるように、参考例、
試験例、及び実施例をもって説明するが、本発明はこれ
らの範囲に限定きれるものではない。
In order to better understand the present invention, reference examples,
Although the present invention will be explained using test examples and examples, the present invention is not limited to these scopes.

参考例 1 ソホロリピツドの調製 グルコース500g、酵母エキス25gを51の脱イオ
ン水に入れ、均一に溶解したのち、サフラワー油500
gを加えた培地を101容量のジャーファメンターに入
れ、ジャーファメンターの中で滅菌をして培地液を調整
した。
Reference Example 1 Preparation of Sophorolipid Add 500 g of glucose and 25 g of yeast extract to 51 deionized water, dissolve uniformly, and add 500 g of safflower oil.
The medium to which g was added was placed in a 101 volume jar fermenter and sterilized in the jar fermenter to prepare a medium solution.

ついであらかじめ滅菌しであるグルコース2.5gと酵
母エキス0.25gとで調製した50m1の培養液の入
った振盪フラスコに、トルロプシス・ボンビコーラAT
CC22214を接種し、25℃の温度で2日間振盪培
養し、充分菌が生育した培養液を全量接種菌液として、
上記のジャーファメンターに無菌的に接種した。
Torulopsis bombicola AT was then added to a shake flask containing 50 ml of a culture solution prepared with 2.5 g of previously sterilized glucose and 0.25 g of yeast extract.
CC22214 was inoculated and cultured with shaking at a temperature of 25°C for 2 days, and the culture solution in which sufficient bacteria had grown was used as the total inoculated bacterial solution.
The jar fermenters described above were inoculated aseptically.

接種後、温度30℃、攪拌数300Orpm、通気量l
vvm(1分間に培地と同量の空気)の培養条件下で7
日間発酵を行った。
After inoculation, temperature: 30°C, stirring number: 300 rpm, aeration volume: 1
7 under culture conditions of vvm (air volume equal to medium per minute).
Fermentation was carried out for one day.

発酵終了後、発酵液を取り出し、101容量の内径15
cmの円筒型分相分離管に移し、50℃で発酵液中のソ
ホロリピツド留分の沈降分別を行った。
After fermentation is complete, take out the fermented liquid and make a 101 volume inner diameter 15
The sophorolipid fraction in the fermentation broth was transferred to a cylindrical phase separation tube with a diameter of 50 cm and subjected to sedimentation fractionation at 50°C.

必要に応じて、数百mlの酢酸エチルを添加し、ソホロ
リピツドの沈降分別を早めた。
If necessary, several hundred ml of ethyl acetate was added to speed up the sedimentation fractionation of sophorolipids.

次いで下層に沈降したソホロリピツド留分を抜き取り、
ロータリーエバポレーターで大部分の含有する水を留出
させ、ソホロリピツド濃縮物を750m1の酢酸エチル
で抽出を行い、酢酸エチル抽出液を無水硫酸ソーダで脱
水したのち、ロータリーエバポレーターで大部分の酢酸
エチルを留去し、ついでn−ヘキサン200m1で2回
洗浄抽出したのち、n−ヘキサン不溶分であるソホロリ
ピツドをシャーレの中に皮膜状に広げ、真空乾燥機の中
で、恒量に達するまで減圧乾燥した。
Next, the sophorolipid fraction that has settled in the lower layer is extracted,
Most of the water contained was distilled off using a rotary evaporator, the sophorolipid concentrate was extracted with 750ml of ethyl acetate, the ethyl acetate extract was dehydrated with anhydrous sodium sulfate, and most of the ethyl acetate was distilled off using a rotary evaporator. After washing and extracting twice with 200 ml of n-hexane, the sophorolipids insoluble in n-hexane were spread into a film in a petri dish and dried under reduced pressure in a vacuum dryer until a constant weight was reached.

この操作により約380gのソホロリピツド(式(I)
、け■)及び(III)であられされるものの混合物で
あり、その脂肪酸部分の炭素数が16及び18のものを
主体とする)を得た。
This operation yields about 380 g of sophorolipid (formula (I)
A mixture of the products prepared by , , Ⅲ) and (III), whose fatty acid moiety mainly has 16 and 18 carbon atoms, was obtained.

尚、発酵液の量が11以下であれば上記操作のうちの分
相管による沈降分別操作を省略し、直接当量の酢酸エチ
ルで抽出し、得られる酢酸エチル層を上記の方法で処理
しても同様のソホロリピツドを得ることができる。
In addition, if the amount of fermentation liquid is 11 or less, the sedimentation fractionation operation using a phase separation tube among the above operations is omitted, and the ethyl acetate layer obtained is directly extracted with an equivalent amount of ethyl acetate, and the resulting ethyl acetate layer is treated with the above method. Similar sophorolipids can also be obtained.

参考例 2 水溶性ソホロリピツドの調製 参考例1で得られたソホロリピツド3gを500m1の
フラスコに入れ、脱イオン水300m1を添加し、超音
波発信機によって超音波分散させた。
Reference Example 2 Preparation of Water-Soluble Sophorolipid 3 g of the sophorolipid obtained in Reference Example 1 was placed in a 500 ml flask, 300 ml of deionized water was added, and the mixture was ultrasonically dispersed using an ultrasonic transmitter.

そのまま4℃で5日間放置し、沈殿物とる液にわけ、沈
殿物をそのまま真空乾燥して非結晶性の白色固体的2.
8gを得た。
2. Leave to stand at 4°C for 5 days, divide into a solution to remove the precipitate, and dry the precipitate under vacuum to form an amorphous white solid.
8g was obtained.

これを水溶性ソホロリピツドとした。This was designated as water-soluble sophorolipid.

ろ液は大部分の水を減圧で留去したのち、真空乾燥し、
非結晶性黄色固体物誓約0.8gを得た。
After distilling off most of the water from the filtrate under reduced pressure, it was vacuum dried.
0.8 g of an amorphous yellow solid was obtained.

これを水溶性ソホロリピツドとした。This was designated as water-soluble sophorolipid.

参考例 3 アシツドソホロリピツドの調製 参考例1で得たソホロリピツド5gを100m■丸底フ
ラスコに採り、ついで、水10m1及びエタノール25
m1加え均一溶解したのち、水酸化カリウム0.5gを
加えて、2時間還流反応をさせる。
Reference Example 3 Preparation of Acid Sophorolipid 5 g of the sophorolipid obtained in Reference Example 1 was placed in a 100 m round bottom flask, and then 10 ml of water and 25 ml of ethanol were added.
After adding 1 ml of the solution and uniformly dissolving it, 0.5 g of potassium hydroxide was added and the mixture was allowed to reflux for 2 hours.

反応終了後希硫酸水溶液で沖和し、析出する硫酸カリウ
ムを戸別し、P液をロータリーエバポレータで減圧留去
し、残分として4.3gを得た。
After the reaction was completed, the mixture was washed with a dilute aqueous sulfuric acid solution, the precipitated potassium sulfate was separated, and the P solution was distilled off under reduced pressure using a rotary evaporator to obtain 4.3 g as a residue.

本反応物質をシリカゲル薄層クロマト分析〔展開剤、ク
ロロホルム−メタノール−酢酸(70:25:5)、l
を行うとRf値0.33にアンスロン発色試薬にて青
緑色に発色する単一スポットを与える。
This reaction material was analyzed by silica gel thin layer chromatography [developing agent, chloroform-methanol-acetic acid (70:25:5), l
When this is carried out, a single spot with an Rf value of 0.33 is produced which develops a bluish-green color using the Anthrone coloring reagent.

ついで、本物質全量を5mlのクロロホルムに溶かし、
シリカゲル50gを充てんした内径1cm長さ50cm
のカラムクロマトにてクロロホルム−エタノール(クロ
ロホルム100部から0部、エタノール0部から100
部)の溶出溶媒にてクロマト分離を行い、上記の薄層ク
ロマト分析にて、Rf値0.33に相当する溶出留分を
集め、溶媒を留去し、精製物4.1gを得た。
Next, dissolve the entire amount of this substance in 5 ml of chloroform,
Filled with 50g of silica gel, inner diameter 1cm, length 50cm
Chloroform-ethanol (chloroform 100 parts to 0 parts, ethanol 0 to 100 parts
Chromatographic separation was performed using the elution solvent of part), and the elution fraction corresponding to an Rf value of 0.33 was collected in the above thin layer chromatography analysis, and the solvent was distilled off to obtain 4.1 g of purified product.

本精製物は白色固形状物質であり、これがアシツドソホ
ロリピツドである。
This purified product is a white solid substance, which is acidosophorolipid.

本アシツドソホロリピツドをKBr錠剤法にて赤外スペ
クトル分析を行うと、3380〜3200cm ’にか
けて糖の水酸基に由来する幅広い吸収帯、2800cm
−1前後に脂肪族のメチレン及びメチル基に由来する強
い吸収帯、1700cm−1に遊離カルボキシル基に由
来する吸収帯及び900〜750cm ”にかけてグル
コビラノース環に特有な吸収帯を与える。
When this acido-sophorolipid was subjected to infrared spectrum analysis using the KBr tablet method, a wide absorption band originating from the hydroxyl group of sugar from 3380 to 3200 cm' was observed, and a wide absorption band at 2800 cm' was observed.
It gives a strong absorption band originating from aliphatic methylene and methyl groups around -1, an absorption band originating from free carboxyl groups at 1700 cm-1, and an absorption band characteristic of glucobylanose rings from 900 to 750 cm''.

ピリジン溶媒中での核磁気共鳴スペクトル分析に於いて
、65.5前後に不飽和脂肪酸に特有な二重結合の吸収
スペクトル、δ3.5〜5.0にかけ糖構造に由来する
幅広い吸収スペクトル及びδ1.1〜1.6にかけてメ
チレン基に由来する強い吸収スペクトルを与えた。
In nuclear magnetic resonance spectroscopy analysis in pyridine solvent, an absorption spectrum of a double bond characteristic of unsaturated fatty acids around 65.5, a wide absorption spectrum originating from the sugar structure over δ3.5 to 5.0, and a wide absorption spectrum originating from the sugar structure around δ1 .1 to 1.6, a strong absorption spectrum derived from methylene groups was given.

ついで、本精製物0.1gを10m1の5規定のHCl
−メタノール溶液中で1時間還流反応させ、メチルグリ
コキサイドとヒドロキシメチルエステルとなし、その各
々をガスクロマ1へグラフィー分析で定量分析した結果
、メチルグリコキサイドとヒドロキシ脂肪酸メチルエス
テルが2モル対1モルの比であることを確認した。
Next, 0.1 g of this purified product was added to 10 ml of 5N HCl.
- A reflux reaction was carried out in a methanol solution for 1 hour to form methyl glycoxide and hydroxymethyl ester, and each of them was quantitatively analyzed by graphic analysis on Gas Chroma 1. As a result, the ratio of methyl glycoxide and hydroxy fatty acid methyl ester was 2 moles to 1. The molar ratio was confirmed.

以上の結果より、本精製物はアシツドソホロリピツドで
あることを支持された。
From the above results, it was supported that this purified product was an acid sophorolipid.

試験例 1 参考例1で得たソホロリピツドを0.75wt/v%酵
母用の炭素化合物同化試験用乾燥培地(Bact。
Test Example 1 The sophorolipid obtained in Reference Example 1 was used at 0.75 wt/v% in a dry medium for carbon compound assimilation test for yeast (Bact.

Nitrogen base : Difco Lab
、社(米国ミシガン州)の商標)及び5 v/v%のn
−ヘキサデカンを配合した滅菌培地に、0.064wt
/v%の濃度で無菌操作で添加し、次いでYM寒天培地
に生育しているトルロプシス・ボンビコーラ(Toru
lopsisbombicola) KSM −36ノ
コTニア ニーを白金耳で採り、生理食塩水中で菌体濃
度が650部mの吸光々変針で測定したときの吸光度が
0.5〜0.6になるように調製した菌懸濁液を上記の
培地に対して2%、場合によっては10%の量まで接種
し、30℃で培養し、菌体の生育を観察した。
Nitrogen base: Difco Lab
, Inc. (Michigan, USA)) and 5 v/v% n
-0.064wt in a sterile medium containing hexadecane
/v% concentration using aseptic technique, and then torulopsis bombicola (Toru
lopsis bombicola) KSM-36 NokoTnia knee was taken with a platinum loop, and adjusted in physiological saline so that the absorbance was 0.5 to 0.6 when measured with an absorbance needle with a bacterial cell concentration of 650 parts m. The bacterial suspension was inoculated into the above medium at an amount of 2%, or in some cases up to 10%, and cultured at 30°C, and the growth of the bacterial cells was observed.

生育度の観察は、培養液の一部或いは全部を採取し、必
要に応じて鉱酸、例えば希塩酸或いは希硫酸により採取
した培養液のpHを2〜3に調整したのち、2倍量の酢
酸エチルで2回培養液を洗い、得られた菌体を含む水相
部を55Qnmの吸光々変針で測定できる濃度に脱イオ
ン水で希釈したのち、水相部の吸光度を測定して行った
To observe the growth rate, collect some or all of the culture solution, adjust the pH of the collected culture solution to 2 to 3 with mineral acid, such as dilute hydrochloric acid or dilute sulfuric acid, as necessary, and then add twice the amount of acetic acid. The culture solution was washed twice with ethyl, and the aqueous phase containing the resulting bacterial cells was diluted with deionized water to a concentration that could be measured with a 55 Qnm absorbance needle, and the absorbance of the aqueous phase was measured.

同一条件でソホロリピツドを添加しない場合との比較を
表1に示す。
Table 1 shows a comparison with the same conditions without the addition of sophorolipid.

表1の結果よりソホロリピツド混合物の添加により、明
らかに菌の生育が促進されることがわかる。
From the results in Table 1, it can be seen that the addition of the sophorolipid mixture clearly promotes the growth of bacteria.

試験例 2 培地としてn−ヘキサテ勿ン(5%)−炭素化合物同化
試験用乾燥培地(0,75%)−酵母エキス(0,2%
)培地(以下DNB−YE培地と略す)を用いて、その
他は試験例1と同様な条件で培養を行い、ソホロリピツ
ド添加による生育の経口変化を調べた。
Test Example 2 Medium: n-hexatemin (5%) - Dry medium for carbon compound assimilation test (0.75%) - Yeast extract (0.2%)
) culture medium (hereinafter abbreviated as DNB-YE medium), other conditions were the same as in Test Example 1, and the oral changes in growth due to the addition of sophorolipid were investigated.

結果は表2の通りである。試験例 3 培地として各種n−アルカン(5%)−炭素化合物同化
試験用乾燥培地(0,75%)−酵母エキス(0,2%
)培地を用い、その他は試験例1と同様な条件で培養を
行い、ソホロリピツド添加による生育促進効果を調べた
The results are shown in Table 2. Test Example 3 Various n-alkanes (5%) as a medium - Dry medium for carbon compound assimilation test (0.75%) - Yeast extract (0.2%)
) Culture medium was used and other conditions were the same as in Test Example 1, and the growth promoting effect of the addition of sophorolipid was investigated.

結果を表3に示す。試験例 4 ソホロリピツドに代えて、参考例2で得られた水溶性ソ
ホロリピツド及び水不溶性ソホロリピッドを用い、培養
日数が4日である以外は試験例2と同一条件で培養を行
ない、生育度を測定し、表4に示す結果を得た。
The results are shown in Table 3. Test Example 4 Using the water-soluble sophorolipid and water-insoluble sophorolipid obtained in Reference Example 2 instead of sophorolipid, culturing was carried out under the same conditions as Test Example 2 except that the number of culture days was 4 days, and the growth rate was measured. , the results shown in Table 4 were obtained.

この結果より、ソホロリピッドによる微生物生育促進効
果は、水溶性ソホロリピッド〔式(I)で表わされる糖
脂質〕に依るものであることがわかる。
These results show that the microbial growth promoting effect of sophorolipids is due to water-soluble sophorolipids [glycolipids represented by formula (I)].

試験例 5 水溶性ソホロリピツドを約27%含有するソホロリピツ
ド(参考例1で調整したもの)の添加量を変化させ、7
日間培養させた以外は試験例2と同様な条件で微生物を
培養し、その生育度を求めた。
Test Example 5 The amount of sophorolipid containing about 27% water-soluble sophorolipid (prepared in Reference Example 1) was varied,
Microorganisms were cultured under the same conditions as in Test Example 2, except that they were cultured for one day, and the growth rate was determined.

結果を表5に示す。この結果からソホロリピツド添加量
が培地に対して0.01%wt/v以上で有効であるこ
とがわがり、水溶性ソホロリピッドの有効添加量は、そ
のソホロリピツド中の含有量から0.0027%wt/
v以上であることがわかる。
The results are shown in Table 5. This result shows that it is effective when the amount of sophorolipid added to the medium is 0.01%wt/v or more, and the effective amount of water-soluble sophorolipid added is 0.0027%wt/v based on the content in the sophorolipid.
It can be seen that the value is greater than or equal to v.

試験例 6 培地としてn−ヘキサデカン(2%) =DNB−YE
培地を用いた他は試験例1と同様の条件で培養をおこな
い表6に示す結果を得た。
Test Example 6 n-hexadecane (2%) as medium = DNB-YE
Culture was carried out under the same conditions as in Test Example 1, except that a medium was used, and the results shown in Table 6 were obtained.

実施例 1 あらかじめ、酵母用炭素化合物同化試験用乾焔培地(B
acto −Nitrogen −base、以下DN
Bと呻す。
Example 1 In advance, a dry flame medium for yeast carbon compound assimilation test (B
acto-Nitrogen-base, hereinafter DN
B groans.

米国Difco社製)を0.75%、酵母エキス(Ye
ast extract、以下YEと略す。
0.75% yeast extract (manufactured by Difco, USA), yeast extract (Ye
ast extract, hereinafter abbreviated as YE.

大五栄養器製)0.2%を配合した液体培地(以下DN
B −YE培地と略す。
Liquid medium (hereinafter referred to as DN) containing 0.2%
It is abbreviated as B-YE medium.

)を調製し、内径2cm長さ20cmの名試験管に4m
lずつ入れた。
) in a test tube with an inner diameter of 2 cm and a length of 20 cm.
I put in 1 each.

次いでn−ヘキサデカンを0.5ml加えたのち、11
5℃、30分間蒸気滅菌した。
Next, after adding 0.5 ml of n-hexadecane, 11
Steam sterilization was performed at 5°C for 30 minutes.

次にあらかじめ滅菌しである脱イオン水10mにソホロ
リピツドを無菌的に加え、加温して均一に分散し、上記
n−ヘキサデカン−DNB−YE境地にその0.5ml
を無菌的に加えた。
Next, add sophorolipid aseptically to 10 m of previously sterilized deionized water, warm it to disperse it uniformly, and add 0.5 ml of it to the above n-hexadecane-DNB-YE area.
was added aseptically.

ついでグルコース−酵母エキス−麦芽エキス(YM培地
、米国Difco社製)寒天培地で30℃、2日間生育
させたトルロプシス・ボンビコーラ(Torulops
isbombicola)を白金耳で採取し、あらがし
め滅菌しである生理食塩水10m1に無菌的に加え、そ
の菌懸濁液の650nm波長の吸光々変針で測定したと
きの吸光度が0.5〜0.6になるよう調製した菌懸濁
液をつくり、その0.5mlを採取して無菌的に上述の
n−ヘキサデカン−DNB−YE−エチルソホロリピツ
ド培地に加えた。
Torulopsis bombicola was then grown on a glucose-yeast extract-malt extract (YM medium, manufactured by Difco, USA) agar medium at 30°C for 2 days.
isbombicola) with a platinum loop and aseptically added to 10 ml of sterilized physiological saline, and the absorbance of the bacterial suspension at a wavelength of 650 nm was measured with a variable needle of 0.5 to 0. A bacterial suspension with a concentration of .6 was prepared, and 0.5 ml of the suspension was collected and added aseptically to the above-mentioned n-hexadecane-DNB-YE-ethylsophorolipid medium.

温度30℃、毎分120回往復振盪する振盪培養機で5
日間菌体を生育させた。
5 in a shaking culture machine with 120 reciprocating shakes per minute at a temperature of 30°C.
The bacterial cells were grown for several days.

培養終了後、培養液の液性を測定し、必要に応じて希塩
酸でpH2−3に調整し、振盪試験管に培養液の2倍量
の酢酸エチルを入れて抽出を行った。
After the culture was completed, the liquid properties of the culture solution were measured, and if necessary, the pH was adjusted to 2-3 with dilute hydrochloric acid, and ethyl acetate in an amount twice the amount of the culture solution was placed in a shaking test tube for extraction.

抽出操作を2回行った後、培養液水相部をよく振って均
一な菌懸濁液にし、その0.5mlを採取し、15m1
容量の試験管に移し、脱イオン水で10倍に希釈し、5
5Qnmの波長の吸光度を測定し菌の生育度”を求めた
After performing the extraction operation twice, shake the aqueous phase of the culture solution well to make a homogeneous bacterial suspension, collect 0.5 ml of it, and add 15 ml of it.
Transfer to a volume test tube, dilute 10 times with deionized water,
The absorbance at a wavelength of 5Qnm was measured to determine the degree of bacterial growth.

結果は表7に示す通りであった。The results were as shown in Table 7.

実施例 2 メチニコビア(Metschnikowia)属酵母ノ
n−ヘキサデカン炭素源培地での生育に対するソホロリ
ピツドの生育促進効カニ方法は実施例1と同様にして行
い、その結果を表8に示す。
Example 2 Growth promoting effect of sophorolipid on growth of Metschnikowia yeast on non-hexadecane carbon source medium The method was carried out in the same manner as in Example 1, and the results are shown in Table 8.

実施例 3 ピヒア(Pichia)属酵母のn−ヘキサデカン炭素
源培地での生育に対するソホロリピツドの生育促進効カ
ニ方法は実施例1と同様にして行い、その結果を表9に
示す。
Example 3 Growth promoting effect of sophorolipid on growth of Pichia yeast on n-hexadecane carbon source medium The method was carried out in the same manner as in Example 1, and the results are shown in Table 9.

実施例 4 トルロプシス(Torulopsis)属酵母の1’1
−ヘキサデカン炭素源培地での生育に対するソホロリピ
ツドの生育促進効カニ方法は実施例1と同様に行い、そ
の結果を表10に示す。
Example 4 1'1 of yeast of the genus Torulopsis
- Growth promoting effect of sophorolipid on growth in hexadecane carbon source medium The method was carried out in the same manner as in Example 1, and the results are shown in Table 10.

実施例 5 キャンデイダ(Candida)属酵母のn−ヘキサデ
カン炭素源培地での生育に対するソホロリピツドの生育
促進効カニ培養までの方法は実施例1と同様に行い、そ
の後の生育度の測定は、培養液から一定量の培養液を採
取し、適当に希釈したのち、YM寒天培地で混釈培養な
し、30℃、7日間培養したとき生育するコロニーの数
を算えて、生育度とした。
Example 5 Growth-promoting effect of sophorolipid on growth of Candida yeast on n-hexadecane carbon source medium The method up to crab cultivation was carried out in the same manner as in Example 1, and the subsequent growth was measured from the culture solution. A certain amount of the culture solution was taken, diluted appropriately, and then cultured on YM agar medium without pour culture at 30° C. for 7 days. The number of growing colonies was calculated and determined as the degree of growth.

その結果を表11に示す。実施例 6 石油資化性酵母のn−ヘキサデカン炭素源培地での生育
に対する水溶性ソホロリピツドの生育促進効カニ参考例
2より調製した水溶性ソホロリピツドならびに水不溶性
ソホロリピツドを実施例1の方法に準じて、試験を行い
、石油資化性酵母のn−ヘキサデカン炭素源培地での生
育に対する水溶性ソホロリピツドの生育促進効力を調べ
た。
The results are shown in Table 11. Example 6 Growth-promoting effect of water-soluble sophorolipid on the growth of petroleum-utilizing yeast in n-hexadecane carbon source medium The water-soluble sophorolipid prepared from Reference Example 2 and the water-insoluble sophorolipid were treated according to the method of Example 1. A test was conducted to examine the growth-promoting efficacy of water-soluble sophorolipids on the growth of petroleum-utilizing yeast in an n-hexadecane carbon source medium.

その結果を表12に示す。The results are shown in Table 12.

Claims (1)

【特許請求の範囲】 1 炭化水素或いは炭化水素誘導体を主炭素源として微
生物を培養するにあたり、培地に下記の一般式(I)、 (式中R1、R2はH又は−COCH3、R3はH又は
−CH3、R4は、R3がHのときは炭素数12〜16
の飽和又は不飽和の炭化水素基を示し、R3が−CH3
のときは炭素数11〜15の飽和又は不飽和の炭化水素
基を示す) で表わされる糖脂質を添加することを特徴とする微生物
培養法。 2 主炭素源が炭素数10〜18のn−アルカンである
特許請求の範囲第1項記載の微生物培養法。 3 微生物が酵母である特許請求の範囲第1項記載の微
生物培養法。
[Claims] 1. When culturing microorganisms using hydrocarbons or hydrocarbon derivatives as the main carbon source, a culture medium containing the following general formula (I), (wherein R1 and R2 are H or -COCH3, and R3 is H or -CH3 and R4 have 12 to 16 carbon atoms when R3 is H
represents a saturated or unsaturated hydrocarbon group, and R3 is -CH3
A method for culturing microorganisms, which comprises adding a glycolipid represented by the following formula (indicates a saturated or unsaturated hydrocarbon group having 11 to 15 carbon atoms). 2. The microorganism culturing method according to claim 1, wherein the main carbon source is an n-alkane having 10 to 18 carbon atoms. 3. The microorganism culturing method according to claim 1, wherein the microorganism is yeast.
JP16990279A 1979-12-26 1979-12-26 Microbial culture method Expired JPS5953033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16990279A JPS5953033B2 (en) 1979-12-26 1979-12-26 Microbial culture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16990279A JPS5953033B2 (en) 1979-12-26 1979-12-26 Microbial culture method

Publications (2)

Publication Number Publication Date
JPS5692786A JPS5692786A (en) 1981-07-27
JPS5953033B2 true JPS5953033B2 (en) 1984-12-22

Family

ID=15895084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16990279A Expired JPS5953033B2 (en) 1979-12-26 1979-12-26 Microbial culture method

Country Status (1)

Country Link
JP (1) JPS5953033B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61196757U (en) * 1985-05-29 1986-12-08
JPH03111338U (en) * 1990-02-23 1991-11-14

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6289053B2 (en) * 2013-11-22 2018-03-07 花王株式会社 Production method of sophorolipid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61196757U (en) * 1985-05-29 1986-12-08
JPH03111338U (en) * 1990-02-23 1991-11-14

Also Published As

Publication number Publication date
JPS5692786A (en) 1981-07-27

Similar Documents

Publication Publication Date Title
JPH03201992A (en) Novel method of preparing immunosuppressive agent
FR2520379A1 (en) PROCESS FOR THE PREPARATION OF A DISACCHARIDE-TRIPEPTIDE AND A DISACCHARIDE-TETRAPEPTIDE HAVING IMMUNOSTIMULANT PROPERTIES
JP4978908B2 (en) Method for producing mannosyl erythritol lipid
JPS5953033B2 (en) Microbial culture method
CN114790438B (en) Method for improving yield and oxidation resistance of antrodia camphorata extracellular polysaccharide
JPS5953032B2 (en) Microbial culture method
HU189515B (en) Process for preparing new 20-dihydro-20,23-dideoxy-tylonolide /tylactone/ and esters thereof
JP5137204B2 (en) Method for producing mannosyl erythritol lipid
CH393638A (en) Process for preparing a new antibiotic
US2996435A (en) Process for producing azaserine
FR2497809A1 (en) POLYSACCHARIDE MPS-80 OF HIGH MOLECULAR WEIGHT AND ITS PREPARATION
SU171827A1 (en) METHOD OF MANUFACTURING THE FOOD MEDIUM FOR MICROORGANISMS
BE865590A (en) ANTIBIOTIC COMPOSITIONS AND THEIR USE
JP2879394B2 (en) Benzanthracene derivative, antitumor agent containing the derivative and method for producing the same
JP3796539B2 (en) Method for producing glyceroglycolipid and microorganism used therefor
KR0130473B1 (en) New antibiotics benanomicins-a/-b and dexylosylbewanomicin-b, and production and uses therof
JP3327982B2 (en) New antibiotic MI481-42F4-A related substance
SU511946A1 (en) The method of obtaining 11-oxo-substituted pregenen-4-diol-17, 21-dione-3,20 or its derivatives
JPH08228793A (en) Production of new lignan glycoside
JPH08325285A (en) New inhibitor of cell adhesion as macrosphelides a and b and their production
BE526313A (en)
JPS62186787A (en) Novel microorganism
JPH02202867A (en) Alpha,beta-unsaturated azoxy compound
BE600777A (en)
JPH0795876A (en) Cultivation of marine fine alga