JPS5952942B2 - Cu alloy with high heat resistance and high conductivity - Google Patents
Cu alloy with high heat resistance and high conductivityInfo
- Publication number
- JPS5952942B2 JPS5952942B2 JP16940280A JP16940280A JPS5952942B2 JP S5952942 B2 JPS5952942 B2 JP S5952942B2 JP 16940280 A JP16940280 A JP 16940280A JP 16940280 A JP16940280 A JP 16940280A JP S5952942 B2 JPS5952942 B2 JP S5952942B2
- Authority
- JP
- Japan
- Prior art keywords
- heat resistance
- alloy
- alloys
- conductivity
- high heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Conductive Materials (AREA)
Description
【発明の詳細な説明】
この発明は、高耐熱性および高導電性を具備し、かつ安
価なCu合金に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an inexpensive Cu alloy that has high heat resistance and high conductivity.
従来、一般に、例えば電子部品や電子機器の導電材、整
流子片、およびコイル巻線などの高耐熱性と高導電性が
要求される部材の製造にはCu一Ag系合金が広範囲に
亘つて使用されている。しかし、近年のAg地金価格の
高騰による経済性の点から、その使用範囲が次第に制限
されつつあるのが現状である。そこで、上記Cu−Ag
系合金に代つて、安価にして耐熱性にすぐれたCu−S
n系合金やCu−Fe一P系合金を使用する試みもなさ
れたが、これらのCu合金は導電性に難点があるために
、上記Cu−Ag系合金の完全な代替材料とはなり得な
いものであつた。Conventionally, Cu-Ag alloys have been widely used in the production of components that require high heat resistance and high conductivity, such as conductive materials for electronic components and electronic devices, commutator pieces, and coil windings. It is used. However, the current situation is that the scope of its use is gradually being restricted due to economic considerations due to the sharp increase in the price of Ag ingots in recent years. Therefore, the above Cu-Ag
Cu-S, which is inexpensive and has excellent heat resistance, replaces alloys based on Cu-S.
Attempts have been made to use n-based alloys and Cu-Fe-P-based alloys, but these Cu alloys have drawbacks in conductivity, so they cannot be a complete substitute for the Cu-Ag alloys mentioned above. It was hot.
本発明者等は、上述のような観点から、上記の従来Cu
−Ag系合金の代替材料を、Agを含有させない状態で
得べく研究を行なつた結果、B■0.0005〜0.0
1%、Mg:0.002〜0.05%を含有し、さらに
P:0.001〜0.01%、In:0.002〜0.
03%、および丁e:0.001〜0.06%のうちの
1種または2種以上を含有し、残りがCuと不可避不純
物からなる組成(以上重量%、以下%の表示はすべて重
量%を意味する)を有するCu合金は、従来Cu−Ag
合金と同等の高導電性を有するばかりでなく、これより
も一段とすぐれた高耐熱性を有するという知見を得たの
である。From the above-mentioned viewpoint, the present inventors have proposed the above-mentioned conventional Cu
- As a result of conducting research to obtain a substitute material for Ag-based alloys without containing Ag, we found that B■0.0005 to 0.0
1%, Mg: 0.002-0.05%, and further contains P: 0.001-0.01%, In: 0.002-0.
Composition containing one or more of 0.03% and 0.001 to 0.06%, and the remainder consisting of Cu and unavoidable impurities (all percentages by weight are % by weight) Conventionally, Cu-Ag alloys with
They found that it not only has high electrical conductivity equivalent to that of alloys, but also has higher heat resistance than that.
この発明は、上記知見にもとづいてなされたものであつ
て、以下に成分組成範囲を上記の通りにl限定した理由
を説明する。This invention was made based on the above knowledge, and the reason why the component composition range was limited as described above will be explained below.
(a)BおよびMg
これらの成分には合金の耐熱性を向上させる作用がある
が、それぞれB:0.0005%未満およびMg:0.
002%未満では、所望の高耐熱性を7 確保すること
ができず、一方それぞれB:0.01%およびMg:0
.05%を越えて含有させても、よりー層の耐熱性向上
効果が見られず、逆に導電性の低下をきたすようになる
ことから、その含有量を、それぞれB:0.0005〜
0.01%、θ Mg:0.002〜0.05%と定め
た。(a) B and Mg These components have the effect of improving the heat resistance of the alloy, but B: less than 0.0005% and Mg: 0.0%, respectively.
If B:0.01% and Mg:0, respectively, the desired high heat resistance cannot be secured.
.. Even if the content exceeds 0.05%, the effect of improving the heat resistance of the layer will not be seen, and on the contrary, the conductivity will decrease.
0.01%, θ Mg: 0.002 to 0.05%.
(b)P、In、および丁eこれらの成分には、Bおよ
びMgとの共存においてCuのもつ高導電率を損なうこ
となく、合金の耐熱性を一段と改善する均等的作用があ
”5 るが、それぞれP :0.001%未満、In:
0.002%未満、および丁e:0.001%未満では
、所望の耐熱性向上効果が得られず、一方それぞれP■
0.01%、In:0.03%、およびTe:0.06
%を越えて含有させても、耐熱性により一層の改善効果
が得られず、むしろ導電性および塑性加工性の低下をま
ねき、かつコスト高ともなることから、その含有量を、
それぞれP:0.001〜0.01%、In:0.00
2〜0.03%、およびTe:0.001〜0.06%
と定めた。(b) P, In, and Te These components have an equal effect in coexisting with B and Mg to further improve the heat resistance of the alloy without impairing the high conductivity of Cu. However, P: less than 0.001%, In:
At less than 0.002% and less than 0.001%, the desired heat resistance improvement effect cannot be obtained;
0.01%, In: 0.03%, and Te: 0.06
Even if the content exceeds %, no further improvement in heat resistance will be obtained, but rather will lead to a decrease in conductivity and plastic workability, and will also increase costs.
P: 0.001-0.01%, In: 0.00, respectively
2-0.03%, and Te: 0.001-0.06%
It was determined that
なお、それぞれP:0.002〜0.006%、In:
0.005〜0.02%、およびTe:0.003〜0
.03%を含有する場合に一段とすぐれた特性が得られ
る。つぎに、この発明のCu合金を実施例により比較例
と対比しながら説明する。In addition, P: 0.002 to 0.006%, In:
0.005-0.02%, and Te: 0.003-0
.. Even better properties can be obtained when the content is 0.3%. Next, the Cu alloy of the present invention will be explained using examples and comparing with comparative examples.
実施例
通常の溶解法にしたがつて、まず無酸素銅を溶解し、つ
いで第1表に示される最終成分組成をもつようにB,M
g,P,In,およびTeをそれぞれ添加して溶製し、
直径60mmφ×長さ160mmの寸法をもつたインゴ
ツトに鋳造し、引続いて前記インゴツトを850℃の温
度で熱間押出加工して直径8mmφの荒引線とした後、
直ちに水冷し、さらに前記荒引線に伸線加工を施して直
径2.6mmφの線材とすることによつて、本発明Cu
合金1〜18、比較Cu合金1〜7、および従来Cu−
Ag合金からなる試片をそれぞれ製造した。Example According to the usual melting method, oxygen-free copper is first melted, and then B and M are dissolved to have the final component composition shown in Table 1.
g, P, In, and Te are added and melted,
After casting into an ingot with dimensions of 60 mm in diameter x 160 mm in length, the ingot was subsequently hot extruded at a temperature of 850°C to form a rough wire with a diameter of 8 mm.
The Cu of the present invention was immediately cooled with water and further subjected to wire drawing processing to obtain a wire rod with a diameter of 2.6 mmφ.
Alloys 1 to 18, comparative Cu alloys 1 to 7, and conventional Cu-
Samples made of Ag alloy were each produced.
なお、比較Cu合金1〜7は、いずれも合金構成成分の
うちのいずれかの成分(第1表には※印でで表示)がこ
の発明の範囲から外れた組成をもつものである。つぎに
、この結果得られた各種の試片について、合金強度に著
しい低下が起る最低加熱温度、すなわち軟化温度および
導電率(H材)を測定し、この測定結果を第1表に合せ
て示した。Note that Comparative Cu Alloys 1 to 7 all have compositions in which one of the alloy constituents (indicated by * in Table 1) is outside the scope of the present invention. Next, the minimum heating temperature at which a significant decrease in alloy strength occurs, that is, the softening temperature and electrical conductivity (H material), were measured for the various specimens obtained as a result, and the measurement results were combined with Table 1. Indicated.
第1表に示される結果から、比較Cu合金1〜7は、耐
熱性および導電性のうちのいずれかの特性(第1表に※
印でで表示)が劣つたものになつているのに対して、本
発明Cu合金1〜18は、いずれも高耐熱性および高導
電性を兼ね備え、特に導電性に関しては従来Cu−Ag
合金と同等、あるいはこれ以上のすぐれた特性を有し、
さらに耐熱性に関しては、従来Cu−Ag合金より一段
とすぐれた特性をもつことが明らかである。上述のよう
に、この発明のCu合金は、高耐熱性および高導電性を
具備し、かつAgを含有しないので比較的安価であるこ
とから、従来高導電性と耐熱性が要求される分野で使用
されていたCu−Ag系合金の代替材料としては勿論の
こと、その他広範囲に亘つての使用が可能であり、しか
も実用に供された場合にはすぐれた性能を発揮するなど
工業上有用な特性を有するのである。From the results shown in Table 1, comparative Cu alloys 1 to 7 have either heat resistance or electrical conductivity (*
In contrast, Cu alloys 1 to 18 of the present invention have both high heat resistance and high conductivity, and in particular, in terms of conductivity, they are inferior to conventional Cu-Ag alloys.
It has excellent properties equivalent to or better than alloys,
Furthermore, in terms of heat resistance, it is clear that it has much better properties than conventional Cu-Ag alloys. As mentioned above, the Cu alloy of the present invention has high heat resistance and high conductivity, and since it does not contain Ag, it is relatively inexpensive. Not only can it be used as a substitute material for the Cu-Ag alloy that has been used, but it can also be used in a wide range of other applications, and when put into practical use, it exhibits excellent performance and is industrially useful. It has characteristics.
Claims (1)
〜0.05%を含有し、さらにP:0.001〜0.0
1%、In:0.002〜0.03%、およびTe:0
.001〜0.06%のうちの1種または2種以上を含
有し、残りがCuと不可避不純物からなる組成(以上重
量%)を有することを特徴とする高耐熱性および高導電
性を有するCu合金。1 B: 0.0005-0.01%, Mg: 0.002
Contains ~0.05%, and further includes P:0.001~0.0
1%, In: 0.002-0.03%, and Te: 0
.. Cu having high heat resistance and high conductivity, characterized in that it contains one or more of 0.001 to 0.06%, and the remainder is Cu and unavoidable impurities (weight %). alloy.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16940280A JPS5952942B2 (en) | 1980-12-01 | 1980-12-01 | Cu alloy with high heat resistance and high conductivity |
US06/269,687 US4400351A (en) | 1980-06-13 | 1981-06-02 | High thermal resistance, high electric conductivity copper base alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16940280A JPS5952942B2 (en) | 1980-12-01 | 1980-12-01 | Cu alloy with high heat resistance and high conductivity |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5794536A JPS5794536A (en) | 1982-06-12 |
JPS5952942B2 true JPS5952942B2 (en) | 1984-12-22 |
Family
ID=15885930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16940280A Expired JPS5952942B2 (en) | 1980-06-13 | 1980-12-01 | Cu alloy with high heat resistance and high conductivity |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5952942B2 (en) |
-
1980
- 1980-12-01 JP JP16940280A patent/JPS5952942B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5794536A (en) | 1982-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103572091B (en) | Cu alloy material, its preparation method and copper conductor prepared therefrom | |
JPS5834537B2 (en) | High-strength conductive copper alloy with good heat resistance | |
JPS6160846A (en) | Copper alloy lead material for semiconductor devices | |
JPS63307232A (en) | Copper alloy | |
JPS59170231A (en) | High tension conductive copper alloy | |
JPS5952941B2 (en) | Highly conductive heat-resistant Cu alloy | |
US4400351A (en) | High thermal resistance, high electric conductivity copper base alloy | |
JPS5952942B2 (en) | Cu alloy with high heat resistance and high conductivity | |
JPS5952943B2 (en) | Cu alloy with high heat resistance and high conductivity | |
JPS58210140A (en) | Heat resistant conductive copper alloy | |
JPS6215619B2 (en) | ||
JPS5948854B2 (en) | Cu alloy with high heat resistance and high conductivity | |
JPS63213628A (en) | Copper alloy for fuses | |
JPS6017039A (en) | Copper alloy with excellent heat resistance, mechanical properties, workability, and electrical conductivity | |
JPS6043905B2 (en) | Manufacturing method of highly conductive heat-resistant copper alloy material | |
US4139372A (en) | Copper-based alloy | |
JPS6242976B2 (en) | ||
JPS6043904B2 (en) | Manufacturing method of highly conductive heat-resistant copper alloy material | |
JPS5952221B2 (en) | Heat-resistant and highly conductive copper alloy | |
JPS5821015B2 (en) | Conductive copper alloy | |
JPS6152334A (en) | Copper alloy having superior heat resistance and electric conductivity | |
JPH0416534B2 (en) | ||
JPS62243750A (en) | Manufacture of copper alloy excellent in property of proof stress relaxation | |
JPS60218442A (en) | Copper alloy for lead frame | |
US2136549A (en) | Copper-uranium alloys |