JPS5952908B2 - Flame retardant resin composition - Google Patents

Flame retardant resin composition

Info

Publication number
JPS5952908B2
JPS5952908B2 JP3832880A JP3832880A JPS5952908B2 JP S5952908 B2 JPS5952908 B2 JP S5952908B2 JP 3832880 A JP3832880 A JP 3832880A JP 3832880 A JP3832880 A JP 3832880A JP S5952908 B2 JPS5952908 B2 JP S5952908B2
Authority
JP
Japan
Prior art keywords
resin
weight
laminate
halogenated
triazine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3832880A
Other languages
Japanese (ja)
Other versions
JPS56135542A (en
Inventor
一紀 光橋
満利 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP3832880A priority Critical patent/JPS5952908B2/en
Publication of JPS56135542A publication Critical patent/JPS56135542A/en
Publication of JPS5952908B2 publication Critical patent/JPS5952908B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は難燃性の優れた積層品用の難燃性樹脂組成物に
関し、その目的とするところはトリアジン系アミノ樹脂
変性フェノール樹脂の保持しているトリアジン核による
難燃効果を有効に生かし、更に、優れた耐アーク性を著
しく損うことなく耐熱性、電気特性、打抜加工性を備え
た特に難燃性に優れた積層板を提供しうる樹脂組成物を
提供するにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flame-retardant resin composition for use in laminates with excellent flame retardancy, and its purpose is to reduce the flame retardance caused by the triazine nuclei held in the triazine-based amino resin-modified phenolic resin. A resin composition that can effectively utilize the flame effect and provide a laminate with particularly excellent flame retardancy, which has heat resistance, electrical properties, and punching workability without significantly impairing the excellent arc resistance. It is on offer.

近年、電子電気機器分野に使用される積層板は、需要分
野の拡大に伴い耐アーク性と共に耐熱性、電気特性、打
抜き加工性の要求、更に、難燃性の要望が著しく増大し
ている。
In recent years, with the expansion of the field of demand for laminates used in the field of electronic and electrical equipment, demands for arc resistance, heat resistance, electrical properties, punching workability, and flame retardancy have increased significantly.

かかる点に鑑みて、前記のトリアジン系アミノ樹脂変性
フェノール樹脂の本来の特性である耐アーク性と難燃性
を有効に活用し、目的を達成すべく検討を行つた。とこ
ろで、トリアジン系アミノ樹脂変性フェノール樹脂はこ
れ自体では所要の難燃性(例えUL−94V−O)を保
持した積層板を与えることは出来ない。また、機械的強
度が弱く、脆く、打抜き時に割れを起す等の欠点がある
。このような欠点を改良して目的の難燃性を与え3る手
段として、従来有機ハロゲン化合物の利用が知られてい
る。
In view of this point, studies were conducted to effectively utilize the arc resistance and flame retardance, which are the original characteristics of the triazine-based amino resin-modified phenolic resin, to achieve the objective. By the way, the triazine-based amino resin-modified phenolic resin by itself cannot provide a laminate that maintains the required flame retardancy (for example, UL-94V-O). Furthermore, it has drawbacks such as low mechanical strength, brittleness, and cracking during punching. Conventionally, the use of organic halogen compounds has been known as a means of improving such drawbacks and providing desired flame retardancy.

例えば、(1)難燃剤としてハロゲン化フェノール類、
例えばテトラブロモビスフェノールAをトリアジン系ア
ミノ樹脂変性フェノール樹脂、例えばメラミン変性フェ
ノール樹脂に添加含有せしめた樹脂組成物を紙基材に含
浸して積層板を製造する方法。
For example, (1) halogenated phenols as flame retardants;
For example, a method of manufacturing a laminate by impregnating a paper base material with a resin composition in which tetrabromobisphenol A is added to a triazine-based amino resin-modified phenol resin, such as a melamine-modified phenol resin.

この場合、テトラブロモビスフェノールAは安価でブロ
ム含有率が高く、比較的少量の添加J で優れた難燃効
果を示すが、分子中のフェノール性OH基とハロゲンの
相互作用により高温積層成形時にハロゲンの解離を起し
易<、積層板のふくれや変色の危険があり、所要の電気
特性が得られない。
In this case, tetrabromobisphenol A is inexpensive, has a high bromine content, and exhibits an excellent flame retardant effect with a relatively small amount of J added, but due to the interaction between the phenolic OH group in the molecule and the halogen, the There is a risk of blistering and discoloration of the laminate, making it impossible to obtain the required electrical properties.

また、高い打抜き温度に於てもク 充分な打抜き加工性
が得られない(例えば100℃に於ても穴周辺にクラッ
クが発生する)欠点がある。(2)難燃性エポキシ樹脂
、例えばテトラプロモビスフエノールAのジグリシジル
エーテルを前記トリアジン系アミノ樹脂変性フエノール
樹脂に含有せしめた樹脂組成物を基材に含浸して積層板
を製造する方法。
Further, there is a drawback that sufficient punching workability cannot be obtained even at high punching temperatures (for example, cracks occur around the holes even at 100° C.). (2) A method of manufacturing a laminate by impregnating a base material with a resin composition in which a flame-retardant epoxy resin, such as diglycidyl ether of tetrapromobisphenol A, is contained in the triazine-based amino resin-modified phenolic resin.

この場合、使用する樹脂組成物は分子中に存在する2個
以上のエポキシ基の優れた反応性により、トリアジン系
アミノ樹脂変性フエノール樹脂の欠点である機械的強度
を著しく増大し耐熱性を向上するが、非常に硬くなり、
所要の難燃性(例えばUL−94V−0)と打抜き加工
性(例えば80〜120℃でクラツクのないこと)のバ
ランスをとることは困難である。
In this case, the resin composition used has excellent reactivity of two or more epoxy groups present in the molecule, which significantly increases mechanical strength and improves heat resistance, which is a drawback of triazine-based amino resin-modified phenolic resins. becomes very hard,
It is difficult to strike a balance between the required flame retardancy (for example, UL-94V-0) and punching workability (for example, no cracking at 80 to 120°C).

更に大きな欠点として、ハロゲン化エポキシ樹脂とトリ
アジン系アミノ樹脂変性フエノール樹脂の混合物を繊維
素基材に含浸して得たプリプレグはエポキシ基とアミノ
基の反応がプリプレグの状態で進行し、貯蔵安定性がな
く工業的に積層板の市場提供が困難な問題があつた本発
明はかかる欠点を改良し、トリアジン系アミノ樹脂変性
フエノール樹脂の特性を損うことなく目的の積層板を提
供できる積層品用難燃性樹脂組成物を提供するものであ
る。
An even bigger drawback is that the prepreg obtained by impregnating a cellulose base material with a mixture of a halogenated epoxy resin and a triazine-based amino resin-modified phenol resin has poor storage stability because the reaction between the epoxy group and the amino group proceeds in the prepreg state. The present invention improves these drawbacks and provides a laminate that can provide the desired laminate without impairing the properties of the triazine-based amino resin-modified phenolic resin. A flame retardant resin composition is provided.

即ち、本発明は分子中に少くとも2個のエポキシ基をも
つハロゲン化エポキシ樹脂と該樹脂に対して化学量論的
に同当量のハロゲン化フエノール類とを反応させた後、
更に一般式 R:HまたはCH3,C4H, X:BrまたはClnは1〜2 で示されるモノグリシジルエーテルを前記の反応物に対
して10〜50重量%添加し反応させて得られる樹脂組
成物をトリアジン系アミノ樹脂変性フエノール樹脂に該
樹脂に対して樹脂固形として20〜50重量%含有せし
めて得た積層品用の難燃性樹脂z組成物である。
That is, in the present invention, after reacting a halogenated epoxy resin having at least two epoxy groups in the molecule with a halogenated phenol in a stoichiometrically equivalent amount to the resin,
Furthermore, a resin composition obtained by adding 10 to 50% by weight of a monoglycidyl ether represented by the general formula R:H or CH3, C4H, X:Br or Cln to the above reactant and reacting it. This is a flame-retardant resin Z composition for laminates obtained by adding 20 to 50% by weight of resin solids to a triazine-based amino resin-modified phenolic resin.

本発明は、基本的には、トリアジン系アミノ樹脂変性フ
エノール樹脂に、難燃付与剤として安価でハロゲン含有
率の高い難燃効果の優れたハロゲン化フエノール類と耐
熱及び電気特性の優れた積層板を与え得る分子中に少く
とも2個のエポキシ基をもつハロゲン化エポキシ樹脂と
を反応させて、前者単独の場合の欠点である耐熱性の改
良と後者単独の場合の欠点であるプリプレグの貯蔵安定
性の改良をなすものである。
The present invention basically consists of a triazine-based amino resin-modified phenolic resin, a halogenated phenol that is inexpensive as a flame retardant agent, has a high halogen content, and has an excellent flame retardant effect, and a laminate that has excellent heat resistance and electrical properties. By reacting with a halogenated epoxy resin that has at least two epoxy groups in the molecule that can give It improves sex.

しかし、前記のハロゲン化フエノール類とハロゲン化エ
ポキシ樹脂の配合比を変えても、またこの両者の反応物
のトリアジン系アミノ樹脂変性フエノール樹脂への添j
加割合を変えても所要の難燃性と耐熱性、電気特性、打
抜き加工性及びプリプレグの貯蔵安定性のバランスをと
ることは困難である。然るに、前記のハロゲン化フエノ
ール類とハロゲン化エポキシ樹脂の反応物に前記一般式
で示される1官能性のモノグリシジルエーテルを配合し
、反応に関与させることによつて得た樹脂組成物をトリ
アジン系アミノ樹脂変性フエノール樹脂に含有せしめる
ことに初めて初望の難燃性、耐熱性、電気特性、打抜き
加工性及びプリプレグの貯蔵安定性のバラン・スをとる
ことが出来る。この理由は、ハロゲン化フエノール類と
ハロゲン化エポキシ樹脂の反応及び該反応によつて生じ
た0H基(工ポキシ基の開環)や末端のフエノール性0
H基と前記一般式で示されるモノグリシジルエーテルの
反応により、トリアジン系アミノ樹脂変性フエノール樹
脂中のアミン化合物と反応しやすいエポキシ基を減少さ
せたためと考えられ、これによつて、プリプレグにした
場合の貯蔵可能期間を延長せしめると共に積層板にした
場合の打抜き加工性を向上させたものと推定でる。
However, even if the blending ratio of the halogenated phenols and halogenated epoxy resin is changed, the addition of the reactants of both to the triazine-based amino resin-modified phenolic resin
Even if the addition ratio is changed, it is difficult to maintain the required balance between flame retardancy, heat resistance, electrical properties, punching workability, and storage stability of the prepreg. However, a resin composition obtained by blending a monofunctional monoglycidyl ether represented by the above general formula with the reaction product of the halogenated phenol and the halogenated epoxy resin and allowing it to participate in the reaction can be used as a triazine-based resin composition. By incorporating it into an amino resin-modified phenolic resin, it is possible for the first time to achieve the desired balance of flame retardancy, heat resistance, electrical properties, punching processability, and storage stability of prepregs. This is due to the reaction between the halogenated phenols and the halogenated epoxy resin, the 0H group (ring opening of the engineered poxy group) generated by the reaction, and the terminal phenolic
This is thought to be due to the reaction between the H group and the monoglycidyl ether represented by the above general formula, which reduces the epoxy group that easily reacts with the amine compound in the triazine-based amino resin-modified phenolic resin. It is presumed that this not only extends the shelf life of the material, but also improves the punching processability when it is made into a laminate.

本発明を実施するに当り、分子中に少くとも2個のエポ
キシ基をもつハロゲン化エポキシ樹脂としては、テトラ
プロモビスフエノールAのジグリシジルエーテル、ジブ
ロモネオペンチルグリコールジグリシジルエーテル等が
あり、ハロゲン化フエノール類としては、テトラプロモ
ビスフエノールA、トリプロモビスフエノールA、トリ
プロモフエノール、ジプロモフエノール等であり、好ま
しくは耐熱性の点より2個のフエノール性0H基をもつ
ものが望ましい。
In carrying out the present invention, examples of halogenated epoxy resins having at least two epoxy groups in the molecule include diglycidyl ether of tetrapromobisphenol A, dibromoneopentyl glycol diglycidyl ether, etc. Examples of the phenols include tetrapromobisphenol A, tripromobisphenol A, tripromophenol, and dipromophenol, and preferably those having two phenolic OH groups are preferred from the viewpoint of heat resistance.

前記ハロゲン化エポキシ樹脂とハロゲン化フニノール類
の反応は、同一当量を第3級アミンを触媒として反応さ
せるのが好ましい。
In the reaction between the halogenated epoxy resin and the halogenated funinols, it is preferable to react the same equivalent amount using a tertiary amine as a catalyst.

ハロゲン化フエノール類が当量以下ではプリプレグの貯
蔵安定性が充分でなく、且所望の難燃性を得るためには
高コストのハロゲン化エポキシ樹脂を含む多量の反応物
を使用する必要があり高コストになる。
If the amount of halogenated phenols is less than the equivalent, the storage stability of the prepreg will not be sufficient, and in order to obtain the desired flame retardancy, it will be necessary to use a large amount of reactants, including an expensive halogenated epoxy resin, resulting in high costs. become.

一方、ハロゲン化フエノール類が当量以上になると耐熱
性が問題になる。前記一般式で示されるモノグリシジル
エーテルは、ジプロモクレジルモノグリシジルエーテル
、ジプロモフエニルモノグリシジルエーテル、ジプロモ
ブチルフエニルモノグリシジルエーテル等やジタロロク
レジルモノグリシジルエーテル、ジクロロブチルフエニ
ルモノグリシジルエーテル等が使用できる。
On the other hand, if the amount of halogenated phenols exceeds the equivalent amount, heat resistance becomes a problem. Monoglycidyl ethers represented by the above general formula include dipromocresyl monoglycidyl ether, dipromophenyl monoglycidyl ether, dipromobutylphenyl monoglycidyl ether, ditalolocresyl monoglycidyl ether, dichlorobutylphenyl monoglycidyl ether, etc. can be used.

このモノグリシジルエーテルの添加量は、前記のハロゲ
ン化エポキシ樹脂とハロゲン化フエノール類の反応物に
対して10〜50重量%の範囲内が好ましく、10重量
%未満ではプリプレグの貯蔵安定性の向上は充分でなく
、また積層板として実用上必要な打抜き加工性は得られ
ない。方、50重量%を越えると積層板の耐熱性や電気
特性が低下する。また、モノグリシジルエーテルの添加
時期は、前記のハロゲン化エポキシ樹脂とハロゲン化フ
エノール類の反応が平衡に達した時点が望ましい。トリ
アジン系アミノ樹脂変性フエノール樹脂としては、メラ
ミン、メチルグアナミン、ベンゾグアナミン等のアミン
類をフエノール樹脂の製造過程で共縮合して得られるも
の或は前記アミン類とホルムアルデヒドの初期縮合物を
フエノールホルムアルデヒド樹脂に添加もしくは反応せ
しめて得られる。
The amount of monoglycidyl ether added is preferably within the range of 10 to 50% by weight based on the reaction product of the halogenated epoxy resin and halogenated phenol, and if it is less than 10% by weight, the storage stability of the prepreg will not improve. This is not sufficient, and the punching workability necessary for practical use as a laminate cannot be obtained. On the other hand, if it exceeds 50% by weight, the heat resistance and electrical properties of the laminate will deteriorate. Further, the monoglycidyl ether is preferably added at a time when the reaction between the halogenated epoxy resin and the halogenated phenols reaches equilibrium. Triazine-based amino resin-modified phenolic resins include those obtained by co-condensing amines such as melamine, methylguanamine, and benzoguanamine in the process of producing phenolic resins, or those obtained by co-condensing amines such as melamine, methylguanamine, benzoguanamine, etc., or by converting an initial condensate of the above amines and formaldehyde into phenol-formaldehyde resin. Obtained by addition or reaction.

前記のハロゲン化エポキシ樹脂、ハロゲン化フエノール
類及びモノグリシジルエーテルを反応せしめた樹脂組成
物のトリアジン系アミノ樹脂変性フエノール樹脂への添
加量は、要求される難燃性に応じて増減させることが出
来るが、本発明の目的である耐熱性、電気特性、実用上
必要な打抜き加工性を兼ね備えるためには前記変性フエ
ノール樹脂に対して20〜50重量%が望ましく、20
重量%未満では所要の難燃性(UL−94−V一1)、
打抜き加工性が充分でなく、50重量%を越えるとの耐
熱性が減じられる。以下実施例によつて本発明を更に具
体的に説明する。
The amount of the resin composition prepared by reacting the halogenated epoxy resin, halogenated phenol, and monoglycidyl ether added to the triazine-based amino resin-modified phenolic resin can be increased or decreased depending on the flame retardance required. However, in order to have heat resistance, electrical properties, and practically necessary punching workability, which are the objectives of the present invention, it is desirable that the amount is 20 to 50% by weight, and 20 to 50% by weight based on the modified phenolic resin.
If less than % by weight, the required flame retardancy (UL-94-V-1),
Punching workability is not sufficient, and if it exceeds 50% by weight, heat resistance is reduced. The present invention will be explained in more detail below using Examples.

実施例 1 分子の両末端にエポキシ基をもつビスフエノールA型エ
ポキシ樹脂化合物であるテトラプロモビスフエノールA
のジグリシジルエーテルを400重量部、テトラプロモ
ビスフエノールAを2゛72重量部及びトルエンを加え
て60重量%溶液にした後、この溶液にベンジルジメチ
ルアミンを1重量部を加え100℃で4時間反応させた
Example 1 Tetrapromobisphenol A, a bisphenol A type epoxy resin compound having epoxy groups at both ends of the molecule
400 parts by weight of diglycidyl ether, 272 parts by weight of tetrapromobisphenol A and toluene were added to make a 60% solution by weight, then 1 part by weight of benzyldimethylamine was added to this solution and the mixture was heated at 100°C for 4 hours. Made it react.

更に、ジプロモクレジルモノグリシジルエーテル200
重量部を混合して100℃で2時間反応させ(系中のエ
ポキシ基の濃度が平衡)トルエンを加えて不揮発分60
重量%のワニス(4)を得た。一方、トリアジン系アミ
ノ樹脂変性フエノール樹脂は次のようにして調製した。
Furthermore, dibromocresyl monoglycidyl ether 200
Mix parts by weight and react at 100°C for 2 hours (the concentration of epoxy groups in the system is in equilibrium).Toluene is added to reduce the non-volatile content to 60%.
% by weight of varnish (4) was obtained. On the other hand, a triazine-based amino resin-modified phenolic resin was prepared as follows.

ノニルフエノール500重量部及び85%パラホルム3
00重量部にパラトルエンスルフオン酸10%溶液を3
重量部加え100℃で3時間反応後、フエノールを30
0重量部、25%アンモニア水15重量部を加え更にメ
ラミン−ホルムアルデヒド初期縮合物を200重量部加
えて100℃で1時間反応を進め、次いで脱水後メタノ
ールを加えて不揮発分60重量%、ゲル化時間5分のト
リアジン系アミノ樹脂変性フエノールのワニス(B)を
調製した。このように調製したトリアジン系アミノ樹脂
変性フエノール樹脂のワニス(B)に対してワニス(A
)が固形分換算で40重量%になるように配合し、この
ワニスを厚さ10ミルスのクラフト紙に含浸、乾燥し樹
脂含量50重量%プリプレグを得た。
500 parts by weight of nonylphenol and 85% paraform 3
00 parts by weight of 10% paratoluenesulfonic acid solution
After adding parts by weight and reacting at 100°C for 3 hours, 30 parts of phenol was added.
0 parts by weight, 15 parts by weight of 25% aqueous ammonia were added, further 200 parts by weight of melamine-formaldehyde initial condensate were added, the reaction was allowed to proceed at 100°C for 1 hour, and then, after dehydration, methanol was added to reduce the non-volatile content to 60% by weight, resulting in gelation. A triazine-based amino resin-modified phenol varnish (B) was prepared for 5 minutes. Varnish (A) was mixed with triazine-based amino resin-modified phenolic resin varnish (B) prepared in this manner.
) was blended so as to have a solid content of 40% by weight, and this varnish was impregnated into 10 mils thick kraft paper and dried to obtain a prepreg with a resin content of 50% by weight.

このプリプレグを9枚重ねて100kg/CIn2、1
60℃で50分間積層成形し1.6m/m厚の積層板を
得た。実施例 2 ジプロモネオペンチルグリコールジグリシジルノエーテ
ル320重量部、テトラプロモビスフエノールAを27
2重量部及びトルエンを加えて60重量%溶液にした後
、ベンジルジメチルアミンを1.3重量部加え100℃
で5時間反応させた。
9 sheets of this prepreg are stacked to give a weight of 100kg/CIn2.1
Laminate molding was performed at 60° C. for 50 minutes to obtain a laminate plate with a thickness of 1.6 m/m. Example 2 320 parts by weight of dipromoneopentyl glycol diglycidylnoether, 27 parts by weight of tetrapromobisphenol A
After adding 2 parts by weight and toluene to make a 60% solution by weight, 1.3 parts by weight of benzyldimethylamine was added and the solution was heated to 100°C.
The reaction was carried out for 5 hours.

更に、ジプロモクレジルモノグリシジルエーテルを20
0重量7部混合して100℃で2時間反応させトルエン
を加えて不揮発分60重量%のワニス(C)を得た。実
施例1で調製したワニス(B)に対しワニス(C)を3
0重量%になるように配合した。次いで、実施例1と同
様の方法で1.6m/m厚の積層板を得た。フ比較例
1テトラプロモビスフエノールAを実施例1で調製した
ワニス(B)に対し固形分換算で25重量%添加し、実
施例1と同様の方法で1.6m/m厚の積層板を得た。
Furthermore, 20% of dibromocresyl monoglycidyl ether
The mixture was mixed with 7 parts by weight and reacted at 100°C for 2 hours, and toluene was added to obtain a varnish (C) with a nonvolatile content of 60% by weight. Varnish (C) was added at 3% to the varnish (B) prepared in Example 1.
It was blended so that it was 0% by weight. Next, a laminate with a thickness of 1.6 m/m was obtained in the same manner as in Example 1. Comparison example
1 Tetrapromobisphenol A was added to the varnish (B) prepared in Example 1 in an amount of 25% by weight in terms of solid content, and a laminate with a thickness of 1.6 m/m was obtained in the same manner as in Example 1.

比較例 2 テトラプロモビスフエノールAのジグリシジルエーテル
を実施例1で調製したワニス(B)に対し固形分換算で
30重量%添加し、次いで実施例1と同様の方法で1.
6m/m厚の積層板を得た。
Comparative Example 2 30% by weight of diglycidyl ether of tetrapromobisphenol A was added to the varnish (B) prepared in Example 1 in terms of solid content, and then 1.
A laminate with a thickness of 6 m/m was obtained.

尚、本比較例に於いて製造された積層板は、プリプレグ
調製後直ちに積層成型したものである。以上の実施例、
比較例で得た積層板につき特性試験を行い、第1表の結
果を得た。
Note that the laminate manufactured in this comparative example was laminated and molded immediately after preparing the prepreg. The above examples,
A characteristic test was conducted on the laminate obtained in the comparative example, and the results shown in Table 1 were obtained.

また、プリプレグの貯蔵可能期間も示した。第1表の結
果から明らかなように、本発明の樹脂組成物のワニスを
基材に含浸して成形して得られる積層板は所要の難燃性
(UL−94V−0)を保持し、耐熱性、打抜き加工性
、電気絶縁性と共に耐アーク性も充分保持している。
It also shows the shelf life of the prepreg. As is clear from the results in Table 1, the laminate obtained by impregnating and molding a base material with the varnish of the resin composition of the present invention maintains the required flame retardancy (UL-94V-0), It has sufficient heat resistance, punching workability, electrical insulation properties, and arc resistance.

特に本発明はトリアジン系アミノ樹脂変性フエノール樹
脂の特性を生かし、機械的強度の低い点を改良し且難燃
性のエポキシ樹脂との併用時のプリプレグの貯蔵安定性
を改良せしめたものであり、耐熱性の低下や機械的強度
の低下の惧れのある他の添加型の難燃可塑剤(例えば有
機リン酸エステル類)を使用する必要もなく、比較的低
コストで実用性の高い難燃積層板が提供できる。
In particular, the present invention takes advantage of the characteristics of triazine-based amino resin-modified phenolic resin, improves the low mechanical strength, and improves the storage stability of prepreg when used in combination with flame-retardant epoxy resin. It is a relatively low cost and highly practical flame retardant that does not require the use of other additive flame retardant plasticizers (e.g. organic phosphate esters) that may reduce heat resistance or mechanical strength. Laminated plates can be provided.

Claims (1)

【特許請求の範囲】 1 分子中に少くとも2個のエポキシ基をもつハロゲン
化エポキシ樹脂と同当量のハロゲン化フェノール類の反
応物に更に一般式 ▲数式、化学式、表等があります▼ R:HまたはCH_3、C_4H_9 X:BrまたはClnは1〜2 で示されるモノグリシジルエーテルを前記反応物に対し
て10〜50重量%を添加反応して得られる樹脂組成物
をトリアジン系アミノ樹脂変性フェノール樹脂に該樹脂
に対して樹脂固形として20〜50重量%含有せしめて
なる積層品用の難燃性樹脂組成物。
[Claims] 1. A reactant of a halogenated epoxy resin having at least two epoxy groups in the molecule and an equivalent amount of halogenated phenol further includes a general formula ▲ mathematical formula, chemical formula, table, etc. ▼ R: H or CH_3, C_4H_9 A flame-retardant resin composition for a laminate, which contains 20 to 50% by weight of solid resin based on the resin.
JP3832880A 1980-03-26 1980-03-26 Flame retardant resin composition Expired JPS5952908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3832880A JPS5952908B2 (en) 1980-03-26 1980-03-26 Flame retardant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3832880A JPS5952908B2 (en) 1980-03-26 1980-03-26 Flame retardant resin composition

Publications (2)

Publication Number Publication Date
JPS56135542A JPS56135542A (en) 1981-10-23
JPS5952908B2 true JPS5952908B2 (en) 1984-12-21

Family

ID=12522208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3832880A Expired JPS5952908B2 (en) 1980-03-26 1980-03-26 Flame retardant resin composition

Country Status (1)

Country Link
JP (1) JPS5952908B2 (en)

Also Published As

Publication number Publication date
JPS56135542A (en) 1981-10-23

Similar Documents

Publication Publication Date Title
JP3092009B2 (en) Flame retardant and thermosetting flame-retardant resin composition containing the flame retardant
US6605354B1 (en) High nitrogen containing triazine-phenol-aldehyde condensate
US3998789A (en) Flame resistant thermosetting resin composition and method for preparing same
JP3975552B2 (en) Phenol resin composition and method for producing phenol resin
WO2003042291A1 (en) Halogen-free phosphorous- and nitrogen-containing flame-resistant epoxy resin compositions, and prepregs derived from thereof
JPS5952908B2 (en) Flame retardant resin composition
JPS5952907B2 (en) Resin composition for flame-retardant laminates
RU2756360C1 (en) Fire retardant catalyst for production of polymeric materials based on polybenzoxazines, compositions with its use
KR0153777B1 (en) Heat-resistant flame retardant epoxy resin compositions
JP2001011157A (en) Epoxy resin composition and electric laminate
JPS6150969B2 (en)
JPS6119640A (en) Preparation of heat-resistant laminate
JP2001214029A (en) Flame retardant high-permittivity resin composition, flame retardant high-permittivity prepreg and flame retardant high-permittivity laminated sheet
JPS5853909A (en) Preparation of modified phenolic resin composition for flame retardant laminate
WO2014034675A1 (en) Method for producing cyanuric acid-modified phosphorus-containing epoxy resin, resin composition containing cyanuric acid-modified phosphorus-containing epoxy resin, and cured product of same
CN117362595A (en) Modified phosphorus-containing epoxy resin, epoxy resin system, preparation method and application thereof
JP3148050B2 (en) Manufacturing method of flame retardant copper clad laminate
JPH058220B2 (en)
JPH01144413A (en) Production of flame-retardant resin composition for laminated board
JPS5952905B2 (en) Flame retardant phenolic resin composition
JPH0125496B2 (en)
JPS6031341B2 (en) Flame retardant phenolic resin composition
JPS6033140B2 (en) Flame retardant phenolic resin composition
JPS6112720A (en) Flame-retardant for laminate
JPS5991115A (en) Production of thermosetting resin