JPH058220B2 - - Google Patents

Info

Publication number
JPH058220B2
JPH058220B2 JP10363684A JP10363684A JPH058220B2 JP H058220 B2 JPH058220 B2 JP H058220B2 JP 10363684 A JP10363684 A JP 10363684A JP 10363684 A JP10363684 A JP 10363684A JP H058220 B2 JPH058220 B2 JP H058220B2
Authority
JP
Japan
Prior art keywords
resin
weight
resin composition
laminate
reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10363684A
Other languages
Japanese (ja)
Other versions
JPS60248768A (en
Inventor
Tetsuaki Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Chemical Products Co Ltd
Original Assignee
Toshiba Chemical Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Chemical Products Co Ltd filed Critical Toshiba Chemical Products Co Ltd
Priority to JP10363684A priority Critical patent/JPS60248768A/en
Publication of JPS60248768A publication Critical patent/JPS60248768A/en
Publication of JPH058220B2 publication Critical patent/JPH058220B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の技術分野] 本発明は、電気特性、加工性に優れた耐熱性の
積層板用樹脂組成物に関する。 [発明の技術的背景とその問題点] 近年、電子産業の著しい発展により印刷配線板
の使用条件が苛酷になり、従つて印刷配線板の素
材であるプリント基板に要求される特性もますま
す厳しいものとなつてきている。 即ち、搭載部品のチツプ化、搭載部品の自動挿
入化、配線パターンの高密度化等のため、より優
れた電気特性、物理特性、加工性の優れた積層板
が必要となつてくると同時に、火災等の安全性重
視の点から、積層板の難燃化が不可欠な条件とな
つてきた。これらの要求を満足させるということ
は、積層板として低温打抜性、寸法安定性(低膨
張、低収縮)、電気特性(耐トラツキング性、耐
アーク性、耐湿特性)、耐熱性かつ耐燃性に優れ
たものでなければならないということであるが、
従来の難燃性積層板用樹脂には次のような問題が
あつた。 従来積層板の難燃化のために樹脂に添加される
難燃剤は大別して添加形と反応形のものがあり、
それぞれ一長一短がある。添加形は難燃剤が樹脂
と反応しないもので、その代表的なものであるト
リフエニルフオスフエートなどリン酸エステルで
は可塑効果を付与させるが電気特性、機械特性の
低下をまねく欠点がある。一方、反応形は難燃剤
が樹脂と反応するもので、その代表的なものであ
るブロム化エポキシ樹脂では優れた電気特性を付
与するが加工性を悪化させる欠点がある。これら
の難燃剤の欠点は低温打抜性を要求され高度に可
塑化された場合、さらに大きくなる。 また積層板の難燃化は窒素化合物、ハロゲン化
合物、リン化合物等の難燃剤を併用することによ
つて実現しているが、難燃剤元素の種類により特
性に与える影響も大きい。例えばハロゲンの導入
は難燃性向上の効果は大きいが耐アーク性、耐ト
ラツキング性、耐熱性を低下させ、また燃焼時に
ハロゲン化水素のような有害ガスを発生させる欠
点がある。リンの導入による難燃化は耐アーク
性、耐トラツキング性を向上させ、有害ガスの発
生の危険もないが、リン単独による十分な難燃化
は困難である等の欠点を持つている。 [発明の目的] 本発明は、前記の欠点を解消するためになされ
たもので、電気特性、低温打抜加工性に優れた耐
熱性の積層板用樹脂組成物を提供することを目的
としている。 [発明の概要] 本発明は、上記の目的を達成すべく鋭意研究を
重ねた結果、反応性リン酸エステルをメラミン変
性フエノール樹脂の骨格内に組み込み、石油樹脂
を可塑性助剤として使用することにより上記目的
を達成できることを見いだし、本発明をなすに至
つたものである。 即ち、本発明は、 (A)一般式 (式中、R1、R2は水素原子又は炭素数1〜20の
アルキル基を表わす)で示される反応性リン酸エ
ステル類と、 (B)フエノール類と、(C)メラミン類と、(D)ホルム
アルデヒド類と、(E)石油樹脂とからなることを特
徴とする積層板用樹脂組成物である。そして好ま
しい実施態様は、反応性リン酸エステルの量が全
体の量に対して20〜60重量%、また石油樹脂の量
が同じく2〜20重量%含有する積層板用樹脂組成
物である。 本発明により、従来技術におけるリン系難燃剤
を骨格内に組み込む反応形に転換して添加形難燃
剤の欠点である電気特性の低下を防ぐことがで
き、また反応形への転換によつて起る可塑効果の
低減を石油樹脂によつて補ない、反応形であるブ
ロム化エポキシ樹脂等を用いないことによつて加
工性の悪化を防ぐことができる。 本発明に用いる(A)反応性リン酸エステル類とし
ては、 等が挙げられ、これらの1種又は2種以上の混合
系として用いる。この反応性リン酸エステル類
は、常法によるリン酸エステルの製造法により作
る場合、他のリン酸エステルとの反応物となる。
反応性リン酸エステル類の含有率は70%以上であ
ることが望ましい。 本発明に用いる(B)フエノール類としては、フエ
ノール、クレゾール、キシレノール、ブチルフエ
ノール、ノニルフエノール、桐油のフエノール付
加物、キシレン樹脂・フエノール混合物等が挙げ
られ、これらの1種又は2種以上の混合系として
使用される。 本発明に用いる(C)メラミン類としては、メラミ
ン、ベンゾグアナミン、アセトグアナミン、ホル
ムグアナミン等が挙げられ、これらの1種又は2
種以上の混合系として使用される。 本発明に用いる(D)ホルムアルデヒド類として
は、ホルマリン、パラホルムアルデヒド等が挙げ
られる。 本発明に用いる(E)石油樹脂としては、例えばク
イントン1500、クイントン1700(日本ゼオン社製
商品名)等が挙げられる。 本発明の積層板用樹脂組成物の製造法は、前述
の各成分を反応させて製造すればよいので反応順
序に特に限定されないが、フエノール類とメラミ
ン類とホルムアルデヒド類とを反応させ、次いで
反応性リン酸エステル類とホルムアルデヒド類と
を加えて反応させた後、さらに石油樹脂を加えて
積層板用樹脂組成物を製造することが望ましい。 次に各成分の配合割合については、全体に対し
て反応性リン酸エステル類が20〜60重量%である
ことが必要である。20重量%未満では十分な耐燃
性が得られず、また60重量%を超えると電気特性
の低下が起こり好ましくない。また石油樹脂の配
合割合は、全体に対して2〜20重量%であること
が必要である。2重量%未満では可塑化に効果な
く、また20重量%を超えると電気特性が低下し好
ましくない。 こうして得られた積層板用樹脂組成物を有機溶
剤に溶解希釈し、これをクラフト紙等の紙基材に
含浸させてプリプレグを作り、このプリプレグを
複数枚積層した後、加熱加圧成形して積層板を得
ることができる。 [発明の実施例] 以下本発明の実施例を具体的に説明する。本発
明はこれらの実施例に限定されるものではない。 反応性リン酸エステルの製造 常法のリン酸エステルの製造方法によつてジフ
エニルレゾルシンホスフエート75%含有の反応性
リン酸エステルを製造した(以下リン化合物とい
う)。 実施例 1 コンデンサ付四つ口フラスコにメラミン126g、
フエノール188g、および37%ホルマリン551gを
仕込み、90℃で2時間反応させた。次いでリン化
合物239g、37%ホルマリン130g、およびジメチ
ルアミン6gを加え還流反応で2時間反応させ、
減圧脱水した後、クイントン1500(日本ゼオン社
製石油樹脂商品名)35gを加えて積層板用樹脂組
成物を得た。これをメチルエチルケトン:メタノ
ール=1:1溶剤で希釈し、樹脂固形分55重量
%、粘度1.5ポアズ(25℃)、ゲル化時間3分40秒
(150℃)のワニスを調製した。 実施例 2 コンデンサ付四つ口フラスコにフエノール200
g、桐油100g、およびパラトルエンスルホン酸
0.3gを仕込み、100℃で1時間反応させた後、40
%アンモニア水で中和した。次いでベンゾグアナ
ミン250g、リン化合物400g、37%ホルマリン
660g、およびジメチルアミン8gを加え還流反
応で2時間30分反応させた後、減圧脱水し、クイ
ントン1500(日本ゼオン社製石油樹脂商品名)50
gを加えて積層板用樹脂組成物を得た。これをメ
チルエチルケトン:メタノール=1:1溶剤で希
釈し、樹脂固形分55重量%、粘度2.8ポアズ(25
℃)、ゲル化時間3分50秒(150℃)のワニスを調
製した。 実施例 3 コンデンサ付四つ口フラスコにニカノールH
(三菱ガス化学社製商品名)75g、フエノール125
g、桐油100gおよびパラトルエンスルホン酸
0.27gを仕込み、110℃で1時間反応させた後、
40%アンモニア水で中和した。次いでベンゾグア
ナミン250g、リン化合物400g、37%ホルマリン
550g、およびジメチルアミン6gを加え還流反
応で2時間反応させ、減圧脱水した後、クイント
ン1500(前出)50gを加えて積層板用樹脂組成物
を得た。これをメチルエチルケトン:メタノール
=1:1溶剤で希釈し、樹脂固形分55重量%、粘
度3.2ポアズ(25℃)、ゲル化時間3分10秒(150
℃)のワニスを調製した。 比較例 1 コンデンサ付四つ口フラスコにメラミン126g、
フエノール188g、および37%ホルマリン551gを
仕込み、90℃で2時間反応させた。次いで減圧脱
水を行い、トルエン:メタノール=1:9溶剤で
希釈し、これにトリフエニルホスフエート209g
を加えて樹脂固形分55重量%、粘度1.0ポアズ
(25℃)、ゲル化時間6分10秒(150℃)のワニス
を調製した。 比較例 2 コンデンサ付四つ口フラスコにフエノール200
g、桐油100g、およびパラトルエンスルホン酸
0.3gを仕込み、100℃で1時間反応させた後、40
%アンモニア水で中和した。次にベンゾグアナミ
ン250g、フエノール12g、37%ホルマリン460
g、およびジメチルアミン5gを加え還流反応で
2時間反応させ、減圧脱水した後、トルエン:メ
タノール=1:1溶剤で希釈し、これにトリフエ
ニルホスフエート341gを加えて樹脂固形分55重
量%、粘度1.8ポアズ(25℃)、ゲル化時間6分20
秒(150℃)のワニスを調製した。 比較例 3 コンデンサ付四つ口フラスコにニカノールH
(前出)75g、フエノール125g、桐油100gおよ
びパラトルエンスルホン酸0.27gを仕込み、110
℃で1時間反応させた後、40%アンモニア水で中
和した。次いでベンゾグアナミン200g、フエノ
ール12g、37%ホルマリン350g、およびジメチ
ルアミン4gを加え還流反応で2時間反応させ、
減圧脱水した後、トルエン:メタノール=1:1
溶剤で希釈し、これにトリフエニルホスフエート
341gを加えて樹脂固形分55重量%、粘度1.5ポア
ズ(25℃)、ゲル化時間5分30秒(150℃)のワニ
スを調製した。 以上の実施例1〜3におよび比較例1〜3で調
製したワニスを10ミルスのクラフト紙に含浸塗布
し、樹脂含有量50重量%、レジンフロー8%のプ
リプレグを得た。このプリプレグ8枚と接着剤付
銅箔1枚を重ね合せ170℃、100Kg/cm2の条件で75
分間加熱加圧成形して厚さ1.6mmの銅張積層板を
製造した。製造した銅張積層板について特性を試
験したのでその結果を第1表に示した。
[Technical Field of the Invention] The present invention relates to a heat-resistant resin composition for laminates that has excellent electrical properties and processability. [Technical background of the invention and its problems] In recent years, with the remarkable development of the electronics industry, the usage conditions for printed wiring boards have become harsher, and the characteristics required of the printed circuit boards that are the material for printed wiring boards have also become more severe. It's becoming commonplace. In other words, due to the chipping of mounted components, automatic insertion of mounted components, and higher density wiring patterns, there is a need for laminates with better electrical properties, physical properties, and workability. Due to the emphasis on fire safety, it has become essential to make laminates flame retardant. Satisfying these requirements means that the laminate has excellent low-temperature punchability, dimensional stability (low expansion, low shrinkage), electrical properties (tracking resistance, arc resistance, moisture resistance), heat resistance, and flame resistance. This means that it must be of excellent quality.
Conventional resins for flame-retardant laminates have had the following problems. Flame retardants traditionally added to resins to make laminates flame retardant can be roughly divided into additive and reactive types.
Each has its advantages and disadvantages. Additive flame retardants are those in which the flame retardant does not react with the resin, and phosphate esters such as triphenyl phosphate, a typical example, impart a plasticizing effect, but have the disadvantage of deteriorating electrical and mechanical properties. On the other hand, in the reactive type, the flame retardant reacts with the resin, and brominated epoxy resin, which is a typical example, provides excellent electrical properties but has the drawback of deteriorating processability. The disadvantages of these flame retardants become even greater when they are highly plasticized and require low-temperature punchability. Furthermore, the flame retardance of the laminate is achieved by the combined use of flame retardants such as nitrogen compounds, halogen compounds, phosphorus compounds, etc., but the type of flame retardant element has a great influence on the properties. For example, the introduction of halogen is highly effective in improving flame retardancy, but has the drawback of lowering arc resistance, tracking resistance, and heat resistance, and generating harmful gases such as hydrogen halides during combustion. Flame retardancy by introducing phosphorus improves arc resistance and tracking resistance, and there is no risk of generating harmful gases, but it has drawbacks such as the difficulty of achieving sufficient flame retardancy with phosphorus alone. [Object of the Invention] The present invention was made in order to eliminate the above-mentioned drawbacks, and an object of the present invention is to provide a heat-resistant resin composition for laminates that has excellent electrical properties and low-temperature punching workability. . [Summary of the Invention] As a result of intensive research to achieve the above object, the present invention has been developed by incorporating a reactive phosphoric acid ester into the skeleton of a melamine-modified phenolic resin and using a petroleum resin as a plasticizing aid. It was discovered that the above object can be achieved, and the present invention was completed. That is, the present invention provides (A) general formula (In the formula, R 1 and R 2 represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms), (B) phenols, (C) melamines, ( A resin composition for a laminate, comprising D) formaldehyde and (E) petroleum resin. A preferred embodiment is a resin composition for a laminate in which the amount of reactive phosphoric acid ester is 20 to 60% by weight based on the total amount, and the amount of petroleum resin is also 2 to 20% by weight. According to the present invention, it is possible to convert the phosphorus-based flame retardant in the prior art to a reactive type that is incorporated into the skeleton, thereby preventing the deterioration of electrical properties, which is a drawback of additive flame retardants, and also to prevent the deterioration of electrical properties caused by conversion to the reactive type. Deterioration of processability can be prevented by compensating for the reduction in the plasticizing effect with petroleum resin and by not using reactive brominated epoxy resin or the like. (A) Reactive phosphoric acid esters used in the present invention include: These can be used alone or as a mixture of two or more of them. When these reactive phosphoric esters are produced by a conventional method for producing phosphoric esters, they become reactants with other phosphoric esters.
The content of reactive phosphate esters is preferably 70% or more. Examples of the phenols (B) used in the present invention include phenol, cresol, xylenol, butylphenol, nonylphenol, phenol adducts of tung oil, xylene resin/phenol mixtures, etc. One or a mixture of two or more of these used as a system. Melamines (C) used in the present invention include melamine, benzoguanamine, acetoguanamine, formguanamine, etc., and one or two of these may be used.
Used as a mixture of more than one species. Formaldehydes (D) used in the present invention include formalin, paraformaldehyde, and the like. Examples of the (E) petroleum resin used in the present invention include Quinton 1500 and Quinton 1700 (trade name, manufactured by Nippon Zeon Co., Ltd.). The method for producing the resin composition for laminates of the present invention is not particularly limited to the reaction order as it can be produced by reacting each of the above-mentioned components, but the reaction order is not particularly limited. It is desirable to add a petroleum resin and a petroleum resin to produce a resin composition for a laminate after adding and reacting a phosphoric acid ester and a formaldehyde. Next, regarding the blending ratio of each component, it is necessary that the amount of reactive phosphoric acid esters is 20 to 60% by weight based on the total weight. If it is less than 20% by weight, sufficient flame resistance cannot be obtained, and if it exceeds 60% by weight, electrical properties may deteriorate, which is not preferable. Further, the blending ratio of petroleum resin needs to be 2 to 20% by weight based on the total weight. If it is less than 2% by weight, it has no effect on plasticization, and if it exceeds 20% by weight, the electrical properties deteriorate, which is not preferable. The resin composition for laminates obtained in this way is dissolved and diluted in an organic solvent, and a paper base material such as kraft paper is impregnated with this to make a prepreg. After laminating a plurality of sheets of this prepreg, the prepreg is molded under heat and pressure. A laminate can be obtained. [Embodiments of the Invention] Examples of the present invention will be specifically described below. The present invention is not limited to these examples. Production of Reactive Phosphoric Acid Ester A reactive phosphoric acid ester containing 75% diphenyl resorcinol phosphate was produced by a conventional method for producing a phosphoric acid ester (hereinafter referred to as a phosphorus compound). Example 1 126g of melamine in a four-necked flask with a condenser.
188 g of phenol and 551 g of 37% formalin were charged and reacted at 90°C for 2 hours. Next, 239 g of phosphorus compound, 130 g of 37% formalin, and 6 g of dimethylamine were added and reacted under reflux for 2 hours.
After dehydration under reduced pressure, 35 g of Quinton 1500 (trade name of petroleum resin manufactured by Nippon Zeon Co., Ltd.) was added to obtain a resin composition for a laminate. This was diluted with a methyl ethyl ketone:methanol=1:1 solvent to prepare a varnish having a resin solid content of 55% by weight, a viscosity of 1.5 poise (25°C), and a gelation time of 3 minutes and 40 seconds (150°C). Example 2 Phenol 200 in a four-necked flask with a condenser
g, 100 g of tung oil, and para-toluenesulfonic acid
After charging 0.3g and reacting at 100℃ for 1 hour, 40
% aqueous ammonia. Next, 250 g of benzoguanamine, 400 g of phosphorus compound, and 37% formalin.
After adding 660 g and 8 g of dimethylamine and reacting under reflux for 2 hours and 30 minutes, dehydration was performed under reduced pressure, and Quinton 1500 (product name of petroleum resin manufactured by Nippon Zeon Co., Ltd.) 50
g was added to obtain a resin composition for a laminate. This was diluted with methyl ethyl ketone: methanol = 1:1 solvent, the resin solid content was 55% by weight, and the viscosity was 2.8 poise (25
A varnish with a gelation time of 3 minutes and 50 seconds (150°C) was prepared. Example 3 Nicanor H in a four-necked flask with a condenser
(Product name manufactured by Mitsubishi Gas Chemical Co., Ltd.) 75g, Phenol 125
g, 100 g of tung oil and para-toluenesulfonic acid
After charging 0.27g and reacting at 110℃ for 1 hour,
Neutralized with 40% ammonia water. Next, 250 g of benzoguanamine, 400 g of phosphorus compound, and 37% formalin.
After adding 550 g and 6 g of dimethylamine and reacting under reflux for 2 hours and dehydrating under reduced pressure, 50 g of Quinton 1500 (described above) was added to obtain a resin composition for a laminate. This was diluted with methyl ethyl ketone: methanol = 1:1 solvent, resin solid content 55% by weight, viscosity 3.2 poise (25℃), gelation time 3 minutes 10 seconds (150
℃) varnish was prepared. Comparative example 1 126g of melamine in a four-necked flask with a condenser.
188 g of phenol and 551 g of 37% formalin were charged and reacted at 90°C for 2 hours. Next, dehydration was performed under reduced pressure, diluted with toluene:methanol=1:9 solvent, and 209 g of triphenyl phosphate was added to this.
was added to prepare a varnish having a resin solid content of 55% by weight, a viscosity of 1.0 poise (25°C), and a gelation time of 6 minutes and 10 seconds (150°C). Comparative example 2 Phenol 200 in a four-necked flask with a condenser
g, 100 g of tung oil, and para-toluenesulfonic acid
After charging 0.3g and reacting at 100℃ for 1 hour, 40
% aqueous ammonia. Next, benzoguanamine 250g, phenol 12g, 37% formalin 460
g, and 5 g of dimethylamine were added and reacted under reflux for 2 hours, dehydrated under reduced pressure, diluted with toluene:methanol=1:1 solvent, and 341 g of triphenyl phosphate was added thereto to obtain a resin solid content of 55% by weight. Viscosity 1.8 poise (25℃), gel time 6 minutes20
A varnish was prepared in seconds (150 °C). Comparative example 3 Nicanol H in a four-necked flask with a condenser
(previously) 75g, phenol 125g, tung oil 100g and para-toluenesulfonic acid 0.27g, 110
After reacting at ℃ for 1 hour, it was neutralized with 40% aqueous ammonia. Next, 200 g of benzoguanamine, 12 g of phenol, 350 g of 37% formalin, and 4 g of dimethylamine were added and reacted under reflux for 2 hours.
After dehydration under reduced pressure, toluene:methanol=1:1
Dilute with solvent and add triphenyl phosphate to this
341 g was added to prepare a varnish having a resin solid content of 55% by weight, a viscosity of 1.5 poise (25°C), and a gelation time of 5 minutes and 30 seconds (150°C). The varnishes prepared in Examples 1 to 3 and Comparative Examples 1 to 3 above were impregnated and coated on 10 mils kraft paper to obtain prepregs with a resin content of 50% by weight and a resin flow of 8%. Eight sheets of this prepreg and one sheet of copper foil with adhesive were stacked together at 170℃ and 100Kg/cm 2 to give a
A copper clad laminate with a thickness of 1.6 mm was manufactured by heating and press molding for 1 minute. The properties of the manufactured copper clad laminates were tested and the results are shown in Table 1.

【表】【table】

【表】 [発明の効果] 以上の説明および第1表から明らかなように、
本発明の積層板用樹脂組成物は電気特性、低温打
抜加工性に優れ、かつ耐燃性を有しているため、
積層板またはプリント基板として用いた場合、苛
酷な使用条件にも十分耐えられるものである。
[Table] [Effects of the invention] As is clear from the above explanation and Table 1,
The resin composition for laminates of the present invention has excellent electrical properties and low-temperature punching workability, and has flame resistance.
When used as a laminate or printed circuit board, it can withstand harsh usage conditions.

Claims (1)

【特許請求の範囲】 1 (A)一般式 (式中、R1、R2は水素原子又は炭素数1〜20の
アルキル基を表わす)で示される反応性リン酸エ
ステル類と、 (B)フエノール類と、(C)メラミン類と、(D)ホルム
アルデヒド類と、(E)石油樹脂と からなることを特徴とする積層板用樹脂組成物。 2 (A)反応性リン酸エステルの量が全体[(A)+(B)
+(C)+(D)+(E)]の量に対して20〜60重量%である
特許請求の範囲第1項記載の積層板用樹脂組成
物。 3 (E)石油樹脂の量が全体[(A)+(B)+(C)+(D)+
(E)]の量に対して2〜20重量%である特許請求の
範囲第1項又は第2項記載の積層板用樹脂組成
物。
[Claims] 1 (A) General formula (In the formula, R 1 and R 2 represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms), (B) phenols, (C) melamines, ( A resin composition for a laminate, comprising D) formaldehyde and (E) petroleum resin. 2 (A) The amount of reactive phosphate ester is the total [(A) + (B)
+(C)+(D)+(E)] 20 to 60% by weight of the resin composition for a laminate according to claim 1. 3 (E) The total amount of petroleum resin [(A) + (B) + (C) + (D) +
(E)] 2 to 20% by weight based on the amount of the resin composition for a laminate according to claim 1 or 2.
JP10363684A 1984-05-24 1984-05-24 Resin composition for laminated board Granted JPS60248768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10363684A JPS60248768A (en) 1984-05-24 1984-05-24 Resin composition for laminated board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10363684A JPS60248768A (en) 1984-05-24 1984-05-24 Resin composition for laminated board

Publications (2)

Publication Number Publication Date
JPS60248768A JPS60248768A (en) 1985-12-09
JPH058220B2 true JPH058220B2 (en) 1993-02-01

Family

ID=14359252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10363684A Granted JPS60248768A (en) 1984-05-24 1984-05-24 Resin composition for laminated board

Country Status (1)

Country Link
JP (1) JPS60248768A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2661109B2 (en) * 1988-03-02 1997-10-08 味の素株式会社 Flame retardant phenolic resin composition

Also Published As

Publication number Publication date
JPS60248768A (en) 1985-12-09

Similar Documents

Publication Publication Date Title
KR100228047B1 (en) Halogen-free flame-retardant epoxy resin composition as well as prepreg and laminate containing the same
US10307990B2 (en) Epoxy resin composition, prepreg, resin-coated metal foil, resin sheet, laminate and multilayer board
US3998789A (en) Flame resistant thermosetting resin composition and method for preparing same
CN110951216B (en) Thermosetting resin composition, and prepreg and laminated board using same
JP2661109B2 (en) Flame retardant phenolic resin composition
JPH058220B2 (en)
JPH058747B2 (en)
JPS6018531A (en) Resin composition for flame-retardant laminated board
JPH0149378B2 (en)
JPS6017340B2 (en) Manufacturing method for flame-resistant laminates
JP2846964B2 (en) Halogen-free flame-retardant epoxy resin composition, and prepreg and laminate containing same
JPS61115923A (en) Resin composition for laminated sheet
JP3148050B2 (en) Manufacturing method of flame retardant copper clad laminate
JPS6222847A (en) Resin composition for laminated sheet
JP3320518B2 (en) Production method of flame-retardant oil-modified phenolic resin
JPS5952907B2 (en) Resin composition for flame-retardant laminates
JPH02308827A (en) Production of flame retardant phenol resin laminate
JPH11199753A (en) Flame-retardant resin composition for lamination
JPS5952905B2 (en) Flame retardant phenolic resin composition
JPS5857417A (en) Production of phenolic resin composition for flame-retarding laminate
JPS5952908B2 (en) Flame retardant resin composition
JPS606716A (en) Phenolic resin for laminated sheet
JPH0542453B2 (en)
JPH01138241A (en) Production of flame-retarding paper/phenol resin laminate
JPH042612B2 (en)