JPS5952908A - Variable gain amplifier - Google Patents

Variable gain amplifier

Info

Publication number
JPS5952908A
JPS5952908A JP16449182A JP16449182A JPS5952908A JP S5952908 A JPS5952908 A JP S5952908A JP 16449182 A JP16449182 A JP 16449182A JP 16449182 A JP16449182 A JP 16449182A JP S5952908 A JPS5952908 A JP S5952908A
Authority
JP
Japan
Prior art keywords
transistor
variable gain
converter
logarithmic
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16449182A
Other languages
Japanese (ja)
Inventor
Juichi Irie
寿一 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP16449182A priority Critical patent/JPS5952908A/en
Publication of JPS5952908A publication Critical patent/JPS5952908A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal

Landscapes

  • Control Of Amplification And Gain Control (AREA)

Abstract

PURPOSE:To obtain an AGC amplifier of a wide range, which generates no waveform distortion, by inserting one diode or transistor into a general conventional transistor AGC amplifier, by a theory of the variable gain by which a logarithmic transducer and an exponential transducer are cascade-connected. CONSTITUTION:A logarithmic transducer 1 using one diode D1 and an expotential transducer 2 consisting of a transistor TR1 are cascade-connected. An input signal supplied through an input transformer T2 is supplied to the transistor TR1 of the exponential transducer 2 through the logarithmic transducer 1, and an output signal whose gain is adjusted is fetched from intermediate frequency transformer T1 inserted into a collecting circuit of this transistor TR1. A constant-current power source ID determines an operating point of the diode D1, and a constant-current power source Ic/beta determines an operating point of the transistor. A linear amplifier of the variable gain can be constituted by changing each operating point.

Description

【発明の詳細な説明】 〈産業」−の利用分野〉 一般にAGC(自動利得調整)増幅器はラジオ受信機の
中間周波増幅器やテープレコーダの録音レベル自動調整
器など広く使われている。
DETAILED DESCRIPTION OF THE INVENTION Field of Application in Industry In general, AGC (automatic gain control) amplifiers are widely used, such as intermediate frequency amplifiers in radio receivers and automatic recording level adjusters in tape recorders.

本発明は簡単な回路構成で、波形歪を生じることなく、
広い利得可変範囲を持つAGC用可変利得増幅器を提供
するものである。
The present invention has a simple circuit configuration and does not cause waveform distortion.
The present invention provides a variable gain amplifier for AGC having a wide variable gain range.

〈従来技術〉 第1図はトランジスタを増幅素子とする従来のラジオ受
信機用の中間周波増幅器を例にとったAGC増幅器を原
理的に示す。ここで入力信り。
<Prior Art> FIG. 1 shows the principle of an AGC amplifier, taking as an example a conventional intermediate frequency amplifier for a radio receiver using a transistor as an amplifying element. Please enter here.

VBEはAGC電圧と共にトランジスタTrlのベース
に加えられる。抵抗RA  +コンデンサcAはA G
 C電圧のフィルタで、1〜ランジスタTrlのベース
電圧の平均値はVBEである。rcはコレクタ電流の平
均値++(は信り成分て中間周波トランスT1によって
出力信号となる。トランジスタ1゛r1のコレクタ電流
とベース電圧の関係は ただしKT、VQ  は定数て、KTはトランジスタに
よって決まり、Voは物理定数で決まり約26nIVで
ある。
VBE is applied to the base of transistor Trl along with the AGC voltage. Resistor RA + capacitor cA is A G
In the C voltage filter, the average value of the base voltages of transistors 1 to Trl is VBE. rc is the average value of the collector current ++ (is the trust component and becomes the output signal by the intermediate frequency transformer T1. , Vo are determined by physical constants and are approximately 26 nIV.

flN2+式より次式を得る。The following equation is obtained from the flN2+ equation.

第2図は第1図の回路の特性を示すもので、(1)式の
ようにコレクタ電流はベース電圧の指数関数となる。V
I3E一定の場合を考えると、(3)式のように16 
はICに比例するのでAGC電圧によってトランジスタ
Tr1の動作点を変え、すなわぢIc を変化すれは利
得を大幅に変化することかできる。
FIG. 2 shows the characteristics of the circuit shown in FIG. 1, where the collector current is an exponential function of the base voltage as shown in equation (1). V
Considering the case where I3E is constant, 16 as shown in equation (3)
Since is proportional to IC, the gain can be changed significantly by changing the operating point of the transistor Tr1 depending on the AGC voltage, that is, by changing Ic.

酋通は、VI3Eか大きりれはAGC電圧を負に移動し
てICを小さくし、利得を小さくして1cずなわち出力
信すの大きさを一定に保つように装置を〈問題点〉 このように従来のへGC増幅器は、人力書出方間の非線
形を利用しているので第2図のように人力・出力間には
指数関数にともなう波形歪が発生し、人力信すか大きく
なるに従って歪か著しく大きくなる欠点を持っていた。
Tsutomu suggested that if VI3E is too large, move the AGC voltage negative to make the IC smaller, and reduce the gain to keep the output signal constant at 1c (problem). In this way, conventional GC amplifiers utilize nonlinearity between the human power output and the output, so as shown in Figure 2, waveform distortion occurs between the human power and the output due to an exponential function, and the human power output becomes larger. It had the disadvantage that the distortion increased significantly.

く問題点を解決するための手段〉 本発明はこのような点に鑑みなされたもので、指数関数
特性を持つトランジスタ増幅器の入力信づを、対数変換
器によってあらかじめ人力信すの対数に比例する電圧に
変換しておくことによって波形歪の発生を防止し、且つ
対数変換器の可変利得特性をも利用して非常に広い利得
可変範囲を得るものである。
Means for Solving the Problems> The present invention has been made in view of the above points, and is a method in which the input signal of a transistor amplifier having an exponential characteristic is made proportional to the logarithm of the input signal manually using a logarithmic converter. By converting the signal into a voltage, generation of waveform distortion is prevented, and the variable gain characteristic of the logarithmic converter is also used to obtain a very wide variable gain range.

以下図面に示す実施例とともに説明する。第3図は本発
明に係る可変利得増幅器の原理図を示し、ここで1は1
個のダイオードD1を用いた対数変換器てあり、2は1
−ランジスタTr1からなる指数変換器であり、これら
対数変換器1と指数変換器2は縦続接続されている。そ
してここでは入カドランスT2を介して供給された入力
信号が対数変換器1を経て指数変換器2のトランジスタ
Tr1に供給され、このトランジスタTrlのコレクタ
回路に挿入された中間周波トランスT、より利得調整さ
れた出力信すが取出される。
A description will be given below along with embodiments shown in the drawings. FIG. 3 shows a principle diagram of the variable gain amplifier according to the present invention, where 1 is 1
There is a logarithmic converter using diodes D1, where 2 is 1
- An index converter consisting of a transistor Tr1, in which the logarithmic converter 1 and the index converter 2 are connected in cascade. Here, the input signal supplied via the input quadrance T2 is supplied to the transistor Tr1 of the exponential converter 2 via the logarithmic converter 1, and the gain is adjusted by the intermediate frequency transformer T inserted in the collector circuit of this transistor Trl. The output signal sent is retrieved.

なお第3図において01 、C2は直流阻止用コンデン
サ、II)は定電流電源であり、この電源II)りTr
lの電流増幅率とする。なおまた抵抗I<sは人カドラ
ンスT2の出力インピータンスで代用することもでき除
去してもよい。
In Fig. 3, 01 and C2 are DC blocking capacitors, II) is a constant current power supply, and this power supply II) is a Tr.
Let the current amplification factor be l. Furthermore, the resistance I<s may be substituted with the output impedance of the human quadrangle T2, or may be eliminated.

ここで第3図の増幅器の動作をさらに詳細に解析すると
、まずダイオードD1の電流は」−記(1)。
Now, if we analyze the operation of the amplifier shown in Fig. 3 in more detail, first the current of the diode D1 is expressed as (1).

(2)式と同様に指数関数で表わされ、次式となる。Similar to equation (2), it is expressed by an exponential function, and becomes the following equation.

ただし、KDはダイオードの描造て決まる定数である。However, KD is a constant determined by the drawing of the diode.

m (2j式およびf4)(5)式よりダイオードの電
圧とベース電圧は交流成分が等しく、すなわち vBE = Vl)              (8
)であるから(Li17H8)式より となる。すなわち、対数変換器と指数変換器を縦続接続
し、それぞれの動作点を変えることによって可変利得の
直線増幅器が構成できるのである。
m (Equation 2j and f4) From Equation (5), the voltage of the diode and the base voltage have the same AC component, that is, vBE = Vl) (8
), so it follows from the equation (Li17H8). That is, a variable gain linear amplifier can be constructed by cascading a logarithmic converter and an exponential converter and changing the operating points of each.

人力信号電流15 はID とベース電流交流成分の和
であるから (!l)[10)式より入力信?電流15 と出力信号
電流l。
Since the human power signal current 15 is the sum of ID and the AC component of the base current (!l), from equation [10], the input signal? current 15 and output signal current l.

の関係として Ic を得る。1−ランジスタTrlの指数関数特性は、ダイ
オードI〕1 の対数関数特性と相殺され、ICとβ5
は比例関係となり波形歪61発生ぜず、’I)とIoの
比によって利得は広範囲に変化することかできる。TI
)かICに比べて非常に小さい場合は(II)式は io−β1S(12) となり、普通の1−ランンスク増幅器と同し利得を持つ
。I D > 1”/p の場合は(11)式はとなり
、このときの動作波形を第4図に示す。入力信す−電流
1Dはタイオード電圧VI)に変換され、てトランジス
タTr)のベースに加えられるが、そのときの出力信号
電流l。は(3)式または(6)式のようにrcに比例
するので動作点によって利得は可変である。ID+IC
はどんな値で動作させても波形歪は生じない。(2)お
よび(5)式で表わされるトラン′シスタ、ダイオード
の特性はICまたはII)の109:1の範囲にわたっ
て成立することか知られており、第3図の原理により極
めて広い利得可変範囲を持つ直線増幅器が構成可能であ
る。
Obtain Ic as the relationship. 1 - The exponential characteristic of transistor Trl is canceled out by the logarithmic characteristic of diode I]1, and IC and β5
is in a proportional relationship so that waveform distortion 61 does not occur, and the gain can be varied over a wide range depending on the ratio of 'I) and Io. T.I.
) is very small compared to the IC, equation (II) becomes io-β1S (12), which has the same gain as a normal 1-run amplifier. When I D >1"/p, equation (11) becomes, and the operating waveform in this case is shown in Fig. 4. The input current 1D is converted to the diode voltage VI), and the base of the transistor Tr) However, the output signal current l at that time is proportional to rc as shown in equation (3) or equation (6), so the gain is variable depending on the operating point.ID+IC
No matter what value is used, waveform distortion will not occur. It is known that the characteristics of transistors and diodes expressed by equations (2) and (5) hold true over a range of 109:1 of IC or II), and the principle of Fig. 3 allows an extremely wide variable gain range. It is possible to construct a linear amplifier with .

負’N 5図は、ΔMラジオ受信機の中間周波増幅器に
おける本発明の実施例を示す。トランジスタTr1゜ク
イオード■〕1は本発明の可変利得増幅器を構成する。
The negative 'N5 diagram shows an embodiment of the invention in an intermediate frequency amplifier of a ΔM radio receiver. The transistor Tr1゜Quiode ■〕1 constitutes the variable gain amplifier of the present invention.

抵抗Rc、RBはトランジスタTr1のオートバイアス
回路を構成する。次段の増幅器3の回路構成は省略しで
ある。RA2はAGC電圧調整用抵抗てI?AIと共に
検波出力を分圧する。検波出力か小さいときはダイオー
ドD1に電流か流れず、トランジスタ゛PrIはβ5J
+の増幅器として動作する。
Resistors Rc and RB constitute an auto-bias circuit for the transistor Tr1. The circuit configuration of the next stage amplifier 3 is omitted. Is RA2 the AGC voltage adjustment resistor I? The detection output is divided into voltages along with AI. When the detection output is small, no current flows through the diode D1, and the transistor PrI becomes β5J.
Operates as a positive amplifier.

検波出力か大きくなりAGC電圧が負になるとグイ、・
オードD1に電流IDか流れはじめ、抵抗RBを通し−
CCトラ7ノスクTrlに供給していたベース電流か減
少しはしめIcか減少する。検波出力が増加するに従っ
てIDは増加し、Icは減少する。
When the detection output increases and the AGC voltage becomes negative,
A current ID begins to flow through the ode D1 and passes through the resistor RB.
The base current supplied to CC 7 Nosk Trl decreases, and Ic also decreases. As the detection output increases, ID increases and Ic decreases.

クイオード電流が抵抗RC,RBを通じて流れる直流電
流のほとんどを流すようになるとIDは増加しf、fい
か、検波出力の増加にともなってトランジスタi”rl
のVBEは更に減少するのでIcは更に減少する。この
ようにトランジスタTrlのオートバイアス回路に本発
明を実施すると、II)の増加とICの減少を可変利得
に利用できるので、利得変化を効果的に行なうことがで
きる。なお、抵抗r< Bは零ても良い。
When the quasiode current begins to flow through the resistors RC and RB, making most of the direct current flow through the resistors RC and RB, ID increases, and as the detection output increases, the transistor i''rl
Since the VBE of is further reduced, Ic is further reduced. When the present invention is implemented in the auto-bias circuit of the transistor Trl in this way, the increase in II) and the decrease in IC can be used for variable gain, so that the gain can be changed effectively. Note that the resistance r<B may be zero.

第6図は第5図のダイオードD1 をトランジスタTr
2に置き換えた本発明の他の実施例である。
In FIG. 6, the diode D1 in FIG. 5 is replaced by a transistor Tr.
2 is another embodiment of the present invention in which 2 is replaced with 2.

トランジスタTr2のエミソク電流はほとんどコレクク
電流に等しく −β2) 、 (5)式のようにトラン
ジスタTr2はダイオードD lと同様に対数変換器1
として動作さぜることがてきる。AGC電圧はベースに
加えることかできるのでΔGC電圧RA、CA03イ*
ピーダンスが大きくてもよい利点がある。
The emitter current of the transistor Tr2 is almost equal to the collector current -β2), and as shown in equation (5), the transistor Tr2 is connected to the logarithmic converter 1 as well as the diode Dl.
It can be operated as Since the AGC voltage can be applied to the base, the ΔGC voltage RA, CA03*
There is an advantage that the pedance can be large.

なお第6図の(”J+I?/、請合波出力にバイアス電
圧を加え遅延AGCとしている。またここては抵抗R5
を省略し入カドランスT2の出力インピータンスて代用
した回路になっている。
Note that ("J+I?/" in FIG. 6), a bias voltage is applied to the output of the signal wave to provide delayed AGC.
is omitted and the output impedance of the input quadrature T2 is used instead.

第7図は音声増幅器に応用した他の実施例を示す。その
動作は既述した中間周波増幅器の場合と同様であり省略
する。
FIG. 7 shows another embodiment applied to an audio amplifier. Its operation is similar to that of the intermediate frequency amplifier described above, and will therefore be omitted.

第8図はさらに他の実施例でここで演算増幅器AIおよ
びトランジスタTr3はよく知られている対数変換回路
を構成している。トランジスタT1−4はAGC電圧に
よってトランジスタTr3に直流電流II)を供給し、
対数変換器1の動作点を変えている。トランジスタTr
lの回路は普通の増幅回路で、増幅器A】の出力インピ
ーダンスは非常に小さいので指数変換器2として動作し
、動作点は固定されている。
FIG. 8 shows yet another embodiment in which an operational amplifier AI and a transistor Tr3 constitute a well-known logarithmic conversion circuit. Transistor T1-4 supplies direct current II) to transistor Tr3 according to the AGC voltage,
The operating point of the logarithmic converter 1 is changed. Transistor Tr
The circuit 1 is an ordinary amplifier circuit, and since the output impedance of the amplifier A is very small, it operates as an index converter 2, and its operating point is fixed.

〈効果〉 本発明の可変利得増幅器によれは、」二連したように対
数変換器と指数変換器とを縦続接続した可変利得の原理
により、従来一般のトランジスタAGC増幅器に1個の
ダイオードまたはトランジスタを挿入することによって
波形歪を生じない広範囲のAGC増幅器を構成すること
ができる。
<Effects> The variable gain amplifier of the present invention is based on the principle of variable gain in which a logarithmic converter and an exponential converter are connected in cascade like two, so that a single diode or transistor can be used instead of a conventional general transistor AGC amplifier. By inserting , it is possible to configure a wide range of AGC amplifiers that do not cause waveform distortion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のAGC用可変利得増幅器の回路図、第2
図は同増幅器の動作説明図、第3図は本発明の可変利得
増幅器の原理図、第4図は同増幅器の動作説明図、15
図は本発明の1実施例の回路図、第6図乃至第8図はそ
れぞれ本発明の他の実施例の回路図である。 1・・・対数変換器、2・・・指数変換器、Dl −ダ
イオード、Tr2・・・トランジスタ。 代理人 弁理士 福 士 愛 彦(他2名)′、 3 
(・) → シイ1−ド填しノ上 京AトシI 第6 図 54ノつJul + Vcc VEE :、’、8  ’心
Figure 1 is a circuit diagram of a conventional variable gain amplifier for AGC, Figure 2 is a circuit diagram of a conventional AGC variable gain amplifier.
15 is an explanatory diagram of the operation of the same amplifier, FIG. 3 is a principle diagram of the variable gain amplifier of the present invention, and FIG. 4 is an explanatory diagram of the operation of the same amplifier.
The figure is a circuit diagram of one embodiment of the present invention, and FIGS. 6 to 8 are circuit diagrams of other embodiments of the present invention. 1... Logarithmic converter, 2... Exponential converter, Dl-diode, Tr2... Transistor. Agent Patent attorney Aihiko Fukushi (and 2 others)', 3
(・) → Sea 1-de filling in Kamigyo A toshi I No. 6 Figure 54 Jul + Vcc VEE:, ', 8' mind

Claims (1)

【特許請求の範囲】 1、対数変換器と指数変換器を縦続接続し、対数変換器
の不信づ一人力と指数変換器の不信3出力との間の利得
を対数変換器および指数変換器の一方または両方の動作
点を変えることによって変化することを特徴とする可変
利得増幅器。 21)1記対数変換器として1つのダイオードの電流−
電圧特性を利用し、不信づ電流入力に重畳させる直流電
流を変化させる手段をもつことによって動作点の変化が
可能な対数変換器とした前記特許請求の範囲第1項記載
の可変利得増幅器。 3 前記対数変換器として1つのトランジスタのエミッ
タ電流−ベースエミック浴擺性を利用し、小信号電流入
力に重畳させる直流電流を変化させる手段をもつことに
よって動作点の変化が可能な対数変換器とした前記特許
請求の範囲第1項記載の可変利得増幅器。
[Claims] 1. A logarithmic converter and an exponential converter are connected in series, and the gain between the output of the logarithmic converter and the output of the exponential converter is determined by connecting the logarithmic converter and the exponential converter in series. A variable gain amplifier characterized in that the gain is varied by changing one or both operating points. 21) Current of one diode as logarithmic converter -
2. The variable gain amplifier according to claim 1, wherein the variable gain amplifier is a logarithmic converter whose operating point can be changed by having means for changing the direct current superimposed on the current input by utilizing voltage characteristics. 3. A logarithmic converter whose operating point can be changed by using the emitter current-base emitter bath flexibility of one transistor as the logarithmic converter and having means for changing the direct current superimposed on the small signal current input. A variable gain amplifier according to claim 1.
JP16449182A 1982-09-20 1982-09-20 Variable gain amplifier Pending JPS5952908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16449182A JPS5952908A (en) 1982-09-20 1982-09-20 Variable gain amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16449182A JPS5952908A (en) 1982-09-20 1982-09-20 Variable gain amplifier

Publications (1)

Publication Number Publication Date
JPS5952908A true JPS5952908A (en) 1984-03-27

Family

ID=15794163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16449182A Pending JPS5952908A (en) 1982-09-20 1982-09-20 Variable gain amplifier

Country Status (1)

Country Link
JP (1) JPS5952908A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015541A (en) * 1973-04-27 1975-02-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015541A (en) * 1973-04-27 1975-02-19

Similar Documents

Publication Publication Date Title
US6359517B1 (en) Photodiode transimpedance circuit
EP0439071B1 (en) Logarithmic amplifier
JPS5929013B2 (en) Optical AGC circuit
US7659780B2 (en) Gain control circuit
US4109165A (en) Rms circuit
JPS5952908A (en) Variable gain amplifier
US4318050A (en) AM Detecting circuit
US3030504A (en) Automatic gain control circuit
JPH0254695B2 (en)
JPS5974710A (en) Quadrature detector
JP2624338B2 (en) Automatic duty adjustment circuit
JPH04196622A (en) Transmitter with transmission power control function
JPH0946151A (en) Current feedback bias amplifier circuit
JPH07274039A (en) Picture signal corrector and signal converter
JPS59207716A (en) Automatic level controlling circuit
JPS62100010A (en) Logarithmic amplifier
SU471655A1 (en) Amplifier with automatic gain control
SU1336796A1 (en) Mon-linear amplifier
SU1732425A1 (en) Power amplifier
SU1713083A1 (en) Power amplifier output stage
JPS6319925Y2 (en)
RU2031537C1 (en) Amplifier with controlled gain factor
JPH04306904A (en) Amplifier
JPS60676Y2 (en) square circuit
JPS6148232A (en) Circuit for compensating variance in mark rate