JPS5952712B2 - Electrolytic dimerization method of N-substituted pyridinium salts - Google Patents

Electrolytic dimerization method of N-substituted pyridinium salts

Info

Publication number
JPS5952712B2
JPS5952712B2 JP53008959A JP895978A JPS5952712B2 JP S5952712 B2 JPS5952712 B2 JP S5952712B2 JP 53008959 A JP53008959 A JP 53008959A JP 895978 A JP895978 A JP 895978A JP S5952712 B2 JPS5952712 B2 JP S5952712B2
Authority
JP
Japan
Prior art keywords
chamber
exchange resin
anode
substituted pyridinium
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53008959A
Other languages
Japanese (ja)
Other versions
JPS54103875A (en
Inventor
照之 三角
進 古橋
正明 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP53008959A priority Critical patent/JPS5952712B2/en
Priority to IN269/CAL/78A priority patent/IN147984B/en
Priority to US05/887,131 priority patent/US4176020A/en
Priority to CA299,128A priority patent/CA1098860A/en
Priority to BR787801821A priority patent/BR7801821A/en
Priority to FR7808340A priority patent/FR2384862A1/en
Priority to DE2812508A priority patent/DE2812508C3/en
Priority to GB11656/78A priority patent/GB1551803A/en
Publication of JPS54103875A publication Critical patent/JPS54103875A/en
Publication of JPS5952712B2 publication Critical patent/JPS5952712B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、N−置換ピリジニウム塩を電解により量化し
、N−N’−ジ置換テトラヒドロ4・4’−ビピリジル
類を製造するための電解方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrolytic method for electrolytically quantifying N-substituted pyridinium salts to produce N-N'-disubstituted tetrahydro-4,4'-bipyridyls.

N−N’−ジ置換テトラヒドロ4・4’−ビピリジルを
酸化して得られるN−N’−ジ置換4・4’−ビピリジ
ニウム塩は極めて有用な除草剤として知られている。
N-N'-disubstituted 4,4'-bipyridinium salts obtained by oxidizing N-N'-disubstituted tetrahydro-4,4'-bipyridyl are known as extremely useful herbicides.

本発明者らは、先に少くとも1枚の隔膜を有する電解槽
、および電解槽の外部に設置され、水性陰極電解液が循
環できるように循環通路によつて連結された抽出器とよ
りなる装置を用い、電解槽の陰極表面に生成した生成物
を水性陰極電解液の流れによつて陰門し、循環通路を通
して抽出装置に移し、水に非混和性の有機溶剤と接触さ
せ、水性陰極電解液に含まれる生成物を有機溶剤に抽出
し、分離された水性陰極電解液を循環通路を通して再び
電解槽へ送入し、これらの操作を連続的に反復すること
により、N−置換ピリジニウム塩を効果的にN−N’−
ジ置換テトラヒドロ4・4’−ビピリジルに転化させる
方法を提案した。本発明の主目的は、上記方法において
好適に用いることのできる電解槽の構造を提供すること
にある。
The present inventors proposed an electrolytic cell comprising an electrolytic cell having at least one diaphragm in advance, and an extractor installed outside the electrolytic cell and connected by a circulation passage so that an aqueous catholyte can be circulated. Using a device, the products formed on the cathode surface of the electrolytic cell are drained by a flow of aqueous catholyte, transferred through a circulation passage to an extraction device, and brought into contact with a water-immiscible organic solvent to perform aqueous catholyte electrolysis. The N-substituted pyridinium salt is extracted by extracting the products contained in the liquid into an organic solvent, feeding the separated aqueous catholyte into the electrolytic cell again through the circulation path, and repeating these operations continuously. Effectively N-N'-
A method for converting di-substituted tetrahydro-4,4'-bipyridyl was proposed. The main object of the present invention is to provide a structure of an electrolytic cell that can be suitably used in the above method.

上記電解法を実施するに際して使用することのできる電
解槽の構造は種々のものが考えられるが、本発明者らの
検討結果によると、種々の問題点により、実際に使用可
能な電解槽の構造は極めて限られたものであることが明
らかとなつた。例えば隔膜としてアスベスト板、ガラス
フイルタープラマチツク多孔膜等の非選択性膜を使用し
た場合、陽極で生成した水素イオンが隔膜を通つて陰極
室に入り、陰極で生成した生成物を分解するので好まし
くない。これを防止するため、陽極液を水酸化ナトリウ
ム等のアルカリで中和すると、ナトリウムイオンが隔膜
を通して陰極室に移動し、陰極液中に蓄積するので、こ
れを陰極液中から除去しなければならず、そのための分
離装置を必要とし、電解装置が複雑となる欠点がある。
また、隔膜として陽イオン交換樹脂膜を用いた場合も、
上記した欠点と全<同様な問題点がある他に、N−置換
ピリジニウム塩の対アニオンが塩素イオンの場合、陽極
で発生する塩素分子によりN−置換ピリジニウムカチオ
ンが化学的な劣化を受けることがわかつた。次に、隔膜
として陰イオン交換樹脂膜を用いた場合、陽極において
酸が生成するが、陰イオン交換樹脂膜の水素イオン輸率
が高いため、生成した水素イオンが一部膜を通過して陰
極室に移動し、陰極で生成するN−N″−ジ置換テトラ
ヒドロ4.4″−ビピリジルを分解させる。
There are various possible structures for electrolytic cells that can be used when carrying out the above electrolytic method, but according to the results of studies by the present inventors, there are various structures of electrolytic cells that can be used in practice due to various problems. It has become clear that this is extremely limited. For example, when a non-selective membrane such as an asbestos plate or a glass filter plastic porous membrane is used as the diaphragm, hydrogen ions generated at the anode enter the cathode chamber through the diaphragm and decompose the products generated at the cathode, which is preferable. do not have. To prevent this, when the anolyte is neutralized with an alkali such as sodium hydroxide, sodium ions move through the diaphragm to the catholyte chamber and accumulate in the catholyte, which must be removed from the catholyte. First, it requires a separation device for that purpose, which has the drawback that the electrolysis device becomes complicated.
Also, when a cation exchange resin membrane is used as a diaphragm,
In addition to all the same problems as described above, when the counter anion of the N-substituted pyridinium salt is a chlorine ion, the N-substituted pyridinium cation may be chemically degraded by the chlorine molecules generated at the anode. I understand. Next, when an anion exchange resin membrane is used as a diaphragm, acid is generated at the anode, but because the anion exchange resin membrane has a high hydrogen ion transfer number, some of the generated hydrogen ions pass through the membrane and reach the cathode. The mixture is moved to a chamber and the N-N''-disubstituted tetrahydro-4.4''-bipyridyl formed at the cathode is decomposed.

また、陽極で酸素が発生し、陰イオン交換樹脂膜を劣化
させ、長期間の連続運転が不可能である。以上の如く、
一枚の隔膜を用いた場合、どのような種類の隔膜を用い
ても、それぞれ個有の欠点があり、N一置換ピリジニウ
ム塩を長期間効率よく電解を実施することが困難である
ことがわかつた。
Furthermore, oxygen is generated at the anode, deteriorating the anion exchange resin membrane, and making long-term continuous operation impossible. As above,
When a single diaphragm is used, no matter what kind of diaphragm is used, each has its own drawbacks, and it has been found that it is difficult to electrolyze N-substituted pyridinium salts efficiently for a long period of time. Ta.

したがつて、本発明の別の目的は、電解槽の構成部材の
電気化学的腐食ないしは劣化を防止すると・もに、連続
的に原料を供給し、生成物を分解することなく容易に系
外に取り出しうる長期間安定して運転することのできる
N一置換ピリジニウム塩の電解方法を提供することにあ
る。本発明になるN一置換ピリジニウムの電解二量5化
法は、一対の対向する電極板(または網)の陰極側に陰
イオン交換樹脂膜、陽極側に陽イオン交換樹脂膜を電極
板(または網)に平行に、かつ上記膜が互いに接触しな
いように配置し、各々の電極板(または網)および各イ
オン交換樹脂膜によつて囲まれた陰極室、中間室、陽極
室を設け、陰極室にN一置換ピリジニウム塩を、陽極室
にアルカリを供給し、中間室から塩を除去しながら電解
を行なうことに特徴を有する。
Therefore, another object of the present invention is to prevent electrochemical corrosion or deterioration of the constituent members of an electrolytic cell, to continuously supply raw materials, and to easily remove products from the system without decomposing them. It is an object of the present invention to provide a method for electrolyzing N-monosubstituted pyridinium salts, which can be operated stably for a long period of time and can be extracted. In the electrolytic dimerization method of N-substituted pyridinium according to the present invention, an anion exchange resin membrane is placed on the cathode side of a pair of opposing electrode plates (or nets), and a cation exchange resin membrane is placed on the anode side of the electrode plates (or nets). A cathode chamber, an intermediate chamber, and an anode chamber are arranged parallel to the net and so that the membranes do not touch each other, and surrounded by each electrode plate (or net) and each ion exchange resin membrane. The method is characterized in that an N-substituted pyridinium salt is supplied to the chamber, an alkali is supplied to the anode chamber, and electrolysis is carried out while removing the salt from the intermediate chamber.

本発明を適用しうるN一置換ピリジニウム塩と,しては
、特に、N−メチルピリジニウム塩、N一エチルピリジ
ニウム塩、N−プロピルピリジニウム塩、N−イソプロ
ピルピリジニウム塩などの低級アルキル置換ピリジニウ
ム塩がよく、極めて好収率でN−N″−ジ置換テトラヒ
ドロ4・4″−ビピリジルを生成することができる。
Examples of N-mono-substituted pyridinium salts to which the present invention can be applied include lower alkyl-substituted pyridinium salts such as N-methylpyridinium salt, N-ethylpyridinium salt, N-propylpyridinium salt, and N-isopropylpyridinium salt. N-N''-disubstituted tetrahydro-4,4''-bipyridyl can be produced in very good yields.

N一置換ピリジニウム塩の対アニオンとしては、例えば
塩素イオン、臭素イオン、ヨウ素イオン、硫酸根、硝酸
根、リン酸根、シアンイオン、ホウ弗化水素酸根、トリ
フルオロメタンスルホン″酸、ベンゼンスルホン酸根、
安息香酸、クエン酸根、硅弗化水素酸根、マレイン酸根
、メチル硫酸根等、水溶性の塩を与えるものであるもの
が好ましい。
Examples of the counter anion of the N-substituted pyridinium salt include chloride ion, bromide ion, iodine ion, sulfate group, nitrate group, phosphate group, cyanide ion, borohydrofluoride group, trifluoromethanesulfonic acid group, benzenesulfonic acid group,
Those that provide water-soluble salts, such as benzoic acid, citric acid, hydrofluoric acid, maleic acid, and methyl sulfate, are preferred.

上記したアニオン種のうち、製造上または価格上の理由
により、塩素イオン、硫酸根が最も好ましい。上記した
種々のアニオンを有するN−置換ピリジニウム塩は、例
えばピリジンと塩化メチルを反応させ、N−メチルピリ
ジニウムクロライドとなした後、陽イオン交換樹脂に吸
着せしめ、上記の任意の酸を用いて回収することにより
、それぞれ対応する対アニオンを有するN−メチルピリ
ジニウム塩が得られる。本発明を実施するに際して、陽
極に供給するアルカリとしては、例えば、水酸化リチウ
ム、水酸化ナトリウム、水酸化カリウム、水酸化アンモ
ニウム、水酸化カルシウム、炭酸ナトリウム等である。
Among the above-mentioned anion species, chloride ions and sulfate radicals are most preferred for manufacturing or cost reasons. N-substituted pyridinium salts having various anions described above can be obtained by, for example, reacting pyridine with methyl chloride to form N-methylpyridinium chloride, adsorbing it on a cation exchange resin, and recovering it using any of the acids mentioned above. By doing so, N-methylpyridinium salts each having a corresponding counter anion are obtained. In carrying out the present invention, examples of the alkali to be supplied to the anode include lithium hydroxide, sodium hydroxide, potassium hydroxide, ammonium hydroxide, calcium hydroxide, and sodium carbonate.

本発明を実施するに際して使用することのできる電解槽
の一例を図面に基いて説明する。
An example of an electrolytic cell that can be used in carrying out the present invention will be explained based on the drawings.

第1図は箱型電解槽を示したものであり、1は陰極板、
2は陽極板、3は陰イオン交換樹脂膜、4は陽イオン交
換樹脂膜、5は陰極室、6は中間室、7は陽極室、8は
陰極液入口、9は中間室液入口、10は陽極液入口、1
1は陰極液出口、12は中間室液出口、13は陽極液出
口、14は陰極端子、15は陽極端子である。電解槽の
形状は設計上および取り扱い上箱型であるのがよいが、
筒型や円環型等の形状とすることも可能である。
Figure 1 shows a box-type electrolytic cell, where 1 is a cathode plate,
2 is an anode plate, 3 is an anion exchange resin membrane, 4 is a cation exchange resin membrane, 5 is a cathode chamber, 6 is an intermediate chamber, 7 is an anode chamber, 8 is a catholyte inlet, 9 is an intermediate chamber liquid inlet, 10 is the anolyte inlet, 1
1 is a catholyte outlet, 12 is an intermediate chamber liquid outlet, 13 is an anolyte outlet, 14 is a cathode terminal, and 15 is an anode terminal. It is best for the electrolytic cell to be box-shaped for design and handling reasons.
It is also possible to have a shape such as a cylinder or an annular shape.

本発明において用いることのできる電極材は、陽極とし
ては、例えば、白金、銅、鉄、ステンレス、カーボン等
、導電性を有し、かつ陽極液、陽極生成物に耐性のある
金属、無機材が選ばれ、また、陰極としては水素過電圧
の大きな鉛、水銀錫、銅およびこれらの成分を主体とす
る合金等が選ばれる。
Electrode materials that can be used in the present invention include, as an anode, metals and inorganic materials that have conductivity and are resistant to anolyte and anolyte products, such as platinum, copper, iron, stainless steel, and carbon. In addition, as the cathode, materials such as lead, mercury tin, copper, and alloys mainly composed of these components, which have a large hydrogen overvoltage, are selected.

電極は板状であるのが好都合であるが、電極面積を増す
ために、網状もしくは布状のものを使用することもでき
る。また、本発明において用いることのできるイオン交
換樹脂としては、既存のあらゆる製品を適用することが
可能で、陽イオン交換樹脂膜としては、例えば旭化成工
業(株)製、アンフレックスK−101.デユポン社製
、ナフイヨン#415、徳山曹達工業(株)製、ネオセ
ブタCL−25T、旭硝子工業(株)製、セレミオンC
MVなど、また陰イオン交換樹脂膜としては、旭化成工
業(株)製、アンフレックスA−101.徳山曹達工業
(株)製、AV−4T、旭硝子工業(株)製、セレミオ
ンAMVなどがある。
The electrodes are conveniently plate-shaped, but mesh- or cloth-shaped electrodes can also be used to increase the electrode area. Further, as the ion exchange resin that can be used in the present invention, any existing products can be used, and as the cation exchange resin membrane, for example, Asahi Kasei Corporation's Unflex K-101. Manufactured by DuPont, Nafyon #415, Neosebta CL-25T, manufactured by Tokuyama Soda Kogyo Co., Ltd., Selemion C, manufactured by Asahi Glass Industries, Ltd.
MV, etc., and as an anion exchange resin membrane, Unflex A-101. manufactured by Asahi Kasei Corporation. Examples include AV-4T manufactured by Tokuyama Soda Kogyo Co., Ltd. and Selemion AMV manufactured by Asahi Glass Industries Co., Ltd.

本発明になるN一置換ピリジニウムの電解法は、本発明
者らが先に提案した電解システムの中に組み込んで適用
することにより、その有効性を十二分に発輝するもので
ある。第2図は本発明の電解方法の具体的実施例を示.
したものである。
The electrolytic method of N-monosubstituted pyridinium according to the present invention will fully demonstrate its effectiveness when incorporated into the electrolytic system previously proposed by the present inventors. Figure 2 shows a specific example of the electrolytic method of the present invention.
This is what I did.

図において16は電解槽、17は抽出器、18は分離槽
、19は陰極液溜、20は中間室液溜、21は陽極液溜
、22はアルカリ注入口、23は中間室液ぬき口、24
は水補給口、25は抽出溶剤補給口、26は生成物取出
口1である。陽極室27、中間室28は、それぞれ個々
に循環通路、液溜21,20、および循環ポンプと直列
に連結されており、電解時間中それぞれの電解液は循環
される。また、陰極室29を出た陰極液は、抽出器17
1で生成物を抽出された後、分離槽18において抽出溶
剤と陰極液に分離され、抽出溶剤の一部は抽出器17に
循環され、一部は生成物取出口26より連続的に抜き出
される。
In the figure, 16 is an electrolytic cell, 17 is an extractor, 18 is a separation tank, 19 is a catholyte reservoir, 20 is an intermediate chamber reservoir, 21 is an anolyte reservoir, 22 is an alkali injection port, 23 is an intermediate chamber fluid outlet, 24
25 is a water supply port, 25 is an extraction solvent supply port, and 26 is a product outlet 1. The anode chamber 27 and the intermediate chamber 28 are each individually connected in series with a circulation passage, a liquid reservoir 21, 20, and a circulation pump, and each electrolyte is circulated during the electrolysis time. Further, the catholyte that has left the cathode chamber 29 is transferred to an extractor 17.
After the product is extracted in step 1, it is separated into an extraction solvent and a catholyte in a separation tank 18. A part of the extraction solvent is circulated to the extractor 17, and a part is continuously extracted from the product outlet 26. It will be done.

また、陰極液は陰極液溜19を経由して陰極室29へ再
循環される。陰2極液溜1″(原料供給口30よりN一
置換ピリジニウム的に供給し、中間室液溜20から塩水
溶液的に抜き出すことにより、物質収支を合わとができ
る。陽極室27、中間室28、陰9を流れる各電解液の
流れは均一ノであることが好ましく、各室の液入口、液
出口の個数、大きさ、形状、配置等を変え、各室におけ
る流れを制御するのがよい。本電解システムを用いて電
解を行なつた場合、例えばN−メチルピリジニウムクロ
ライド水溶液.を陰極液とすれば、水溶液中のN−メチ
ルピリジニウムカチオンは陰極表面において電子を与え
られ、二量化され、N−N″−ジメチルテトラヒドロ4
・4″−ビピリジルとなる。
The catholyte is also recycled to the cathode chamber 29 via the catholyte reservoir 19 . The material balance can be balanced by supplying N-substituted pyridinium from the cathode diode reservoir 1'' (raw material supply port 30 and extracting it as a salt aqueous solution from the intermediate chamber reservoir 20.Anode chamber 27, intermediate chamber 28. It is preferable that the flow of each electrolytic solution flowing through the shade 9 is uniform, and it is preferable to control the flow in each chamber by changing the number, size, shape, arrangement, etc. of the liquid inlet and liquid outlet of each chamber. Good. When electrolysis is performed using this electrolysis system, for example, if an aqueous N-methylpyridinium chloride solution is used as the catholyte, the N-methylpyridinium cations in the aqueous solution are given electrons on the cathode surface and dimerized. , N-N″-dimethyltetrahydro 4
・4″-Bipyridyl.

該ビピリジルは水に殆んど溶けず、電極表面に付着する
が、陰極室の循環水流によつて電極から除去され、陰極
液と・もに抽出器に運ばれ、該所において抽出溶剤に移
る。消費されたN−メチルピリジニウムカチオン相当量
のものを連続的に供給することにより、陰極液中のN−
メチルピリジニウムの濃度は一定に保たれる。N−メチ
ルピリジニウムの対アニオンであるクロルイオンは、陰
イオン交換樹脂膜を通り中間室へ移り、陽極室から移つ
てきたアルカリ金属カチオンと反応して塩を生成する。
電解を継続するにつれて中間室の塩濃度が次第に増加す
るので、中間室液を水と置換しつ・濃度を一定に保つこ
とが望ましい。上述のことから明らかな如く、クロルア
ニオンは陽極に到達しないので、塩素分子が生成される
ことがなく、また、陽極側は塩素分子に耐性のある陽イ
オン交換樹脂膜が配置されているので、膜の劣化が起る
ことがない。
The bipyridyl is almost insoluble in water and adheres to the electrode surface, but is removed from the electrode by the circulating water flow in the cathode chamber, and is carried along with the catholyte to an extractor, where it is transferred to an extraction solvent. . By continuously supplying an amount equivalent to the consumed N-methylpyridinium cation, the N-
The concentration of methylpyridinium is kept constant. The chlorine ion, which is the counteranion of N-methylpyridinium, passes through the anion exchange resin membrane and moves to the intermediate chamber, and reacts with the alkali metal cation transferred from the anode chamber to form a salt.
As the electrolysis continues, the salt concentration in the intermediate chamber gradually increases, so it is desirable to replace the intermediate chamber liquid with water and keep the concentration constant. As is clear from the above, since chlorine anions do not reach the anode, chlorine molecules are not generated, and since a cation exchange resin membrane that is resistant to chlorine molecules is placed on the anode side, No deterioration of the membrane occurs.

さらに陽極室に供給したアルカリは、アルカリ金属カチ
オンが陽イオン交換樹脂膜を通つて中間室へ移り、水酸
イオンは陽極で酸化され酸素を発生するが、陽極側には
発生期の酸素に対して耐性のある陽イオン交換樹脂膜が
配置されているので、同様に膜が劣化することがない。
また、本発明においてN一置換ピリジニウム塩を直接陰
極液に供給することにより、陰極液のN置換ピリジニウ
ム塩濃度を任意に、例えば1モル/l以上の高濃度に設
定することができ、陰極室の電気抵抗を低下させ得ると
・もに、陰イオン交換樹脂膜に比較して限界電流密度の
小さい陽イオン交換樹脂膜の限界電流密度が律速となら
ず、高電流密度の電解が可能となる。
Furthermore, the alkali metal cations of the alkali supplied to the anode chamber pass through the cation exchange resin membrane to the intermediate chamber, and the hydroxide ions are oxidized at the anode to generate oxygen. Since a cation exchange resin membrane that is resistant to water is placed, the membrane will not deteriorate as well.
Furthermore, in the present invention, by directly supplying the N-substituted pyridinium salt to the catholyte, the concentration of the N-substituted pyridinium salt in the catholyte can be arbitrarily set to a high concentration of, for example, 1 mol/l or more. At the same time, the limiting current density of the cation exchange resin membrane, which has a smaller limiting current density than the anion exchange resin membrane, is not rate-limiting, making it possible to perform high current density electrolysis. .

さらに、N一置換ピリジニウム塩を直接陰極に供給する
ことの利点は、電気抵抗の大きなN一置換ピリジニウム
カチオンが陽イオン交換樹脂膜を通過する過程がないた
め、膜電圧を低く抑えることができ、電解コストを低減
させることができると・もに、N−N″−ジ置換テトラ
ヒドロ4・4″−ビピリジル生成の電流効率を向上させ
得ることである。
Furthermore, the advantage of supplying the N-substituted pyridinium salt directly to the cathode is that there is no process in which the N-substituted pyridinium cation, which has a large electrical resistance, passes through the cation exchange resin membrane, so the membrane voltage can be kept low. It is possible to reduce the electrolysis cost and to improve the current efficiency for producing N-N''-disubstituted tetrahydro-4,4''-bipyridyl.

本発明になる電解方法によりN一置換ピリジニウム塩の
電解を行なつた場合、陽極室、中間室、陰極室のいずれ
においてもイオン種の混合が起らず、すなわち、例えば
N一置換ピリジニウムカチオンと他の電解質カチオン、
例えばナトリウムイオンなどの混合が起らず、各種電解
生成物の分離ないし取り出しが極めて容易である。
When the N-substituted pyridinium salt is electrolyzed by the electrolysis method of the present invention, no mixing of ionic species occurs in any of the anode chamber, the intermediate chamber, and the cathode chamber. other electrolyte cations,
For example, there is no mixing of sodium ions, etc., and it is extremely easy to separate or take out various electrolytic products.

以上の如く、本発明の電解方法によつてN一置換ピリジ
ニウム塩を電解する場合、高収率でN・N″−ジ置換テ
トラヒドロ4・4″−ビピリジルを生成することができ
、また、電極やイオン交換樹脂膜などが劣化することな
く長期間、安定に連続運動することができる。
As described above, when N-substituted pyridinium salt is electrolyzed by the electrolysis method of the present invention, N.N''-disubstituted tetrahydro-4,4''-bipyridyl can be produced in high yield, and the electrode It is possible to operate stably and continuously for a long period of time without deteriorating the ion exchange resin membrane or the like.

次に、本発明を実施例によつてさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例 1 白金網を陽極とし、有効電極面積2cm×20cmの鉛
を主体としてテルルを0.5重量%添加してなる合金板
を陰極とする電解槽において、陰極側を旭化成工業(株
)製、アンフレックスA−101(陰イオン交換樹脂膜
)、陽極側をデユポン社製、ナフイヨン#415膜(陽
イオン交換樹脂膜)で仕切り、セル厚がそれぞれ1mm
、15n1m、4m[nの陰極室29、中間室28、陽
極室27を構成し、これらの室と抽出器17または液溜
21,20,19を第2図に示す如く、循環ポンプを介
して循環通路によつて連結した。
Example 1 In an electrolytic cell with a platinum wire mesh as an anode and an alloy plate made mainly of lead with an effective electrode area of 2 cm x 20 cm and 0.5% by weight of tellurium added as a cathode, the cathode side was made by Asahi Kasei Corporation. , Anflex A-101 (anion exchange resin membrane), the anode side is partitioned by Nafyon #415 membrane (cation exchange resin membrane) made by Dupont, each cell thickness is 1 mm.
As shown in FIG. connected by a circulation passage.

中間室液溜20に濃度1モル/lの塩化ナトリウム水溶
液300m1.陽極液溜21に1規定の水酸化ナトリウ
ム水溶液300m1.陰極液溜19に1モル/l(7)
N−メチルピリジニウムクロライド600m1を仕込み
、これらの水溶液を循環ポンプによつて、陽極室27、
中間室28は0.1m/Sec、陰極室29は0.8m
/Secの速度となるように循環させた。
300 ml of an aqueous sodium chloride solution with a concentration of 1 mol/l is placed in the intermediate chamber liquid reservoir 20. 300 ml of 1N aqueous sodium hydroxide solution is placed in the anolyte reservoir 21. 1 mol/l (7) in catholyte reservoir 19
600ml of N-methylpyridinium chloride was charged, and the aqueous solution was transferred to the anode chamber 27 using a circulation pump.
Intermediate chamber 28 is 0.1m/Sec, cathode chamber 29 is 0.8m
It was circulated at a speed of /Sec.

図面に示す如く、静置槽18の上昇にトルエン1500
m1を仕込み、抽出溶剤循環ポンプによつて抽出器17
との間を100m1/Minの速度で循環させた。
As shown in the drawing, 1500 g of toluene was added to the rise of the static tank 18.
m1 and extractor 17 using the extraction solvent circulation pump.
and was circulated at a speed of 100 ml/min.

各電解液を循環させつ\電極間に10A/Dm2で電流
を流し始めた。陰極液中のN−メチルピリジニウムクロ
ライドは、時間と・もにN−N″一ジメチルテトラヒド
ロ4・4″−ビピリジルに転化し、抽出溶媒中に移つて
行くので、陰極液中のN−メチルピリジニウムクロライ
ドの濃度を1モル/lに保つように、濃度3.1モル/
lの液を陰極液溜に連続的に供給した。また、陽極液の
PHが約13を保つように、5規定の水酸化ナトリウム
水溶液を少しずつ連続的に供給して行つた。さらに中間
室液に塩化ナトリウムが蓄積してくるので、中間室液を
少しずつ純水と交換し濃度を1モル/1に保つた。15
0時間の電解により、全通電量の8.9%が水素の発生
に消費され、90.2%がN−N″−ジメチルテトラヒ
ドロ4・4″−ビピリジルの生成に消費されていること
を認めた。
While each electrolyte was being circulated, a current of 10 A/Dm2 was started to flow between the electrodes. N-methylpyridinium chloride in the catholyte is converted to N-N''-dimethyltetrahydro-4,4''-bipyridyl over time and moves into the extraction solvent, so N-methylpyridinium in the catholyte To maintain the chloride concentration at 1 mol/l, the concentration was 3.1 mol/l.
1 of solution was continuously supplied to the catholyte reservoir. Further, a 5N aqueous sodium hydroxide solution was continuously supplied little by little so that the pH of the anolyte was maintained at about 13. Furthermore, since sodium chloride accumulated in the intermediate chamber liquid, the intermediate chamber liquid was gradually replaced with pure water to maintain the concentration at 1 mol/1. 15
After 0 hours of electrolysis, it was found that 8.9% of the total current was consumed to generate hydrogen, and 90.2% was consumed to generate N-N''-dimethyltetrahydro-4,4''-bipyridyl. Ta.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法に使用する箱型電解槽の説明図、
第2図は本発明の工程説明図である。
FIG. 1 is an explanatory diagram of a box-type electrolytic cell used in the method of the present invention,
FIG. 2 is a process explanatory diagram of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 一対の対向する電極板(または網)の陰極側に陰イ
オン交換樹脂膜、陽極側に陽イオン交換樹脂膜を電極板
(または網)に平行に、かつ上記膜が互いに接触しない
ように配置し、各々電極板(または網)および各イオン
交換樹脂膜によつて囲まれた陰極室、中間室、陽極室を
設け、陰極室にN−置換ピリジニウム塩を、陽極室にア
ルカリを供給し、中間室から塩を除去しつゝ電解を行な
うことを特徴とするN−置換ピリジニウム塩の電解二量
化法。
1 Arrange an anion exchange resin membrane on the cathode side of a pair of opposing electrode plates (or nets) and a cation exchange resin membrane on the anode side parallel to the electrode plates (or nets) so that the membranes do not touch each other. A cathode chamber, an intermediate chamber, and an anode chamber each surrounded by an electrode plate (or mesh) and each ion exchange resin membrane are provided, and an N-substituted pyridinium salt is supplied to the cathode chamber and an alkali is supplied to the anode chamber, 1. A method for electrolytic dimerization of N-substituted pyridinium salts, characterized in that electrolysis is carried out while removing salt from an intermediate chamber.
JP53008959A 1977-03-23 1978-01-31 Electrolytic dimerization method of N-substituted pyridinium salts Expired JPS5952712B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP53008959A JPS5952712B2 (en) 1978-01-31 1978-01-31 Electrolytic dimerization method of N-substituted pyridinium salts
IN269/CAL/78A IN147984B (en) 1977-03-23 1978-03-14
US05/887,131 US4176020A (en) 1977-03-23 1978-03-16 Process for electrolytic dimerization of N-substituted pyridinium salt
CA299,128A CA1098860A (en) 1977-03-23 1978-03-17 Process for electrolytic dimerization of n- substituted pyridinium salt
BR787801821A BR7801821A (en) 1977-03-23 1978-03-22 PROCESS FOR THE PREPARATION OF A TETRA-HYDRO-4,4'-BIPYRIDILA N, N'-DISSUBSTITUIDA
FR7808340A FR2384862A1 (en) 1977-03-23 1978-03-22 PROCESS FOR ELECTROLYTIC DIMERIZATION OF AN N-SUBSTITUTE PYRIDINIUM SALT
DE2812508A DE2812508C3 (en) 1977-03-23 1978-03-22 Process for the preparation of N1N'dialkyl-substituted tetrahydro-4,4'bipyridylenes
GB11656/78A GB1551803A (en) 1977-03-23 1978-03-23 Process for electrolytic dimerization of n-substituted pyridinium salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53008959A JPS5952712B2 (en) 1978-01-31 1978-01-31 Electrolytic dimerization method of N-substituted pyridinium salts

Publications (2)

Publication Number Publication Date
JPS54103875A JPS54103875A (en) 1979-08-15
JPS5952712B2 true JPS5952712B2 (en) 1984-12-21

Family

ID=11707200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53008959A Expired JPS5952712B2 (en) 1977-03-23 1978-01-31 Electrolytic dimerization method of N-substituted pyridinium salts

Country Status (1)

Country Link
JP (1) JPS5952712B2 (en)

Also Published As

Publication number Publication date
JPS54103875A (en) 1979-08-15

Similar Documents

Publication Publication Date Title
US4707240A (en) Method and apparatus for improving the life of an electrode
US4057483A (en) Electrodialysis apparatus and process for ion modification
KR910001139B1 (en) Eletrolytic process and electrolytic cell for preparation of roganic compounds
AU653049B2 (en) Electrochemical process and cell for the production of sulphuric acid and sodium hydroxide
US3976549A (en) Electrolysis method
CA1153982A (en) Electrolytic production of alkali metal hypohalite and apparatus therefor
SU1291029A3 (en) Bipolar electrode
NL7905501A (en) ELECTROLYTIC CHLORINE ALKALICELLES.
KR870001768B1 (en) Improved operation and regeneration of permselective ion-exchange membranes in brine electrolysis cells
CN102839389B (en) Novel production method of electro-depositing and refining metal chloride by membrane process
EP0168600A2 (en) Bipolar apparatus for electrolysis using a gas diffusion cathode
GB1415984A (en) Electrolytic cells
DE10101494A1 (en) Tetramethylammonium hydroxide synthesis
US4036717A (en) Method for concentration and purification of a cell liquor in an electrolytic cell
US3915817A (en) Method of maintaining cathodes of an electrolytic cell free of deposits
CN102828205A (en) Novel metal electro-deposition refining technology
US3779876A (en) Process for the preparation of glyoxylic acid
JPH11226576A (en) Method and apparatus for treating wastewater
Bramer et al. Electrolytic regeneration of spent pickling solutions
US5225054A (en) Method for the recovery of cyanide from solutions
JPS5952712B2 (en) Electrolytic dimerization method of N-substituted pyridinium salts
DE1009172B (en) Process for the electrical use of the decomposition energy of amalgams
FI82078C (en) ELEKTROKEMISKT AVLAEGSNANDE AV HYPOKLORITER UR KLORATCELLOESNINGAR.
JP2007532772A (en) Precious metal recovery
JPH01234585A (en) Method and device for electrolysis using gas diffusion electrode