JPS5952686B2 - Manufacturing method of non-thermal high tensile strength steel with excellent low temperature toughness - Google Patents
Manufacturing method of non-thermal high tensile strength steel with excellent low temperature toughnessInfo
- Publication number
- JPS5952686B2 JPS5952686B2 JP9986779A JP9986779A JPS5952686B2 JP S5952686 B2 JPS5952686 B2 JP S5952686B2 JP 9986779 A JP9986779 A JP 9986779A JP 9986779 A JP9986779 A JP 9986779A JP S5952686 B2 JPS5952686 B2 JP S5952686B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- rolling
- toughness
- steel
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Description
【発明の詳細な説明】
本発明は非調質高張力鋼の製造法に係り、詳しくは、非
調質で引張強さ60kg/m!L以上の強度を有する高
張力高靭性鋼を工業的に容易かつ安定して製造する方法
に係る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing non-tempered high tensile strength steel, and more specifically, non-tempered high tensile strength steel with a tensile strength of 60 kg/m! The present invention relates to a method for industrially easily and stably producing high-tensile and high-toughness steel having a strength of L or higher.
一般に、調質処理を行なうことなく、つまり、非調質で
高い強度と優れた低温靭性を有する引張強さ60kg/
−以上の高張力鋼を製造する場合に、Nb含有鋼を制御
圧延し、その後加速冷却を行なう方法が知られている。Generally, the tensile strength is 60kg/60kg without heat treatment, that is, without heat treatment, it has high strength and excellent low temperature toughness.
- When producing high-strength steel with the above properties, a method is known in which Nb-containing steel is subjected to controlled rolling and then accelerated cooling is performed.
この方法は、例えば、特開昭53−97922号公報に
示される如く、オーステナイト末再結晶温度領域で多く
の圧下を加え、Ar3以上から冷却を開始する方法であ
る。In this method, for example, as shown in JP-A-53-97922, a large pressure is applied in the austenite final recrystallization temperature range, and cooling is started from Ar3 or above.
通常、このような制御圧延が行なわれるNb含有鋼のオ
ーステナイト未再結晶域の温度は950℃〜Ar3、好
ましくは900℃〜Ar3とされ、Ar3については圧
延による歪誘起変態のために上昇し、通常は770℃前
後であり、事実上、900〜770℃の狭い温度範囲で
多くの圧下を加えることになる。Usually, the temperature of the austenite non-recrystallized region of Nb-containing steel subjected to such controlled rolling is 950°C to Ar3, preferably 900°C to Ar3, and Ar3 increases due to strain-induced transformation due to rolling. Usually, the temperature is around 770°C, and in fact, a large amount of pressure reduction is applied within a narrow temperature range of 900 to 770°C.
ところで一般に、圧延温度が低温になるほど鋼の変形抵
抗は上昇し、更にNb含有鋼ではNbの析出による変形
抵抗の上昇がこれに加わる。Generally, the lower the rolling temperature, the higher the deformation resistance of steel, and in Nb-containing steels, the deformation resistance increases due to the precipitation of Nb.
このため、900〜770℃という低温の圧延を行なう
際には、圧延機の能力の限界から1回ごとの圧下率は少
なくする必要があり、必然的に圧延パス数を増加せざる
を得ない。For this reason, when rolling at a low temperature of 900 to 770°C, it is necessary to reduce the rolling reduction rate each time due to the limits of the rolling mill's capacity, which inevitably requires an increase in the number of rolling passes. .
一方、圧延の進行によって板厚が減少するのにしたがっ
て、鋼板の冷却速度は上昇し、このように鋼の温度低下
が著しい温度領域において、従来法では、多数の圧延パ
スを実施するため、工業的生産工程では往々にして冷却
開始温度がAr3を下まわり易く、一部オーステナイト
からフエライトの変態が始まり、強度および靭性が劣化
する欠点があった。On the other hand, as the thickness of the steel plate decreases as rolling progresses, the cooling rate of the steel plate increases, and in this temperature range where the temperature of the steel decreases significantly, conventional methods require many rolling passes, making it difficult for the industry to In the commercial production process, the cooling start temperature tends to fall below Ar3, which causes a partial transformation of austenite to ferrite, resulting in deterioration of strength and toughness.
例えば、ローラークエンチなどの冷却装置を用いて冷却
する場合、従来法では圧延仕上温度がAr3直上である
ため、鋼板先端部はAr3以上から冷却できても、鋼板
後端の温度がAr3より低下し、強度および靭性が劣化
して安定した品質の鋼板が得られにくい。For example, when cooling using a cooling device such as a roller quench, in the conventional method, the rolling finish temperature is just above Ar3, so even if the leading edge of the steel plate can be cooled from Ar3 or higher, the temperature at the trailing edge of the steel plate will drop below Ar3. , strength and toughness deteriorate, making it difficult to obtain steel sheets of stable quality.
本発明者らはこれらの実情を鑑み、鋼の成分、スラブ加
熱温度、圧延条件ならびに冷却条件について検討を重ね
て、本発明を完成したものである。In view of these circumstances, the present inventors have completed the present invention after repeated studies on the steel components, slab heating temperature, rolling conditions, and cooling conditions.
すなわち、本発明は、を含み残余が実質的にFeから成
る鋼、または、これら成分のほかにV:0,01〜0.
15%、Ni : Q、1〜0.5%、Cr:0.1〜
0.5%、Cu:0.1〜0.5%、Mo : 0.0
5〜0.50%若しくはB : 0.0005〜0.0
025%のうちの一種若しくは二種以上を含み残余が実
質的にFeから成る鋼を、1100℃〜1280℃の範
囲に加熱し、この加熱温度から1000℃の温度範囲で
は累積圧下率R: R=−0,IT+170%(T:加
熱温度)以上になるまでくり返して圧延し、引き続いて
、1000〜900℃の温度範囲において累積圧下率が
60%以上になるまでくり返し圧延し、その後Ar3以
上の温度から650℃以下まで平均冷却速度10℃/s
ec〜100℃/secで冷却することを特徴としてい
る。That is, the present invention provides a steel containing Fe, the remainder being substantially Fe, or a steel containing V: 0.01 to 0.01 in addition to these components.
15%, Ni: Q, 1-0.5%, Cr: 0.1-
0.5%, Cu: 0.1-0.5%, Mo: 0.0
5-0.50% or B: 0.0005-0.0
A steel containing one or more of 025% and the remainder substantially consisting of Fe is heated to a temperature range of 1100°C to 1280°C, and in the temperature range from this heating temperature to 1000°C, the cumulative rolling reduction rate R: R =-0, IT + 170% (T: heating temperature) or more, and then repeatedly rolled until the cumulative reduction rate becomes 60% or more in the temperature range of 1000 to 900°C, and then Ar3 or more. Average cooling rate 10℃/s from temperature to below 650℃
It is characterized by cooling at a rate of ec to 100°C/sec.
本発明法で製造される鋼板の組織は微細な低炭素ベイナ
イトであり、とくにC量を低下させたことにより従来法
による鋼板と遜色のない強度と靭性を有する鋼板を工業
的に容易に提供できる。The structure of the steel sheet produced by the method of the present invention is fine low-carbon bainite, and by reducing the amount of C in particular, it is possible to industrially easily provide a steel sheet with strength and toughness comparable to steel sheets produced by the conventional method. .
以下、本発明法について鋼の成分範囲限定の理由から順
次に説明する。The method of the present invention will be sequentially explained below, starting from the reason for limiting the range of steel components.
まず、Cはその含有量が0.03%未満の場合には高強
度が得られず、またそれが0.09%以上の場合には溶
接性が害されるとともに、本発明における加熱−圧延−
冷却条件では粗大な低温変態性成物が混入し、靭性が害
される。First, if the C content is less than 0.03%, high strength cannot be obtained, and if it is more than 0.09%, weldability is impaired, and the heating-rolling process in the present invention
Under cooling conditions, coarse low-temperature transformation products are mixed in and the toughness is impaired.
次に、Siは鋼の脱酸を促進して強度を上昇させるので
、少なくとも0.03%以上添加する。Next, since Si promotes deoxidation of steel and increases its strength, it is added in an amount of at least 0.03%.
しかし、Siはあまり多いと靭性や溶接性が著しく損な
われるため、最大で0.5%にとどめる。However, if too much Si is present, the toughness and weldability will be significantly impaired, so it is limited to a maximum of 0.5%.
次に、Mnは鋼の強度ならびに靭性を高め、本発明では
積極的に添加し、少なくとも0.50%以上添加する。Next, Mn increases the strength and toughness of steel, and is actively added in the present invention, at least 0.50% or more.
しかしながら、Mnを2.0%を越えて添加すると、溶
接割れ感受性が著しく高められるので、これを上限とす
る。However, if Mn is added in excess of 2.0%, weld cracking susceptibility is significantly increased, so this is set as the upper limit.
次に、AIは製鋼過程において脱酸剤としてはたらき、
このほかに窒化物を形成して組織を細粒化する。Next, AI acts as a deoxidizer in the steelmaking process,
In addition, nitrides are formed to refine the structure.
しかし、あまり多くなると介在物が増加し、このことか
らAlは0.05%以下添加する。However, if the amount is too large, inclusions will increase, and for this reason, Al is added in an amount of 0.05% or less.
次に、本発明法においては上記の通り、C1Si、 M
nおよびAIを適正範囲に添加するほか、Nbを添加す
る。Next, in the method of the present invention, as described above, C1Si, M
In addition to adding n and AI within appropriate ranges, Nb is also added.
Nbは高温加熱によって鋼中に固溶し、圧延の間に、炭
窒化物として析出する。Nb is dissolved in steel by high-temperature heating, and precipitates as carbonitrides during rolling.
このため、オーステナイト粒の再結晶は著しく遅れ、オ
ーステナイト粒は微細化する。Therefore, the recrystallization of austenite grains is significantly delayed, and the austenite grains become finer.
したがって、本発明法では後述の圧延条件のもとで、N
bの上記効果を発揮させるところに一つの特徴があり、
この効果を顕著に発揮させるために、Nbは少なくとも
0.01%添加する。Therefore, in the method of the present invention, under the rolling conditions described below, N
There is one feature in exhibiting the above effects of b.
In order to exhibit this effect significantly, Nb is added in an amount of at least 0.01%.
また、Nbはその量が多くなると溶接時に溶接部の靭性
が低下し、このことから本発明法ではNbは0.10%
を上限とする。In addition, when the amount of Nb increases, the toughness of the welded part decreases during welding, and for this reason, in the method of the present invention, Nb is 0.10%
is the upper limit.
また、本発明においては、上記の基本成分のほかに、高
張力化あるいは板厚を増大させるために、V:0.01
〜0.05%、Ni:0.1〜0.5%、Cr:0.1
〜0.5%、Cu:0.1〜0.5%、Mo : 0.
05〜0.50%若しくはB : 0.0005〜0.
0025%のうちの一種もしくは二種以上を添加含有さ
せることができる。In addition to the above basic components, in the present invention, V: 0.01
~0.05%, Ni: 0.1~0.5%, Cr: 0.1
~0.5%, Cu: 0.1~0.5%, Mo: 0.
05-0.50% or B: 0.0005-0.
0025% of one or more of them can be added and contained.
Niは熱影響部(HAZ)の硬化性および靭性に悪い影
響を与えることなく母材の強度、靭性を向上させること
ができる。Ni can improve the strength and toughness of the base material without adversely affecting the hardenability and toughness of the heat affected zone (HAZ).
しかし、Niは高価であって、0.5%を越えて添加含
有させることは製造コストの上昇を招き、また0、1%
未満では効果がないので0.1〜0.5%とする。However, Ni is expensive, and adding more than 0.5% increases manufacturing costs;
Since there is no effect if it is less than 0.1 to 0.5%.
CuはNiとほぼ同様の効果があり、さらに耐食も向上
させるが、0.5%を越えると熱間圧延中にクラックが
発生しやすく、鋼板の表面性状が劣化する。Cu has almost the same effect as Ni and also improves corrosion resistance, but if it exceeds 0.5%, cracks are likely to occur during hot rolling and the surface quality of the steel sheet deteriorates.
また0、1%未満では効果がないので0.1〜0.5と
する。Moreover, since there is no effect if it is less than 0.1%, it is set to 0.1 to 0.5.
Crは強度を上昇させる元素であるが0.5%を越える
と溶接部靭性を害し、また0、1%未満では効果がない
ので0.1〜0.5%とする。Cr is an element that increases strength, but if it exceeds 0.5%, it impairs the toughness of the weld zone, and if it is less than 0.1%, there is no effect, so it is set at 0.1 to 0.5%.
■はこの発明による鋼板の母材強度と靭性向上のために
添加するが、0.01%未満では効果なく、また0、1
5%を越えて添加すると母材および溶接部の靭性を著し
く劣化させるため0.01〜0.15%とする。(2) is added to improve the base material strength and toughness of the steel plate according to the present invention, but if it is less than 0.01%, it is not effective, and if it is less than 0.01%,
If added in excess of 5%, the toughness of the base metal and weld zone will be significantly deteriorated, so the content should be 0.01 to 0.15%.
Moは、圧延時のτ粒を整粒にし、なおかつ微細なベイ
ナイトを生成させるので強度ならびに靭性の向−トの上
から添加するのが好ましい。Since Mo makes the τ grains regular during rolling and also produces fine bainite, it is preferable to add Mo from above in order to improve strength and toughness.
しかし、0.5%を越えて添加すると製造コストの上昇
を招き、また0、05%未満では効果がないので0.0
5〜0.5%とした。However, adding more than 0.5% will increase manufacturing costs, and less than 0.05% will have no effect.
The content was set at 5% to 0.5%.
またBもベイナイトを生成させるので、とくに強度を上
昇させるが、0.0025%を越えて添加すると靭性の
劣化を招き、また0、 0005%未満では効果がない
ので0.0005〜0.0025%とした。B also generates bainite, which particularly increases strength, but if it is added in an amount exceeding 0.0025%, it will lead to deterioration of toughness, and if it is less than 0.0005%, it will have no effect, so B should be added in an amount of 0.0005 to 0.0025%. And so.
さて、以上の通りの成分に溶製した鋼は、通常はスラブ
の形式として1100℃〜1280℃の温度に加熱する
。Now, the steel melted with the above-mentioned components is usually heated to a temperature of 1100° C. to 1280° C. in the form of a slab.
加熱温度を1100℃〜1280℃と限定した理由は、
まず下限の1100℃についてはNbを固溶させて上記
のNbの効果を発揮させ、これに併せて、後述のように
1000℃以上の温度で必要とされる累積圧下率を確保
するためであり、また上限の1280℃を越えて加熱す
るとγ粒径が極端に粗大化するため、本発明方法で上記
の如きNbの添加によってもγ粒径を細粒化し得す、従
って靭性が劣化するため、加熱温度の上限は1280℃
にした。The reason why the heating temperature was limited to 1100°C to 1280°C is as follows.
First, regarding the lower limit of 1100°C, Nb is dissolved in solid solution to exhibit the above-mentioned effect of Nb, and at the same time, as described later, the purpose is to ensure the cumulative reduction rate required at temperatures of 1000°C or higher. Furthermore, heating above the upper limit of 1280°C will cause the γ grain size to become extremely coarse, so in the method of the present invention, the γ grain size can also be made finer by adding Nb as described above, and therefore the toughness will deteriorate. , the upper limit of heating temperature is 1280℃
I made it.
以上の通りに1100℃〜1280℃に加熱し、この加
熱温度から鋼は1000℃以上までの範囲では累積圧下
率(R)が(1)弐以上になるまで繰返して圧延する。As described above, the steel is heated to 1100 DEG C. to 1280 DEG C., and the steel is repeatedly rolled in the range from this heating temperature to 1000 DEG C. or higher until the cumulative rolling reduction (R) reaches (1)2 or higher.
この場合、1000℃以上においての圧延が本発明の骨
子の一つを成し、とくに、従来例ではオーステナイト末
再結晶域で圧延が行なわれていたのに対し、1000℃
〜900℃の高温領域で圧延したにも拘らず、高強度高
靭性を確保できることに着目し、このことから適正な累
積圧下率を見出して、本発明方法が成立したとも云える
。In this case, rolling at 1000°C or higher constitutes one of the gist of the present invention, and in particular, rolling at 1000°C or above is performed in the austenite final recrystallization region in the conventional example.
It can be said that the method of the present invention was established by noting that high strength and high toughness could be ensured despite rolling in a high temperature range of ~900°C, and finding an appropriate cumulative reduction rate from this.
すなわち、第1図は0.05%C−1,2%Mn −〇
、03%Nb−0,03%AIなる成分の鋼における加
熱温度と1000℃以上における累積圧下率との関係を
示すグラフである。That is, Fig. 1 is a graph showing the relationship between the heating temperature and the cumulative rolling reduction rate at 1000°C or higher in steel with the compositions 0.05%C-1,2%Mn-〇, 03%Nb-0,03%AI. It is.
第1図において、1000℃以下の累積圧下率は75%
とし、従来の条件、つまり、950℃〜Ar3で75%
圧下した場合と、1000℃〜900℃で75%圧下し
た場合とを比較して、後者の圧延で同等の靭性が得られ
るものを○印で示し、後者の圧延で靭性が劣化し、同等
の靭性が得られないものをX印で示した。In Figure 1, the cumulative reduction rate below 1000℃ is 75%.
under the conventional conditions, i.e. 950°C ~ 75% at Ar3.
Comparing the case of rolling and the case of rolling by 75% at 1000°C to 900°C, the cases where the same toughness is obtained with the latter rolling are marked with ○, and the cases where the toughness deteriorates with the latter rolling and the same Those in which toughness could not be obtained are indicated with an X mark.
なお、いずれの場合も冷却はAr3以上から冷却速度6
0℃/secで室温まで行なっている。In both cases, cooling is performed at a cooling rate of 6 or higher from Ar3 or higher.
The temperature was increased to room temperature at 0°C/sec.
また、第1図で符号イはR=−0,IT+170 (%
)を示す。In addition, in Figure 1, the symbol A is R=-0, IT+170 (%
) is shown.
第1図から明らかな通り、1000℃以上における圧延
の累積圧下率(R)をR> −0,1T+170の関係
のもとで圧下すると、1000℃以下の圧下を1000
℃〜900℃で圧延しても従来例の如く、950℃〜A
r3で圧延した場合と同等の靭性が得られる。As is clear from Figure 1, if the cumulative reduction rate (R) of rolling at 1000°C or higher is reduced under the relationship R> -0,1T+170, then the rolling reduction at 1000°C or lower is 1000°C.
Even if it is rolled at a temperature of 950°C to 900°C, as in the conventional example,
Toughness equivalent to that obtained by rolling at r3 can be obtained.
続いて、上記の如< 1000℃以上で圧延後、100
0℃〜900℃の温度範囲で60%以上の累積圧下率と
なるまで繰り返し圧延し、仕上板厚として圧延を終了す
る。Subsequently, after rolling at <1000°C or higher as described above, 100°C
Rolling is repeated in a temperature range of 0° C. to 900° C. until a cumulative reduction ratio of 60% or more is achieved, and the rolling is completed to obtain a finished plate thickness.
このときの仕上圧延温度は900℃以上であることはい
うまでもないが、この圧延によって1000℃以上の圧
延で微細化されたオーステナイト粒は更に微細化され、
一部は再結晶をおこすことなく伸長し、粒内に変形帯が
導入される。Needless to say, the finish rolling temperature at this time is 900°C or higher, but this rolling further refines the austenite grains that were refined by rolling at 1000°C or higher.
Some of the grains elongate without recrystallization, and deformation bands are introduced within the grains.
この場合、累積圧下率が60%未満で圧延を終了すると
、オーステナイトの微細粒化が十分でなく、引き続いて
行なわれる冷却により粗大な低温変態生成物が混入して
靭性が劣化する。In this case, if rolling is terminated at a cumulative reduction ratio of less than 60%, the austenite will not be sufficiently refined, and coarse low-temperature transformation products will be mixed in with subsequent cooling, resulting in deterioration of toughness.
このため、1000℃〜900℃での累積圧下率は60
%以上としてくり返して圧延する必要がある。Therefore, the cumulative reduction rate at 1000°C to 900°C is 60°C.
% or more and it is necessary to roll repeatedly.
900℃以上で圧延を終了した後は、鋼板はフェライト
の析出しないAr3以上から冷却を開始し、平均冷却速
度10℃/sec以上で冷却する。After finishing the rolling at 900° C. or higher, cooling of the steel plate is started from Ar3 or higher, where ferrite does not precipitate, and is cooled at an average cooling rate of 10° C./sec or higher.
この際、圧延終了から冷却開始まで十分な時間的余裕が
あるので、操業はきわめて安定して行なうことができ、
従来例の如く、冷却がAr3点を下まわって開始される
ことなく、必要な強度靭性が確保できる。At this time, there is sufficient time from the end of rolling to the start of cooling, so operations can be carried out extremely stably.
Unlike the conventional example, cooling is not started below the Ar3 point, and the necessary strength and toughness can be ensured.
この際、圧延後に冷却速度10℃/sec以上で冷却す
るのは、10℃/sec以下の冷却速度では低炭素ベイ
ナイト組織とならず、上記の化学成分範囲ではフェライ
ト−パーライト組織となり、強度が十分にならないから
である。At this time, cooling at a cooling rate of 10°C/sec or more after rolling is because a cooling rate of 10°C/sec or less does not result in a low-carbon bainite structure, but in the above chemical composition range, a ferrite-pearlite structure occurs, and the strength is sufficient. This is because it does not become.
なお、冷却速度はフェライト−パーライト組織にしない
上では速いのが好ましいが、100℃/secをこえる
とマルテンサイトが混入し、靭性も劣化するので、この
以下にする必要がある。Note that it is preferable that the cooling rate be fast in order not to form a ferrite-pearlite structure, but if it exceeds 100° C./sec, martensite will be mixed in and the toughness will deteriorate, so it is necessary to keep it below this range.
また、冷却は650℃以下で停止するが、この理由は冷
却を650℃以上で停止すると、低炭素ベイナイトの生
成量が少なくなり、本発明による目的を達成することが
困難となるからである。Further, the cooling is stopped at a temperature below 650°C, because if the cooling is stopped at a temperature above 650°C, the amount of low carbon bainite produced decreases, making it difficult to achieve the object of the present invention.
このため、10℃/sec〜100℃/secの冷却速
度で650℃以下まで冷却する。For this reason, it is cooled to 650°C or less at a cooling rate of 10°C/sec to 100°C/sec.
まず、第1図表に示す組成に溶製し、この供試鋼のうち
で調香1は本発明の範囲外組成、調香2〜6は本発明の
成分範囲内である。First, the steel samples were melted to have the composition shown in Figure 1, and among these test steels, perfume 1 had a composition outside the range of the present invention, and perfumes 2 to 6 had a composition within the composition range of the present invention.
比較例の調香1はCのみが本発明の如く低くなっていな
いが、他の成分は本発明の範囲内にある。Comparative Example Perfume 1 only has C not as low as the present invention, but the other components are within the scope of the present invention.
次に、これら各供試鋼は造塊後、分塊圧延し、あるいは
連続鋳造により必要厚みを有するスラブとし、これらは
第2表に示す加熱温度の如< 1100℃以上に加熱後
、各加熱温度から1000℃以上ではくり返して圧延し
、その後1000℃以下では第2表に示す如く本発明法
、比較法、従来法では変化させ、その後冷却した。Next, each of these test steels is made into slabs having the required thickness by ingot-forming, blooming rolling, or continuous casting. Rolling was carried out repeatedly at a temperature of 1000° C. or higher, and then the temperature was varied as shown in Table 2 for the method of the present invention, the comparative method, and the conventional method, and then cooled.
この際の加熱温度、その加熱温度〜1000℃までの圧
延時の累積圧下率、1000℃以下の圧延時の累積圧下
率、冷却条件は第2表に示す通りであって、それによっ
て得られた鋼板の強度、靭性を測定したところ、第2表
に示す通りであった。The heating temperature at this time, the cumulative rolling reduction rate during rolling from the heating temperature to 1000°C, the cumulative rolling reduction rate during rolling below 1000°C, and the cooling conditions are as shown in Table 2. The strength and toughness of the steel plate were measured and were as shown in Table 2.
なお、最終板厚は15胴または35mmとし、試験片は
圧延直角方向に採取し、引張試験片としては6mmφの
ものを使い、また、衝撃試験片は2mmVノツチフルサ
イズのものを使用した。The final plate thickness was 15 mm or 35 mm, the test pieces were taken in the direction perpendicular to the rolling direction, the tensile test pieces were 6 mmφ, and the impact test pieces were 2 mm V notch full size.
各鋼板における数字1.2.3.4.5.6、はそれぞ
れ第1表に示す調香1.2.3.4.5.6の鋼を使用
したことを意味し、サフィックスのA・・・・・・Fは
製造条件を示す。The number 1.2.3.4.5.6 on each steel plate means that the steel of fragrance 1.2.3.4.5.6 shown in Table 1 was used, and the suffix A. ...F indicates manufacturing conditions.
IAは比較例で製造した鋼板であり、また、2Bおよび
3Bは組成は本発明の範囲内であるが、製造法が従来法
による鋼板である。IA is a steel plate manufactured in a comparative example, and 2B and 3B are steel plates whose compositions are within the scope of the present invention but were manufactured using a conventional method.
また同様に、2Dおよび3Cは1000℃以上の累積圧
下率、2Eは加熱温度、2Fは冷却速度、3Dは冷却開
始温度、3Eは冷却停止温度、3Fは1000〜900
℃の累積圧下率においてそれぞれ本発明の範囲から外れ
ているものであって、これらに対し、2A、2C13A
、4A、5Aおよび6Aは本発明の範囲内の鋼板である
。Similarly, 2D and 3C are cumulative reduction rates of 1000℃ or more, 2E is heating temperature, 2F is cooling rate, 3D is cooling start temperature, 3E is cooling stop temperature, 3F is 1000 to 900
The cumulative reduction ratio of 2A and 2C13A is outside the scope of the present invention.
, 4A, 5A and 6A are steel plates within the scope of the present invention.
なお、上記の関係をわかり易くするために、第2表中に
本発明の範囲を外れている条件はアンダーラインで示し
ている。In order to make the above relationship easier to understand, conditions outside the scope of the present invention are underlined in Table 2.
第2表の結果において、従来法によって製造した鋼板2
Bならびに3Bに比較して本発明法によって製造した鋼
板2Aならびに3Aはその製造法において、1000℃
以下の圧延方法が異なり、他の条件はまったく同じで゛
ある。In the results in Table 2, steel plate 2 manufactured by the conventional method
Compared to B and 3B, steel plates 2A and 3A manufactured by the method of the present invention have a temperature of 1000°C in the manufacturing method.
The following rolling methods were different, and the other conditions were exactly the same.
更に詳しく言うと、従来法が900〜Ar3で圧延する
のに対し、本発明法では1000〜900℃で圧延して
いるが、第2表に示す強度と靭性の測定結果から明らか
な通り、従来法と遜色ない結果が得られていることがわ
かる。More specifically, while the conventional method rolls at 900 to Ar3, the method of the present invention rolls at 1000 to 900°C, but as is clear from the strength and toughness measurement results shown in Table 2, It can be seen that the results obtained are comparable to those obtained by the method.
すなわち、本発明によれば圧延を900℃以上で終了す
ることができ、引き続いて行なわれる冷却は容易にかつ
安定的に実施できる。That is, according to the present invention, rolling can be completed at 900° C. or higher, and subsequent cooling can be carried out easily and stably.
また、本発明の成分範囲をはずれている鋼板IAは靭性
が十分でなく、また、鋼の成分範囲としては本発明の範
囲内にあるとしても圧延後単に空冷した鋼板2Fは強度
が十分でない。Further, the steel plate IA that is outside the composition range of the present invention does not have sufficient toughness, and even if the steel composition range is within the range of the present invention, the steel plate 2F that is simply air-cooled after rolling does not have sufficient strength.
更に、1000℃以上の累積圧下率が本発明の範囲をは
ずれている鋼板2Dならびに3Cは靭性が十分でない。Further, the steel plates 2D and 3C, in which the cumulative reduction rate of 1000° C. or more is outside the range of the present invention, do not have sufficient toughness.
また、1000℃〜900℃の累積圧下率が本発明の範
囲をはずれている鋼板3Fは強度は十分であるが、靭性
がきわめて劣っている。Moreover, the steel plate 3F in which the cumulative reduction rate of 1000° C. to 900° C. is outside the range of the present invention has sufficient strength, but extremely poor toughness.
更に、加熱温度が本発明の範囲をはずれている鋼板2E
は強度が十分でなく、また、それぞれ冷却開始温度およ
び冷却停止温度が本発明の範囲をはずれている3Dおよ
び3Eとも強度靭性が十分でない。Furthermore, steel plate 2E whose heating temperature is outside the range of the present invention
In addition, both 3D and 3E, whose cooling start temperature and cooling stop temperature are outside the range of the present invention, do not have sufficient strength and toughness.
また、4A、5A、6Aは第1表に示す如く基本成分の
ほかにMOlB、 Cr、 Cu、 Ni、■等が添加
されていることもあって、板厚が厚いのにもかかわらず
、十分な強度と靭性を示すことがわかる。In addition, as shown in Table 1, 4A, 5A, and 6A contain MOIB, Cr, Cu, Ni, ■, etc. in addition to the basic components, so they have sufficient strength even though they are thick. It can be seen that the material exhibits excellent strength and toughness.
このように本発明によれば、Ceq<0.37%で十分
な低温靭性を備えた引張強さ60kg/−以上の高張力
鋼を得ることが可能であり、寒冷地向けのラインパイプ
用素材はもちろん、その他の低温靭性の要求される溶接
構造物用鋼として最適である。As described above, according to the present invention, it is possible to obtain high-strength steel with sufficient low-temperature toughness and tensile strength of 60 kg/- or more with Ceq < 0.37%, and it is possible to obtain a high-strength steel with a tensile strength of 60 kg/- or more, which can be used as a material for line pipes for cold regions. Of course, it is also ideal as a steel for other welded structures that require low-temperature toughness.
以上説明したように、本発明によれば非調質で引張強さ
が60kg/−以上でしかも低温靭性と溶接性に優れた
高張力高靭性鋼を容易に安定生産でき、工業的にその効
果の大きい発明である。As explained above, according to the present invention, it is possible to easily and stably produce high-strength, high-toughness steel that is non-thermal treated, has a tensile strength of 60 kg/- or more, and has excellent low-temperature toughness and weldability, and has industrial effects. This is a great invention.
第1図は加熱温度と1000℃以上の累積圧下率の関係
を示したグラフである。FIG. 1 is a graph showing the relationship between heating temperature and cumulative rolling reduction rate of 1000° C. or higher.
Claims (1)
3〜0.5%、Mn:0.5〜2.0%、Al5ol
: 0.05%以下、およびNb:0.01〜0.10
%を含有し、残部が鉄および不可避不純物から成る鋼を
1100℃〜1280℃の範囲の温度に加熱し、この加
熱温度から1000℃まで温度範囲では累積圧下率(R
)がR= −0,IT+170%(T:加熱温度)以上
になるまでくり返し圧延し、引き続いて、1000〜9
00℃の温度範囲において累積圧下率が60%以上にな
るまでくり返し圧延し、その後、Ar3以上の温度から
650℃以下まで平均冷却速度10℃/sec〜100
℃/secで冷却することを特徴とする低温靭性に優れ
た非調質高張力鋼の製造法。 2 C: 0.03〜0.09%、Si : 0.0
3〜0.5%、Mn:0.5〜2.0%、Al5o1.
: 0.05%以下およびNb:0.01〜0.10%
を含有し、さらにV:0.01〜0.15%、Ni :
0.1〜0.5%、Cr : 0.1〜0.5%、C
u : 0.1〜0.5%、Mo : 0.05〜0.
50%もしくはB:0、0005〜0.0025%の1
種または2種以上を含有する鋼を、1100℃〜128
0℃の範囲の温度に加熱し、この加熱温度から1000
℃の温度範囲では累積圧下率(R)がRニー〇、 IT
+ 170%(T:加熱温度)以上になるまでくり返
し圧延し、引き続いて、1000〜900℃の温度範囲
において累積圧下率が60%以上になるまでくり返して
圧延し、その後Ar3以上の温度から650℃以下まで
平均冷却速度10℃/sec〜100℃/secで冷却
することを特徴とする低温靭性に優れた非調質高張力鋼
の製造法。[Claims] IC: 0.03 to 0.09%, Si: 0.0
3-0.5%, Mn: 0.5-2.0%, Al5ol
: 0.05% or less, and Nb: 0.01 to 0.10
%, with the balance consisting of iron and unavoidable impurities, is heated to a temperature in the range of 1100°C to 1280°C, and in the temperature range from this heating temperature to 1000°C, the cumulative reduction rate (R
) is rolled repeatedly until R = −0, IT + 170% (T: heating temperature) or more, and then rolled to 1000 to 9
Rolling is repeated until the cumulative reduction rate is 60% or more in the temperature range of 00°C, and then the average cooling rate is 10°C/sec to 100°C from a temperature of Ar3 or higher to 650°C or lower.
A method for producing non-thermal high tensile strength steel with excellent low-temperature toughness, characterized by cooling at a rate of °C/sec. 2C: 0.03-0.09%, Si: 0.0
3-0.5%, Mn: 0.5-2.0%, Al5o1.
: 0.05% or less and Nb: 0.01-0.10%
Contains V: 0.01-0.15%, Ni:
0.1-0.5%, Cr: 0.1-0.5%, C
u: 0.1-0.5%, Mo: 0.05-0.
50% or B: 0, 0005-0.0025% 1
The steel containing the species or two or more species is heated at 1100°C to 128°C.
Heating to a temperature in the range of 0°C and 1000°C from this heating temperature.
In the temperature range of ℃, the cumulative reduction rate (R) is R knee〇, IT
+ 170% (T: heating temperature) or higher, and then rolled repeatedly in the temperature range of 1000 to 900°C until the cumulative reduction rate is 60% or higher, and then rolled from a temperature of Ar3 or higher to 650°C. A method for producing non-thermal high tensile strength steel having excellent low-temperature toughness, characterized in that cooling is performed at an average cooling rate of 10°C/sec to 100°C/sec to below 0°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9986779A JPS5952686B2 (en) | 1979-08-07 | 1979-08-07 | Manufacturing method of non-thermal high tensile strength steel with excellent low temperature toughness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9986779A JPS5952686B2 (en) | 1979-08-07 | 1979-08-07 | Manufacturing method of non-thermal high tensile strength steel with excellent low temperature toughness |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5625923A JPS5625923A (en) | 1981-03-12 |
JPS5952686B2 true JPS5952686B2 (en) | 1984-12-21 |
Family
ID=14258748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9986779A Expired JPS5952686B2 (en) | 1979-08-07 | 1979-08-07 | Manufacturing method of non-thermal high tensile strength steel with excellent low temperature toughness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5952686B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58189321A (en) * | 1982-04-30 | 1983-11-05 | Nippon Kokan Kk <Nkk> | Manufacture of high tension and high toughness steel material |
JPH03219046A (en) * | 1989-10-18 | 1991-09-26 | Nippon Steel Corp | Non-heat treated steel plate excellent in toughness of high heat input welded joint and its manufacture |
-
1979
- 1979-08-07 JP JP9986779A patent/JPS5952686B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5625923A (en) | 1981-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4572748A (en) | Method of manufacturing high tensile strength steel plates | |
CN101191174B (en) | Hot-rolling phase change induction plasticity steel with 750MPa-level extension strength and preparation method thereof | |
WO2008126944A1 (en) | Steel material having excellent high-temperature strength and toughness, and method for production thereof | |
JPS605647B2 (en) | Method for manufacturing boron-containing non-thermal high tensile strength steel with excellent low-temperature toughness and weldability | |
JPS63286517A (en) | Manufacture of high-tensile steel with low yielding ratio | |
JPS6141968B2 (en) | ||
RU2341565C2 (en) | Method of candy manufacturing from low-alloy steel | |
JPS625216B2 (en) | ||
JPH0741854A (en) | Production of ferrite single phase stainless hot rolled steel sheet excellent in toughness | |
JPS5952686B2 (en) | Manufacturing method of non-thermal high tensile strength steel with excellent low temperature toughness | |
JPH0317244A (en) | High strength hot rolled steel plate high having excellent workability and weldability and its manufacture | |
JP3622246B2 (en) | Method for producing extremely thick H-section steel with excellent strength, toughness and weldability | |
JPS602364B2 (en) | Manufacturing method of non-thermal high tensile strength steel plate with excellent low-temperature toughness | |
JPS601927B2 (en) | Manufacturing method for non-temperature high tensile strength steel with excellent low-temperature toughness | |
JPH04333526A (en) | Hot rolled high tensile strength steel plate having high ductility and its production | |
JP3288424B2 (en) | Manufacturing method of high strength cold rolled steel sheet with excellent elongation properties | |
JPH0247525B2 (en) | ||
JPH07268457A (en) | Production of thick steel plate for line pipe, having high strength and high toughness | |
JPS63145711A (en) | Production of high tension steel plate having excellent low temperature toughness | |
JPS62263922A (en) | Production of forged steel | |
JPH10168518A (en) | Manufacture of high tensile strength steel plate with tapered thickness | |
JP2001138066A (en) | Method for producing high workability carbon steel pipe for hydroforming | |
JPS586936A (en) | Production of hot-rolled high-tensile steel plate for working | |
JPH03146640A (en) | High strength hot rolled steel sheet excellent in workability and its manufacture | |
JPH04221015A (en) | Production of steel sheet high in yield strength |