JPS5952546B2 - semiconductor equipment - Google Patents

semiconductor equipment

Info

Publication number
JPS5952546B2
JPS5952546B2 JP51133484A JP13348476A JPS5952546B2 JP S5952546 B2 JPS5952546 B2 JP S5952546B2 JP 51133484 A JP51133484 A JP 51133484A JP 13348476 A JP13348476 A JP 13348476A JP S5952546 B2 JPS5952546 B2 JP S5952546B2
Authority
JP
Japan
Prior art keywords
region
collector
base
type
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51133484A
Other languages
Japanese (ja)
Other versions
JPS5357980A (en
Inventor
三郎 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP51133484A priority Critical patent/JPS5952546B2/en
Publication of JPS5357980A publication Critical patent/JPS5357980A/en
Publication of JPS5952546B2 publication Critical patent/JPS5952546B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0214Particular design considerations for integrated circuits for internal polarisation, e.g. I2L
    • H01L27/0229Particular design considerations for integrated circuits for internal polarisation, e.g. I2L of bipolar structures
    • H01L27/0233Integrated injection logic structures [I2L]

Description

【発明の詳細な説明】 この発明は、p叩トランジスタと叩nトランジスタの複
合構造から成るバイポーラ型電流注入ロジック(Int
egratedInjectionLogic、以下I
2Lと略す)構造の半導体装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a bipolar current injection logic (Int
egratedInjectionLogic, hereinafter I
2L) structure.

従来、バイポーラ型集積回路装置においては、拡散工程
の複雑さ、写真製板回数の多さなどから高密度化、ひい
ては低電力化に一定の限界がみられていた。ところが近
年、I″Lが発明されるにおよんで、バイポーラ型集積
回路装置においても、大幅な高密度化、低電力化が可能
になつてきている。そこで、この発明では上述のような
I″Lの性能をさらに向上させることを目的としてなさ
れたものである。
Conventionally, in bipolar integrated circuit devices, there has been a certain limit to achieving higher density and lowering power consumption due to the complexity of the diffusion process and the large number of photolithographic processes. However, in recent years, with the invention of I''L, it has become possible to significantly increase density and reduce power consumption even in bipolar integrated circuit devices. This was done with the aim of further improving the performance of L.

以下図面によつてまず従来例について説明し、次いでこ
の発明の実施例について説明する。第1図は従来の半導
体装置を示す断面図で、マルチ・コレクタタイプのI2
Lの一例である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A conventional example will be described below with reference to the drawings, and then an embodiment of the present invention will be described. Figure 1 is a cross-sectional view of a conventional semiconductor device, showing a multi-collector type I2.
This is an example of L.

I2Lの動作においては、p形領域4が電流供給源(イ
ンジェクタと呼ばれる)となり、n゛基板1は接地され
、p形領域2が入力部、n形領域部31、32、33が
出力部となる。第1図において、p形領域4、n”基板
1、P形領域2をI″Lにおけるp叩トランジスタ(以
下pnpTrという)部とし、n゛基板1、P形領域2
、n形領域31、32、33を叩nトランジスタ(以下
叩nTrという)部と考えることにする。I2Lの叩n
Tr部において、nf基板1をエミッタ領域、p形領域
2をベース領域、n形領域31、32、33をコレクタ
領域とする。
In the operation of I2L, the p-type region 4 serves as a current supply source (called an injector), the n'substrate 1 is grounded, the p-type region 2 serves as an input section, and the n-type regions 31, 32, and 33 serve as output sections. Become. In FIG. 1, a p-type region 4, an n'' substrate 1, and a p-type region 2 are used as a p-type transistor (hereinafter referred to as pnpTr) in I''L, and an n'' substrate 1, a p-type region 2
, n-type regions 31, 32, and 33 are considered to be a double-n transistor (hereinafter referred to as double-nTr) section. I2L's slap n
In the Tr section, the nf substrate 1 is used as an emitter region, the p-type region 2 is used as a base region, and the n-type regions 31, 32, and 33 are used as collector regions.

エミッタ接地動作は、I’Lの動作時とバイアス関係が
同じであるから叩nTr部のエミッタ接地特性は、I″
Lの出力特性を近景することになる。第2図は叩nTr
部のエミッタ接地電流増幅率(以下βuと略す)とコレ
クタ電流の関係を、各コレクタ領域31、32、33に
ついてそれぞれCs、、C32、C。
In the emitter grounding operation, the bias relationship is the same as in the I'L operation, so the emitter grounding characteristic of the nTr section is I''
This will give a closer look at the output characteristics of L. Figure 2 is Tr
The relationship between the emitter ground current amplification factor (hereinafter abbreviated as βu) and the collector current for each collector region 31, 32, and 33 is shown as Cs, C32, and C, respectively.

。として示したグラフである。npnTr部のコレクタ
電流に対するβuの関係は、マルチ・コレクタを有する
場合、ベース電極から遠い所に位置するコレクタほど高
電流領域でのβuの低下が著しい。これは、ベース電極
とコレクタ領域31、32、33が離れるに従つて、実
効的ベース抵抗が上昇し、それがベース領域2内での再
結合電流を増加させ、βuを低下させ、さらにトランジ
スタの高速動作を阻害する。
. This is a graph shown as . Regarding the relationship between βu and the collector current of the npnTr section, when the npnTr section has a multi-collector, βu decreases more significantly in the high current region as the collector is located farther from the base electrode. This is because as the base electrode and the collector regions 31, 32, 33 are separated, the effective base resistance increases, which increases the recombination current in the base region 2, lowers βu, and further increases the resistance of the transistor. Obstructs high-speed operation.

このように従来のI2Lにおいては、特にマルチ・コレ
クタを有する構造の場合、ベース電極からのコレクタ領
域31,32,33の距離によつて出力特性が大幅に変
化するとともに、そのための出力数にも制限が加えられ
てくる。
In this way, in the conventional I2L, especially in the case of a structure having a multi-collector, the output characteristics vary greatly depending on the distance of the collector regions 31, 32, 33 from the base electrode, and the number of outputs also varies. Restrictions will be added.

またベース電極の位置を変えて多出力構造にすれば、回
路設計上制限が加えられることになる。特にマルチ・コ
レクタ構造では、それぞれのコレタタ領域31,32,
33によつて出力特性が違つており、従つて出力数も多
く取ることが困難で゛あつた。この発明は、上述の点に
鑑みなされたもので、マルチ・コレクタ構造を有するI
2Lにおいて、各コレクタ領域の出力特性の違いが、実
効的ベース抵抗によるものであることから、各コレクタ
領域に対する実効的ベース抵抗領域を各コレクタ領域に
対して同一にする構造を提供することによつて、I2L
の各コレクタの出力特性の均一化と、高速化等の特性向
上、さらに、出力数の増加をはかつたものである。以下
この発明の実施例について説明する。第3図はこの発明
の一実施例を示すもので、12L(7)NPnTr部の
ベース領域2内へ、高不純物濃度のp+形領域5を設け
たものである。
Furthermore, if the position of the base electrode is changed to create a multi-output structure, restrictions will be imposed on circuit design. In particular, in a multi-collector structure, each collector region 31, 32,
Since the output characteristics differ depending on the type of 33, it has been difficult to obtain a large number of outputs. The present invention has been made in view of the above points, and is based on an integrated circuit having a multi-collector structure.
In 2L, the difference in the output characteristics of each collector region is due to the effective base resistance, so by providing a structure in which the effective base resistance region for each collector region is the same for each collector region. Well, I2L
The aim is to equalize the output characteristics of each collector, improve characteristics such as speeding up, and increase the number of outputs. Examples of the present invention will be described below. FIG. 3 shows an embodiment of the present invention, in which a p+ type region 5 with a high impurity concentration is provided in the base region 2 of a 12L(7)NPnTr section.

このp+形領域5は、コレクタ領域31,3,2,33
のいずれかに近接していればよいが、必要によりコレク
タ領域31,32,33の周囲をすべて囲むことも有効
である。
This p+ type region 5 includes collector regions 31, 3, 2, 33
Although it is sufficient to be close to any one of the collector regions 31, 32, and 33, it is also effective to surround all the collector regions 31, 32, and 33 if necessary.

またこのp+形領域5は不純物濃度が高くそのため抵抗
率が非常に低く、従つてこのp+形領域5を電流が通過
して.も、抵抗による電圧降下をほとんど無視できる。
そのため、マルチ・コレクタ構造の場合、コレクタ領域
31,32,33とベース電極の距離に関係なく、同じ
実効的ベース抵抗および再結合電流を有することになり
、I2L(17)NpnTr部のβ。は同一の特性をも
つ。またこの発明によれば、コレクタ領域31,32,
33直下のベース領域2の不純物濃度は、実効的ベース
抵抗および再結合電流低減のためp+形領域5の濃度と
は別個に形成されるものであるから、NpnTr部の他
の特性に悪影響・をおよぼすことなく、有効にベース抵
抗および再結合電流のみを低減させ得る。第4図はこの
発明の他の実施例を示すもので、12L(7)NPnT
r部がース領域2内部に、理込み形にp+形領域6を設
けたものである。
Also, this p+ type region 5 has a high impurity concentration and therefore has a very low resistivity, so that current passes through this p+ type region 5. Also, the voltage drop due to resistance can be almost ignored.
Therefore, in the case of a multi-collector structure, regardless of the distance between the collector regions 31, 32, 33 and the base electrode, it will have the same effective base resistance and recombination current, and β of the I2L(17)NpnTr portion. have the same properties. Further, according to the present invention, the collector regions 31, 32,
Since the impurity concentration of the base region 2 directly under the base region 33 is formed separately from the concentration of the p+ type region 5 in order to reduce the effective base resistance and recombination current, it has an adverse effect on other characteristics of the NpnTr section. It is possible to effectively reduce only the base resistance and recombination current without causing any adverse effects. FIG. 4 shows another embodiment of the present invention, in which 12L(7)NPnT
In the r section, a p+ type region 6 is provided inside the earth region 2 in a well-structured manner.

この実施例の場合、埋込み形のゲ領域6の形成には、高
加速エネルギーによるp形不純物のイオン注入法等が考
えられる。またゲ形領域6の高濃度化にやや難点がある
場合は、コレクタ領域31,32,33の全周囲を取り
囲むように埋込み形のp+形領域6を設け、それによつ
て実効的ベース抵抗および再結合電流を低下させるよう
にしてもよい。これらの実施例にみられるI2L(7)
NPnTr部のベース領域2内に設けられたp+形領域
6の不純物濃度は、ベース領域2の不純物濃度の数倍〜
数100倍程度であり、I2Lの形状、希望する特性等
によつて、最適値が決定される。以上説明したようにこ
の発明は、I2L(7)NPnTr部のベース領域内に
不純物濃度の高いp+形領域を形成することによつて、
実効的ベース抵抗および再結合電流を減少させ、マルチ
・コレクタ構造のコレクタ領域相互間の特性差を少なく
すると共にコレクタ数を増加させることも可能になる。
In the case of this embodiment, a method such as ion implantation of p-type impurities using high acceleration energy may be used to form the buried type region 6. If there is some difficulty in increasing the concentration of the Ge-type region 6, a buried p+-type region 6 may be provided to surround the entire periphery of the collector regions 31, 32, and 33, thereby increasing the effective base resistance and re-concentration. The coupling current may also be reduced. I2L (7) found in these examples
The impurity concentration of the p+ type region 6 provided in the base region 2 of the NPnTr section is several times the impurity concentration of the base region 2.
It is approximately several hundred times larger, and the optimum value is determined depending on the shape of I2L, desired characteristics, etc. As explained above, the present invention has the following advantages: By forming a p+ type region with a high impurity concentration in the base region of the I2L(7)NPnTr section,
It is also possible to reduce the effective base resistance and recombination current, reduce the difference in characteristics between the collector regions of the multi-collector structure, and increase the number of collectors.

かようにこの発明によれば、バイポーラ型電流注入ロジ
ツクの特性の向上と出力数の増加が可能となり、バイポ
ーラ型電流注入ロジツクの特徴である高密度化、低電力
化に対してさらに大幅な発展が期待されるものである。
Thus, according to this invention, it is possible to improve the characteristics of bipolar current injection logic and increase the number of outputs, resulting in further significant progress in achieving high density and low power consumption, which are the characteristics of bipolar current injection logic. is expected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のI2Lにおけるマルチ・コレクタ構造の
断面図、第2図は第]図に示したI2LのNpnTr部
のエミツタ接地電流増幅率と、コレクタ電流との関係を
示す図、第3図はこの発明の一実施例を示す断面図、第
4図はこの発明の他の実施例を示す断面図である。 図中、1はn+基板、2はベース領域、31,32,3
3はコレクタ領域、4はp形領域、5,6はp+形領域
である。
Figure 1 is a cross-sectional view of a multi-collector structure in a conventional I2L, Figure 2 is a diagram showing the relationship between the common emitter current amplification factor and collector current of the NpnTr section of the I2L shown in Figure 3, and Figure 3. 4 is a sectional view showing one embodiment of the invention, and FIG. 4 is a sectional view showing another embodiment of the invention. In the figure, 1 is an n+ substrate, 2 is a base region, 31, 32, 3
3 is a collector region, 4 is a p-type region, and 5 and 6 are p+-type regions.

Claims (1)

【特許請求の範囲】[Claims] 1 pnpトランジスタとnpnトランジスタの複合構
造から成り、前記pnpトランジスタのベース領域及び
コレクタ領域をそれぞれ前記npnトランジスタのエミ
ッタ領域及びベース領域と共有したバイポーラ型電流注
入ロジックの半導体装置において、前記npnトランジ
スタのベース領域の不純物濃度よりも高い領域を前記n
pnトランジスタのベース領域の内側に設けたことを特
徴とする半導体装置。
1. In a bipolar current injection logic semiconductor device comprising a composite structure of a pnp transistor and an npn transistor, in which a base region and a collector region of the pnp transistor are shared with an emitter region and a base region of the npn transistor, respectively, the base of the npn transistor is The region where the impurity concentration is higher than that of the region n
A semiconductor device characterized in that it is provided inside a base region of a pn transistor.
JP51133484A 1976-11-06 1976-11-06 semiconductor equipment Expired JPS5952546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51133484A JPS5952546B2 (en) 1976-11-06 1976-11-06 semiconductor equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51133484A JPS5952546B2 (en) 1976-11-06 1976-11-06 semiconductor equipment

Publications (2)

Publication Number Publication Date
JPS5357980A JPS5357980A (en) 1978-05-25
JPS5952546B2 true JPS5952546B2 (en) 1984-12-20

Family

ID=15105840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51133484A Expired JPS5952546B2 (en) 1976-11-06 1976-11-06 semiconductor equipment

Country Status (1)

Country Link
JP (1) JPS5952546B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163913A (en) * 1979-06-08 1980-12-20 Sony Corp Flip-flop circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5160177A (en) * 1974-09-03 1976-05-25 Western Electric Co Handotaisochi oyobi sonoseizohoho
JPS5173886A (en) * 1974-12-23 1976-06-26 Tokyo Shibaura Electric Co Handotaisochitosono seizohoho

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5160177A (en) * 1974-09-03 1976-05-25 Western Electric Co Handotaisochi oyobi sonoseizohoho
JPS5173886A (en) * 1974-12-23 1976-06-26 Tokyo Shibaura Electric Co Handotaisochitosono seizohoho

Also Published As

Publication number Publication date
JPS5357980A (en) 1978-05-25

Similar Documents

Publication Publication Date Title
US4117507A (en) Diode formed in integrated-circuit structure
JPH07297373A (en) Integrated driver circuit device for inductive load element
US4390890A (en) Saturation-limited bipolar transistor device
US4482911A (en) Monolithic integrated circuit equivalent to a transistor associated with three antisaturation diodes
JPS5952546B2 (en) semiconductor equipment
US3500141A (en) Transistor structure
US4599635A (en) Semiconductor integrated circuit device and method of producing same
US4894622A (en) Integrated current-mirror arrangement comprising vertical transistors
US4348600A (en) Controlled current source for I2 L to analog interfaces
US3725754A (en) Transistor circuit of compound connection
US5155572A (en) Vertical isolated-collector PNP transistor structure
JPH0222405B2 (en)
JPS587066B2 (en) semiconductor equipment
JPS6232626B2 (en)
JPS6352805B2 (en)
US8319315B2 (en) Bipolar junction transistor devices
JPS6022504B2 (en) Manufacturing method of semiconductor device
KR100188106B1 (en) Integrated injection logic
JPH01305564A (en) Semiconductor integrated circuit
JPS6262059B2 (en)
JPS586168A (en) Semiconductor integrated circuit
JPH0618210B2 (en) Heterojunction bipolar transistor
JPS6216026B2 (en)
JPS58222567A (en) Semiconductor device
JPS59181058A (en) Semiconductor device