JPS5952492B2 - Method for manufacturing a cable core consisting of a plurality of unit cores having an intermetallic compound-based superconducting coating - Google Patents

Method for manufacturing a cable core consisting of a plurality of unit cores having an intermetallic compound-based superconducting coating

Info

Publication number
JPS5952492B2
JPS5952492B2 JP53000102A JP10278A JPS5952492B2 JP S5952492 B2 JPS5952492 B2 JP S5952492B2 JP 53000102 A JP53000102 A JP 53000102A JP 10278 A JP10278 A JP 10278A JP S5952492 B2 JPS5952492 B2 JP S5952492B2
Authority
JP
Japan
Prior art keywords
intermetallic compound
unit
core
layer
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53000102A
Other languages
Japanese (ja)
Other versions
JPS53104877A (en
Inventor
ウラデイミル・ミハイロヴイチ・パン
ヴイタリ−・ポリソヴイチ・スフシン
ヴイクトル・セメノヴイチ・フリス
パヴエル・ポリソヴイチ・シエンデロヴイチ
イゴ−ル・ワシリエヴイチ・リビン
ヴアレリ−・アレクサンドロヴイチ・ゲラシモフ
ゲンナデイ・アレクセエヴイチ・クリメンコ
ユ−リ・イワノヴイチ・ベレツキイ
エヴゲニイ・ミハイロヴイチ・サヴイツキイ
ヴエロニカ・ウラデイミロヴナ・バロン
マルガリタ・イワノヴナ・ビチコワ
イゴ−ル・ミハイロヴイチ・アブエフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GNI ENERGETICHESKY INST
Original Assignee
GNI ENERGETICHESKY INST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SU772436394A external-priority patent/SU714512A1/en
Priority claimed from SU772491719A external-priority patent/SU714513A1/en
Application filed by GNI ENERGETICHESKY INST filed Critical GNI ENERGETICHESKY INST
Publication of JPS53104877A publication Critical patent/JPS53104877A/en
Publication of JPS5952492B2 publication Critical patent/JPS5952492B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details

Description

【発明の詳細な説明】 本発明は超導電ケーブルの製造方法、さらに特定すれば
金属間化合物基の超導電被覆を有する複数の単位コーア
からなるケーブルコーアの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a superconducting cable, and more particularly to a method for manufacturing a cable core comprising a plurality of unit cores having an intermetallic compound-based superconducting coating.

超導電被覆を有するケーブルコーアを有する電気装置の
信頼性は、個々の単位コーアを相互に接合する領域の超
導電被覆の性質によつて決定される。
The reliability of an electrical device having a cable core with a superconducting coating is determined by the properties of the superconducting coating in the areas that join the individual unit cores to each other.

単位コーア間の接合部は超導電性でなければ、ケーブル
コーアの全周囲にそつて超導電体の電流容量が確保され
ねばならない。しかも接合部の強度はコーアの強度と同
等でなければならないo 単位コーアの超導電被覆は、組成が金属間化合物である
ので、この接合が特に困難である。
Unless the joint between unit cores is superconducting, the current carrying capacity of the superconductor must be ensured along the entire circumference of the cable core. Moreover, the strength of the joint must be equal to the strength of the core. Since the superconducting coating of the unit core is composed of an intermetallic compound, this joining is particularly difficult.

この接合は溶接または拡散によつて行なうが、どちらの
場合も接合部の超導電性が適当ではない。金属間化合物
基の超導電被覆を有する複数の単位コーアからなるケー
ブルコーアの公知の製造方法(米国特許3523361
号、Cl29−599、1970参照)においては、超
導電ケーブルの2つの単位コーアの端を、機械的に粉砕
された金属間化合物の成分の混合物中におき、接合部を
加圧熱処理する。この接合部は強度が十分でないので、
剛性の超導電ケーブルは電流負荷コーアにかかる熱負荷
に耐えることができない。
This joining is done by welding or by diffusion, but in both cases the superconductivity of the joint is inadequate. A known method for manufacturing a cable core consisting of a plurality of unit cores having an intermetallic compound-based superconducting coating (U.S. Pat. No. 3,523,361)
No. Cl 29-599, 1970), the ends of two unit cores of a superconducting cable are placed in a mixture of mechanically ground intermetallic components and the joints are heat treated under pressure. This joint is not strong enough, so
Rigid superconducting cables cannot withstand the thermal loads placed on the current load core.

この製造方法によるケーブルコーアは特殊な熱補償手段
を必要とする。このためケーブルコーアの設計が非常に
複雑とならざるを得ない。さらに接合部の超導電性は、
酸化”物膜の破壊と拡散処理とによつて形成される過度
領域要素と超導電体の端との間の界面接合によつて決定
される。この接合において酸化物膜の破壊がランダム過
程であることに留意すべきである。さらに金属間化合物
基の超導電被覆を有する複阿数の単位コーアからなるケ
ーブルコーアの他の公知の製造方法(フランス特許第2
192744号、ClsHCl6/11/00、197
4)においては、金属間化合物の高融点成分からなる層
を有するコーア素材に超導電層を拡散によつて形成し、
次に個々゛の単位コーアを溶接して複数の単位コーアか
らなるケーブルコーアを製造する。このフランス特許の
方法は、スポツト溶接によるので、ケーブルコーアの電
流容量が劣化する。
Cable cores made with this manufacturing method require special thermal compensation means. Therefore, the design of the cable core has to be extremely complicated. Furthermore, the superconductivity of the junction is
It is determined by the interfacial bond between the edge of the superconductor and the transient region element formed by the oxide film breakdown and the diffusion process. In this junction, the oxide film breakdown is a random process. Furthermore, it should be noted that other known methods for producing cable cores consisting of multi-unit cores with intermetallic-based superconducting coatings (French Patent No. 2)
No. 192744, ClsHCl6/11/00, 197
In 4), a superconducting layer is formed by diffusion on a core material having a layer made of a high melting point component of an intermetallic compound,
Next, the individual unit cores are welded to produce a cable core consisting of a plurality of unit cores. Since the method of this French patent uses spot welding, the current carrying capacity of the cable core is degraded.

従つてこの方法は、共軸導体を有する剛性ケーブルの単
位コーアの結合に応用することは困難である。これは共
軸間隙において超導電層が相互に向かい合つて配置され
ているためである。さらにこの方法は、接合部において
強度と超導電性とを単位コーアにおけると同程度にする
には、接合部においてケーブル直径を相当大きくしなけ
ればならない。本発明の目的は、金属間化合物基の超導
電被覆を有する複数の単位コーアからなる、電流容量の
大きいケーブルコーアの製造方法を提供することである
Therefore, this method is difficult to apply to the connection of unit cores of rigid cables having coaxial conductors. This is because the superconducting layers are placed opposite each other in the coaxial gap. Additionally, this method requires a considerably larger cable diameter at the joint to achieve the same strength and superconductivity at the joint as in a unit core. An object of the present invention is to provide a method for manufacturing a cable core having a large current capacity and consisting of a plurality of unit cores having an intermetallic compound-based superconducting coating.

本発明の他の目的は、単位コーア相互間の接合部の信頼
性を改良することである。
Another object of the invention is to improve the reliability of the joints between unit cores.

本発明の本質的な目的は、金属間化合物基の超導電被覆
を有する複数の単位コーアからなり、単位コーア相互間
の接合部が溶接点において超導電性を損なうことのない
ケーブルコーアの製造方法を提供することである。
An essential object of the present invention is a method for manufacturing a cable core that is composed of a plurality of unit cores having an intermetallic compound-based superconducting coating, and in which the joints between the unit cores do not impair superconductivity at the welding point. The goal is to provide the following.

本発明の上記目的は、超導電層を形成すべき金属間化合
物の高融点成分からなる層を有するコーア素材に超導電
層1を拡散によつて形成することによつて単位コーアと
し、次にこの単位コーアを溶接して複数の単位コーアか
らなる超導電ケーブルコーアを製造する方法であつて、
超導電層を形成する前に、各コーア素材の端に障壁層を
設け、超導電層を形成することによつて単位コーアとし
、次にこの障壁層を除いた後に、個々の単位コーアをそ
の周囲にそつて相互に溶接し、かつ溶接された接合部と
障壁層を除いた単位コーアの接合端部とに、金属間化合
物の低融点成分を存在させて熱処理することによつて、
超導電層を形成する金属間化合物基の超導電被覆を有す
る複数の単位コーアからなるケーブルコーアの製造方法
を提供することによつて達成される。
The above object of the present invention is to form a unit core by forming a superconducting layer 1 by diffusion on a core material having a layer made of a high melting point component of an intermetallic compound to form a superconducting layer, and then A method for manufacturing a superconducting cable core consisting of a plurality of unit cores by welding the unit cores, the method comprising:
Before forming the superconducting layer, a barrier layer is provided at the end of each core material to form a unit core by forming the superconducting layer, and then after removing this barrier layer, the individual unit cores are By welding each other along the periphery and heat treating the welded joint and the joint end of the unit core excluding the barrier layer in the presence of a low melting point component of the intermetallic compound,
This is accomplished by providing a method for manufacturing a cable core consisting of a plurality of unit cores having an intermetallic compound-based superconducting coating forming a superconducting layer.

単位コーアをその周囲にそつて相互に溶接する前の段階
において、単位コーアの内面に超導電層を形成するとき
に金属間化合物の高融点成分からなるシース内に金属間
化合物の成分からなる粉末混合物を充填してなる挿入体
を2つの単位コーアの端面の間に挿入することが適当で
ある。
Before the unit cores are welded to each other along their periphery, a powder made of an intermetallic compound component is placed inside a sheath made of a high melting point component of an intermetallic compound when forming a superconducting layer on the inner surface of the unit core. It is suitable to insert the insert filled with the mixture between the end faces of the two unit cores.

超導電層を形成するには、金属間化合物の低融点成分を
含む合金の溶融体を存在させて熱処理することが好まし
い。
In order to form a superconducting layer, it is preferable to perform heat treatment in the presence of a melt of an alloy containing a low melting point component of an intermetallic compound.

本発明の金属間化合物基の超導電被覆を有する複数の単
位コーアからなるケーブルコーアの製造方法は、個々の
単位コーアを相互に溶接した場所における強度と超導電
性とを改良し、さらに異なる型の単位コーアを相互に溶
接し組み立てたケーブルの信頼性を改良する方法であつ
て、何処ででも適用することができる。
The method of manufacturing a cable core consisting of a plurality of unit cores having an intermetallic compound-based superconducting coating of the present invention improves the strength and superconductivity at the locations where the individual unit cores are welded together, and further improves the A method for improving the reliability of assembled cables by welding unit cores together, and can be applied anywhere.

本発明の他の目的および利点は、添付図面を参照しなが
ら次の好ましい実施態様の詳細な説明を読めばさらに明
らかになるで゛あろう。
Other objects and advantages of the invention will become more apparent from the following detailed description of the preferred embodiments, taken in conjunction with the accompanying drawings.

本発明の方法によつて、内部および外面の超導電層1(
第1図)を形成するには、コーア素材2,3が安定化銅
層4と、金属間化合物の高融点成分からなる層5とを有
し、このコーア素材に液体拡散させる。
By the method of the invention, the inner and outer superconducting layer 1 (
1), the core material 2, 3 has a stabilized copper layer 4 and a layer 5 of a high melting point component of an intermetallic compound, and a liquid is diffused into this core material.

この実施態様によれば、拡散室6内でコーア素材2,3
に超導電層1を形成する。
According to this embodiment, the core materials 2 and 3 are
A superconducting layer 1 is formed thereon.

コーア素材2,3の安定化銅層4には、予じめ隔膜7,
8を設けて金属間化合物の低融点成分を含む溶融金属合
金9が安定化銅層4に影響を与えないようにする。超導
電層1を形成する前に、コーア素材2,3の端に障壁層
10を設けることは気密のスパツタ室内で行なう。
The stabilizing copper layer 4 of the core materials 2 and 3 has a diaphragm 7,
8 is provided to prevent the molten metal alloy 9 containing the low melting point component of the intermetallic compound from affecting the stabilized copper layer 4 . Before forming the superconducting layer 1, a barrier layer 10 is provided at the ends of the core materials 2, 3 in an airtight sputtering chamber.

障壁層10は、超導電層が形成されるときに金属間化合
物の高融点成分からなる層5に拡散することを防ぐ。拡
散室6から単位コーアを取り出した後に、障壁層10を
除く。単位コーアをその周囲にそつて相互に接合するに
は電子ビーム溶接で行なう。
The barrier layer 10 prevents diffusion into the layer 5 of the high melting point component of the intermetallic compound when the superconducting layer is formed. After taking out the unit core from the diffusion chamber 6, the barrier layer 10 is removed. Electron beam welding is used to join the unit cores together along their periphery.

この接合には、金属間化合物の高融点成分からなる層5
に銅層4を溶接する。障壁層を除いた単位コーアの接合
すべき部分と溶接された接合部とに超導電層を形成する
には、金属間化合物の低融点成分を含む溶融金属合金9
を使用する。超導電層1(第2図)を形成するとき、単
位コーアの端面11の間で単位コーアをその周囲にそつ
て溶接する前に、単位コーアに環状溝12を設け、これ
に金属間化合物の成分混合物からなる挿入体13を挿入
する。
This bonding requires a layer 5 made of a high melting point component of an intermetallic compound.
Copper layer 4 is welded to. In order to form a superconducting layer between the part of the unit core to be joined excluding the barrier layer and the welded joint, a molten metal alloy 9 containing a low melting point component of an intermetallic compound is used.
use. When forming the superconducting layer 1 (FIG. 2), before welding the unit core along its periphery between the end faces 11 of the unit core, an annular groove 12 is provided in the unit core, and an annular groove 12 is formed in the unit core, and an annular groove 12 is formed in the unit core. Insert the insert 13 consisting of the component mixture.

この挿入体13は予じめ金属間化合物の高融点成分から
なるシース14によつて封じておき、これによつて予じ
め真空にすることなく、単位コーアを相互に接合して、
単位コーアおよび接合部においてともに均一な組織の超
導電層を形成することができる。この実施態様によれば
、まず冷間溶接によつて単位コーアをその周面にそつて
接合して、融着領域15(第3図)を形成し、ここでは
単位コーアの金属間化合物の高融点成分と挿入体13と
が相互に融着する。
This insert 13 is sealed in advance with a sheath 14 made of a high melting point component of an intermetallic compound, and the unit cores are thereby joined to each other without creating a vacuum in advance.
A superconducting layer with a uniform structure can be formed in both the unit core and the junction. According to this embodiment, the unit cores are first joined along their circumferential surfaces by cold welding to form the fused region 15 (FIG. 3), where the unit cores have a high intermetallic compound content. The melting point component and the insert 13 are fused together.

接合部の補強は単位コーアの周囲の全縁16にわたつて
電子ビーム溶接することによつて行なう。
The joint is reinforced by electron beam welding over the entire peripheral edge 16 of the unit core.

誘導コイル17を溶接すべき領域に設けて加熱し、挿入
体13を組織を超導電体の組織に変態させる。超導電層
1を内部に配置した単位コーア間で溶接された接合部の
超導電性を適当にするために、挿入体13の金属間化合
物の低融点成分の量は挿入体13の超導電体の化学量論
的組成に必要な量より多くする。
An induction coil 17 is placed in the area to be welded and heated to transform the tissue of the insert 13 into that of a superconductor. In order to make the superconductivity of the welded joint between the unit cores in which the superconducting layer 1 is arranged appropriate, the amount of the low melting point component of the intermetallic compound of the insert 13 is adjusted to the level of the superconductor of the insert 13. the amount required for the stoichiometric composition.

これは、低融点成分の一部が融着領域15に拡散して、
挿入体13の超導電体を超導電層1に融着させるためで
ある。本発明の金属間化合物基の超導電被覆を有する複
数の単位コーアからなるケーブルコーアの製造方法によ
つて、真空中で行なうことなしに単位コーアを相互に溶
接して組み立てることができ、さらに溶接された接合部
における強度と超導電性とを単位コーアにおけると同様
にすることができ、最後に異なる型の単位ケーブルコー
アを相互に溶接して組み立てることをどこでも行なうこ
とができ、かつケーブルの動作信頼性を改良することが
できる。
This is because a part of the low melting point component diffuses into the fused region 15,
This is to fuse the superconductor of the insert 13 to the superconductor layer 1. By the method of manufacturing a cable core consisting of a plurality of unit cores having an intermetallic compound-based superconducting coating of the present invention, the unit cores can be assembled by welding each other without performing the welding in a vacuum. The strength and superconductivity at the bonded joint can be similar to that in the unit core, and finally unit cable cores of different types can be welded together and assembled anywhere, and the operation of the cable can be Reliability can be improved.

本発明をさらに詳細に説明するために、金属間化合物の
成分を特定し、かつ製造条件を特定して、本発明の方法
を実施した実施例を次に記載する。
In order to explain the present invention in more detail, examples will be described below in which the method of the present invention was carried out by specifying the components of the intermetallic compound and specifying the manufacturing conditions.

実施例 1 ケーブルコーア素材2,3(第1図)は、金属間化合物
(Nb3Sn)の高融点成分であるニオブ(Nb)から
なる層5および銅(Cu)からなる安定化層4を有した
Example 1 Cable core materials 2 and 3 (Fig. 1) had a layer 5 made of niobium (Nb), which is a high melting point component of an intermetallic compound (Nb3Sn), and a stabilizing layer 4 made of copper (Cu). .

このコーア素材に、タンタル(Ta)からなる障壁層1
0を設け、次に拡散室6内ですず青銅からなる溶融合属
合金を存在させて熱処理してNb3Snからなる超導電
層1を形成した。熱処理は真空度10−4〜10−5T
0rr、温度650〜800℃で20〜50時間行なつ
た。内部超導電層1を有する2つの単位コーア間の溶接
すべき接合部に、溶接領域と挿入体13とを温度650
〜800℃で15〜50時間誘電加熱して超導電層を形
成した。
A barrier layer 1 made of tantalum (Ta) is added to this core material.
0 was provided, and then heat treatment was performed in the presence of a molten metal alloy made of tin bronze in the diffusion chamber 6 to form a superconducting layer 1 made of Nb3Sn. Heat treatment at vacuum level 10-4 to 10-5T
The reaction was carried out at a temperature of 650 to 800° C. for 20 to 50 hours. At the joint to be welded between two unit cores with an inner superconducting layer 1, the welding area and the insert 13 are heated to a temperature of 650°C.
A superconducting layer was formed by dielectric heating at ~800°C for 15-50 hours.

粉末混合物の金属間化合物成分はニオブ(Nb)とすず
(Sn)とであつた。超導電層を形成するときの上記温
度範囲は、溶融金属合金中に銅(Cu)が存在し、かつ
挿入体13を形成する。成分混合物に銅を粉末状で加え
ることによつて決定された。挿入体13の封入シース1
4はニオブ(Nb)であつた。実施例 2 銅(Cu)からなる安定化層4および金属間化合物V3
Gaの高融点成分であるバナジウム(V)からなる層5
を有するコーア素材2,3(第1図)に、タンタル(T
a)からなる障壁層を設け、次に拡散室6内でガリウム
(Ga)を含む溶融金属合金9を存在させて熱処理して
V3Gaからなる超導電層1を形成した。
The intermetallic components of the powder mixture were niobium (Nb) and tin (Sn). The above temperature range when forming the superconducting layer is such that copper (Cu) is present in the molten metal alloy and the insert 13 is formed. Determined by adding copper in powder form to the component mixture. Encapsulating sheath 1 of insert 13
4 was niobium (Nb). Example 2 Stabilizing layer 4 made of copper (Cu) and intermetallic compound V3
Layer 5 made of vanadium (V), which is a high melting point component of Ga
Tantalum (T
A barrier layer made of a) was provided, and then heat treatment was performed in a diffusion chamber 6 in the presence of a molten metal alloy 9 containing gallium (Ga) to form a superconducting layer 1 made of V3Ga.

熱処理は不活性媒体中で、温度600〜900℃で5〜
200時間行なつた。内部超導電層1を有する2つの単
位コーアは、その溶接領域と挿入体13とを、温度60
0〜900℃で5〜200時間誘導加熱して、単位コー
ア間の接合部に超導電層を形成させた。このとき、挿入
体にはバナジウム(V)とガリウム(Ga)との粉末混
合物を入れ、挿入体13のシース14はバナジウム(V
)であつた。
Heat treatment is carried out in an inert medium at a temperature of 600 to 900 °C for 5 to
I did it for 200 hours. The two unit cores with the inner superconducting layer 1 have their welded area and insert 13 heated to a temperature of 60°C.
Induction heating was performed at 0 to 900° C. for 5 to 200 hours to form a superconducting layer at the joint between the unit cores. At this time, the insert body is filled with a powder mixture of vanadium (V) and gallium (Ga), and the sheath 14 of the insert body 13 is filled with vanadium (V).
).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施において、拡散室内におかれた、
超導電被覆を有する共軸単位コーアの断面図であり、第
2図は、本発明の実施において、単位コーアを相互に溶
接する前の段階の、内部超導電被覆を有する接合部の説
明図であり、第3図は、本発明の実施において、単位コ
ーアを相互に溶接した後の段階の、内部超導電被覆を有
する接合部の説明図である。 1・・・超導電層、2,3・・・コーア素材、4・・・
安定化銅層、5・・・高融点成分層、6・・・拡散室、
7,8・・・隔膜、9・・・溶融金属合金、10・・・
障壁層、11・・・単位コーアの端面、12・・・環状
溝、13・・・挿入体、14・・・シース、15・・・
融着領域、16・・・周囲の縁、17・・・誘導コイル
FIG. 1 shows a device placed in a diffusion chamber in the practice of the present invention.
FIG. 2 is a cross-sectional view of a coaxial unit core having a superconducting coating, and FIG. FIG. 3 is an explanatory diagram of a joint having an internal superconducting coating at a stage after unit cores are welded together in the practice of the present invention. 1... Superconducting layer, 2, 3... Core material, 4...
Stabilized copper layer, 5... High melting point component layer, 6... Diffusion chamber,
7, 8... Diaphragm, 9... Molten metal alloy, 10...
Barrier layer, 11... End face of unit core, 12... Annular groove, 13... Insert, 14... Sheath, 15...
Fusion region, 16... Surrounding edge, 17... Induction coil.

Claims (1)

【特許請求の範囲】 1 超導電層を形成すべき金属間化合物の高融点成分か
らなる層5を有する各コーア素材2、3の端に障壁層1
0を設け、このコーア素材2、3に超導電層1を拡散に
よつて形成することによつて単位コーアとし、次にこの
単位コーアから障壁層10を除いた後に、個々の単位コ
ーアをその周囲にそつて相互に溶接し、かつ溶接された
接合部と障壁層10を除いた単位コーアの接合端部とに
金属間化合物の低融点成分を存在させて熱処理すること
によつて超導電層1を形成する、金属間化合物基の超導
電被覆を有する複数の単位コーアからなるケーブルコー
アの製造方法。 2 単位コーアをその周囲にそつて相互に溶接する前の
段階において、単位コーアの内面に超導電層1を形成す
るときに、金属間化合物の高融点成分からなるシース1
4内に金属間化合物の成分からなる粉末混合物を充填し
てなる挿入体13を2つの単位コーアの端面11の間に
挿入する、特許請求の範囲第1項記載の金属間化合物基
の超導電被覆を有する複数の単位コーアからなるケーブ
ルコーアの製造方法。 3 金属間化合物の低融点成分を含む合金の溶融体を存
在させて熱処理することによつて超導電層1を形成する
、特許請求の範囲第1項記載の金属間化合物基の超導電
被覆を有する複数の単位コーアからなるケーブルコーア
の製造方法。
[Claims] 1. A barrier layer 1 at the end of each core material 2, 3 having a layer 5 made of a high melting point component of an intermetallic compound to form a superconducting layer.
0 is provided, and a superconducting layer 1 is formed on the core materials 2 and 3 by diffusion to form a unit core. Next, after removing the barrier layer 10 from this unit core, each unit core is A superconducting layer is formed by welding each other along the periphery and heat-treating the welded joint and the joint end of the unit core excluding the barrier layer 10 in the presence of a low melting point component of an intermetallic compound. 1. A method for manufacturing a cable core comprising a plurality of unit cores having an intermetallic compound-based superconducting coating. 2. When forming the superconducting layer 1 on the inner surface of the unit core at a stage before welding the unit cores together along the periphery thereof, the sheath 1 made of a high melting point component of an intermetallic compound is
The intermetallic compound-based superconductor according to claim 1, wherein an insert 13 made of a powder mixture filled with an intermetallic compound component is inserted between the end surfaces 11 of two unit cores. A method for manufacturing a cable core consisting of a plurality of unit cores each having a coating. 3. A superconducting coating based on an intermetallic compound according to claim 1, wherein the superconducting layer 1 is formed by heat treatment in the presence of a melt of an alloy containing a low melting point component of an intermetallic compound. A method for manufacturing a cable core comprising a plurality of unit cores.
JP53000102A 1977-01-03 1978-01-04 Method for manufacturing a cable core consisting of a plurality of unit cores having an intermetallic compound-based superconducting coating Expired JPS5952492B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
SU000002436394 1977-01-03
SU772436394A SU714512A1 (en) 1977-01-03 1977-01-03 Method of manufacturing multi-section superconducting core
SU772491719A SU714513A1 (en) 1977-06-02 1977-06-02 Method of manufacturing multi-section superconducting core
SU000002491719 1977-06-02

Publications (2)

Publication Number Publication Date
JPS53104877A JPS53104877A (en) 1978-09-12
JPS5952492B2 true JPS5952492B2 (en) 1984-12-20

Family

ID=26665607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53000102A Expired JPS5952492B2 (en) 1977-01-03 1978-01-04 Method for manufacturing a cable core consisting of a plurality of unit cores having an intermetallic compound-based superconducting coating

Country Status (6)

Country Link
JP (1) JPS5952492B2 (en)
CA (1) CA1089203A (en)
DD (1) DD134580A1 (en)
DE (1) DE2800196C3 (en)
FR (1) FR2376522A1 (en)
GB (1) GB1574671A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU883981A1 (en) * 1978-12-04 1981-11-23 Государственный Научно-Исследовательский Энергетический Институт Им. Г.М.Кржижановского Method of manufacturing multisection superconducting core on the base of intermetallic compound with internal arrangement of superconducting layer
DE3121213C2 (en) * 1981-05-27 1983-06-01 Gosudarstvennyj naučno-issledovatel'skij energetičeskij institut imeni G.M. Kržižanovskogo, Moskva Process for the production of cores composed of individual lengths with a superconducting layer
FR2507375A1 (en) * 1981-06-04 1982-12-10 G Energet In Stabilised superconductive tube for waveguide - has perforated zone at end covered with conductive layer by selective coating and etching
CN113005406B (en) * 2021-02-23 2023-02-24 中国科学院近代物理研究所 Preparation method of niobium-tin film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3523361A (en) * 1968-06-04 1970-08-11 Varian Associates Method of splicing superconductive wires
US3848075A (en) * 1971-12-27 1974-11-12 Varian Associates Method for splicing compound superconductors
FR2192744A5 (en) * 1972-07-13 1974-02-08 Thomson Brandt
US3895432A (en) * 1973-07-04 1975-07-22 Siemens Ag Method of electrically joining together two bimetal tubular superconductors

Also Published As

Publication number Publication date
CA1089203A (en) 1980-11-11
FR2376522A1 (en) 1978-07-28
GB1574671A (en) 1980-09-10
JPS53104877A (en) 1978-09-12
DE2800196A1 (en) 1978-07-13
DE2800196C3 (en) 1981-09-24
DE2800196B2 (en) 1980-11-13
FR2376522B1 (en) 1981-01-23
DD134580A1 (en) 1979-03-07

Similar Documents

Publication Publication Date Title
US5134040A (en) Melt formed superconducting joint between superconducting tapes
US3523361A (en) Method of splicing superconductive wires
US5321003A (en) Connection between high temperature superconductors and superconductor precursors
CN105390830A (en) Method and structure for realizing superconducting connection between rare-earth-barium-copper-oxygen high-temperature superconducting wires
JP2003086265A (en) Connection part of superconducting line and its connecting method
US5109593A (en) Method of melt forming a superconducting joint between superconducting tapes
JPS5952492B2 (en) Method for manufacturing a cable core consisting of a plurality of unit cores having an intermetallic compound-based superconducting coating
WO2008093354A1 (en) A process for joining oxide superconducting tubes with a superconducting joint
JPH01134881A (en) Jointig method for superconducting conductor
JP2870967B2 (en) Heating device used for joining superconducting wires
JP2998398B2 (en) Superconducting wire joining method
JPH01302676A (en) Method for connection of oxide type superconductive conductor
JPH042669A (en) Joining method of superconducting film and repairing method thereof
JPS6035796B2 (en) How to connect superconducting wires
SU714513A1 (en) Method of manufacturing multi-section superconducting core
JPH04269471A (en) Joint part of superconducting wire
JPH0450719B2 (en)
Meshchanov et al. The manufacture of corrugated copper tubes with a Nb 3 Sn layer
JPH06243745A (en) Manufacture of high temperature superconducting wire material and high temperature superconducting coil
JP3021634B2 (en) Bonding method of high temperature superconducting film molded body
SU714512A1 (en) Method of manufacturing multi-section superconducting core
JPS60127613A (en) Method of producing superconductive cable
JPH0574508A (en) Superconductive wire connecting method
DE3008471A1 (en) Multi-sectioned superconducting wire - has superconducting layer formed in junction between sections to improve quality
JP5934352B2 (en) (BI, PB) -2223 oxide high temperature superconductor tube joining method using improved superconducting paste