JPS5952399B2 - bimetal - Google Patents

bimetal

Info

Publication number
JPS5952399B2
JPS5952399B2 JP2149677A JP2149677A JPS5952399B2 JP S5952399 B2 JPS5952399 B2 JP S5952399B2 JP 2149677 A JP2149677 A JP 2149677A JP 2149677 A JP2149677 A JP 2149677A JP S5952399 B2 JPS5952399 B2 JP S5952399B2
Authority
JP
Japan
Prior art keywords
alloy
bimetal
coefficient
thermal expansion
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2149677A
Other languages
Japanese (ja)
Other versions
JPS53107377A (en
Inventor
普三 菅井
二美男 盛
達吉 逢坂
光雄 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP2149677A priority Critical patent/JPS5952399B2/en
Priority to US05/880,301 priority patent/US4207381A/en
Priority to DE2807854A priority patent/DE2807854C3/en
Publication of JPS53107377A publication Critical patent/JPS53107377A/en
Priority to US06/056,689 priority patent/US4290828A/en
Publication of JPS5952399B2 publication Critical patent/JPS5952399B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Thermally Actuated Switches (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Details Of Measuring And Other Instruments (AREA)

Description

【発明の詳細な説明】 本発明は設定温度で急激な変位を示すバイメタルに関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a bimetal that exhibits rapid displacement at a set temperature.

従来多く用いられているバイメタルは、温度変化に対し
てほぼ一定の割合で比例するわん曲変位を示すものであ
った。
Bimetals, which have been widely used in the past, exhibit curvature displacement that is proportional to temperature changes at an approximately constant rate.

そのため、設定温度で急激な変位を必要とする用途、例
えばバイメタルを直接に接点駆動機構に使用する場合等
には、いわゆる速動機構が必要であった。
Therefore, in applications that require rapid displacement at a set temperature, for example, when bimetal is used directly in a contact drive mechanism, a so-called quick-acting mechanism is required.

例えば、反発板を使用したり、ばねと組合せたりあるい
は磁石を利用するなどして、バイメタル自体の緩慢なわ
ん曲変位を急激な変位にすることが実施されている。
For example, the slow curved displacement of the bimetal itself is made into a rapid displacement by using a repulsion plate, in combination with a spring, or by using a magnet.

この連動式バイメタル機構は、広く利用されているが、
連動機構を付与するため装置の大型化や設計の複雑化を
余儀なくされ好ましくなかった。
This interlocking bimetal mechanism is widely used, but
Providing an interlocking mechanism necessitates an increase in the size of the device and a complicated design, which is undesirable.

このような観点から近時、ある一定温度で急激な変位を
示すバイメタルが開発されている。
From this point of view, bimetals that exhibit rapid displacement at a certain temperature have recently been developed.

このバイメタルは、高膨張側に形状記憶効果を有する合
金を用いたもので、この代表的な合金としてはTi (
チタン)−ニッケル(Ni)合金があり、他にもAu
(金)−Cd(カドミウム)合金、Cu(銅)−Al(
アルミニウム)合金、Cu−Al−Ni合金、Cu−A
l−Mn(マンガン)合金%’Cu−Al−Pd (パ
ラテ゛イウム)合金、Cu−Zn(亜鉛)合金、Cu−
Zn−Au合金などが挙げられている。
This bimetal uses an alloy that has a shape memory effect on the high expansion side, and a typical alloy is Ti (
titanium)-nickel (Ni) alloy, and Au
(gold)-Cd (cadmium) alloy, Cu (copper)-Al(
aluminum) alloy, Cu-Al-Ni alloy, Cu-A
l-Mn (manganese) alloy%'Cu-Al-Pd (paratium) alloy, Cu-Zn (zinc) alloy, Cu-
Examples include Zn-Au alloy.

このような合金で高膨張側を構成したバイメタルは連動
機構を用いることなく所定の温度で形状記憶効果による
急激な変位を得ることができる。
A bimetal whose high expansion side is made of such an alloy can obtain rapid displacement due to the shape memory effect at a predetermined temperature without using an interlocking mechanism.

しかしながら前記した形状記憶効果を有する合金は、T
i−Ni合金を除いていずれも加工性、特に冷間加工が
極めて困難であり、所望の形状のバイメタルを得ること
が難かしい。
However, the alloy with the shape memory effect described above is T
Except for the i-Ni alloy, all of them have extremely difficult workability, especially cold working, and it is difficult to obtain a bimetal with a desired shape.

また’l’1−Ni合余は、冷間加工は比較的容易であ
るが、急)敷な変位を示す温度域がせいぜい60〜70
℃程度であり、より高い温度域で急激な変位を得ること
はできないという難点があった。
In addition, 'l' 1-Ni alloys are relatively easy to cold work, but the temperature range in which sudden and severe displacement occurs is at most 60~70°C.
The problem was that it was not possible to obtain rapid displacement in a higher temperature range.

更に前記した形状記憶効果を有する合金を用いたバイメ
タルは繰返し動作を行なうための可逆性も充分でなかっ
た。
Furthermore, the bimetal using the alloy having the shape memory effect described above did not have sufficient reversibility for repeated operations.

本発明は、所望の温度域で急激な変位を示し、かつ加工
性に優れ、充分な別道性を有するバイメタルを提供する
ことを目的とする。
An object of the present invention is to provide a bimetal that exhibits rapid displacement in a desired temperature range, has excellent workability, and has sufficient removability.

すなわち本発明バイメタルは、高膨張側は、重量%でマ
ンガン15〜30%、残部が実質的に鉄でなる合金で構
成し、低膨張側は前記合金の熱膨張係数が急激に増大す
る温度付近で実質的に一定であ・る熱膨張係数を有し、
かつこの熱膨張係数は前記合金の増大後の熱膨張係数よ
り小である合金で構成したことを特徴とする。
That is, the bimetal of the present invention is composed of an alloy consisting of 15 to 30% manganese by weight and the remainder substantially iron on the high expansion side, and a temperature near the temperature at which the coefficient of thermal expansion of the alloy rapidly increases on the low expansion side. has a coefficient of thermal expansion that is substantially constant at
In addition, it is characterized in that it is made of an alloy whose thermal expansion coefficient is smaller than the increased thermal expansion coefficient of the alloy.

本発明バイメタルの高膨張側を構成する合金においてマ
ンガンは熱膨張を大きくするために必要でその量が15
%未満ではその効果が十分でなく30%を越えると急激
な熱膨張を示さなくなるのでこの範囲内とした。
In the alloy constituting the high expansion side of the bimetal of the present invention, manganese is necessary to increase thermal expansion, and the amount is 15
If it is less than 30%, the effect will not be sufficient, and if it exceeds 30%, it will not exhibit rapid thermal expansion, so it was set within this range.

この合金は加工性は良好でかつ比較的高い温度域で急激
な熱膨張係数の増大を示す。
This alloy has good workability and exhibits a rapid increase in thermal expansion coefficient in a relatively high temperature range.

本発明バイメタルの低膨張側を構成する合金は、高膨張
側を構成する合金の熱膨張係数が急激に増大する温度付
近で実質的に一定である熱膨張係数を有し、かつこの熱
膨張係数は高膨張側を構成する合金の増大後の熱膨張係
数より小であるものであれば、所定の温度で急激な変位
を示すバイメタルとなり得る。
The alloy constituting the low expansion side of the bimetal of the present invention has a coefficient of thermal expansion that is substantially constant near the temperature at which the coefficient of thermal expansion of the alloy constituting the high expansion side increases rapidly, and If it is smaller than the increased coefficient of thermal expansion of the alloy constituting the high expansion side, it can be a bimetal that exhibits rapid displacement at a predetermined temperature.

所定の温度で急激な変位を示す本発明バイメタルの特性
を接点駆動機構等に使用して効果的にするためには、高
膨張側を構成する合金が急激に膨張する温度付近までは
、低膨張側を構成する合金の熱膨張係数は高膨張側を構
成する合金とほぼ同様であることがよく、この場合には
例えばJIS (日本工業規格)による5US304.
5US310等のオーステナイト系ステンレス鋼が使用
できる。
In order to effectively use the characteristics of the bimetal of the present invention, which exhibits rapid displacement at a predetermined temperature, in contact drive mechanisms, etc., it is necessary to maintain a low expansion temperature up to the temperature at which the alloy constituting the high expansion side rapidly expands. The coefficient of thermal expansion of the alloy constituting the side is often approximately the same as that of the alloy constituting the high expansion side, and in this case, for example, 5US304.
Austenitic stainless steel such as 5US310 can be used.

なお付髄不純物として各々の合金に混入する炭素(C)
、硫黄(S)、燐(P)等の不純物、および溶解時に脱
酸剤として添加されたアルミニウム(Al)、けい素(
Si)等は、1%以下であることが望ましい。
Carbon (C) is mixed into each alloy as an impurity.
, sulfur (S), phosphorus (P), and other impurities, and aluminum (Al) and silicon (added as deoxidizing agents during melting).
It is desirable that Si) etc. be 1% or less.

以下本発明の実施例を比較例と共に説明する。Examples of the present invention will be described below along with comparative examples.

第1表に示した組成の合金を高周波誘導溶解炉によりそ
れぞれ溶製し、試料を調製した。
Samples were prepared by melting alloys having the compositions shown in Table 1 using a high-frequency induction melting furnace.

次いでこれらのうち試料1〜5の合金について熱膨張が
急変する温度を求め、その結果を第1表に組成比と共に
示す。
Next, the temperature at which the thermal expansion suddenly changes for the alloys of Samples 1 to 5 was determined, and the results are shown in Table 1 together with the composition ratio.

第1表より明らかなように本発明バイメタルの高膨張を
構成する合金である試料2〜4は、熱膨張に急変点が存
在することが判る。
As is clear from Table 1, samples 2 to 4, which are alloys constituting the high expansion bimetal of the present invention, have a sharp turning point in thermal expansion.

次に第2表に示す合金の組合せで、高膨張側合金と低膨
張側合金との板厚が1:1となるように熱間圧延にて接
着し、以後冷間圧延、焼鈍等の慣用手段によってl’m
m厚のバイメタルを得、それぞれ試験片を作成した。
Next, with the combination of alloys shown in Table 2, the high expansion alloy and the low expansion alloy are bonded by hot rolling so that the plate thickness is 1:1, and then conventional processes such as cold rolling and annealing are performed. l'm by means
A bimetal with a thickness of m was obtained, and test pieces were prepared for each.

この場合の本発明バイメタルの加工性は極めて良好であ
った。
In this case, the workability of the bimetal of the present invention was extremely good.

なお第2表中に比較のため汎用されているバイメタル(
JIS−TM−1相当)を合わせて示す。
Table 2 shows the commonly used bimetals (
JIS-TM-1 equivalent) is also shown.

これらの試験片についてわん曲特性を比較するとともに
、縦弾性係数を調べた。
The bending properties of these specimens were compared, and the longitudinal elastic modulus was also investigated.

わん曲特性は、有効長100mm、片持ち型の自由端の
変位を測定し、その結果を図に示す。
Curvature characteristics were measured by measuring the displacement of the free end of a cantilever type with an effective length of 100 mm, and the results are shown in the figure.

図中の矢印は、加熱、冷却に伴なう変位の方向を示すも
のである。
The arrows in the figure indicate the direction of displacement due to heating and cooling.

縦弾性係数は、第2表に合わせて示す。The longitudinal elastic modulus is also shown in Table 2.

図により明らかなように、比較のための試料14の変位
が、温度変化に対してほぼ直線的に増加しているのに対
し、本発明バイメタルは解定温度にて急激に変位が増大
している。
As is clear from the figure, the displacement of sample 14 for comparison increases almost linearly with temperature changes, whereas the displacement of the bimetal of the present invention increases rapidly at the solution temperature. There is.

更に、変位の急激に変化する温度は、マンガンの量を調
整することにより容易に所望の温度に設娘でき、かつそ
の範囲は広範囲である。
Furthermore, the temperature at which the displacement changes rapidly can be easily set to a desired temperature by adjusting the amount of manganese, and the temperature range is wide.

また図より明らかなように本発明バイメタルは、わん曲
特性がヒステリシスを示すために、保護素子とした場合
リセット機構を特に必要としないという好ましい効果を
も有する。
Furthermore, as is clear from the figure, since the bimetal of the present invention exhibits hysteresis in its bending characteristics, it also has the advantageous effect that a reset mechanism is not particularly required when used as a protection element.

更に本発明バイメタルは単位温度当りの変位量が極めて
大きいため高感度を要する機構に用いることができる。
Furthermore, since the bimetal of the present invention has an extremely large amount of displacement per unit temperature, it can be used in mechanisms that require high sensitivity.

加えて第2表によれば、本発明バイメタルは、縦弾性係
数が大きいので作動応力を大きくとることができる。
In addition, according to Table 2, the bimetal of the present invention has a large longitudinal elastic modulus, so it is possible to take a large operating stress.

また本発明バイメタルを繰返して作動させたところ可逆
性は充分満足できるものであった。
Furthermore, when the bimetal of the present invention was operated repeatedly, the reversibility was sufficiently satisfactory.

上記した実施例の本発明バイメタルは、高膨張側を構成
する合金が急激に膨張する温度迄は、はとんど変位のな
いように組合せたものであるが、低膨張側を構成する合
金を選択することにより、高膨張側を構成する合金が急
激に膨張する温度迄は、逆方向にわん曲せしめ前記の温
度付近で反転するようなバイメタルとすることができ、
この場合にも前述した実施例の効果はそのまま適用でき
□る。
The bimetal of the present invention in the above-mentioned embodiments is a combination in which there is almost no displacement up to the temperature at which the alloy constituting the high expansion side rapidly expands, but the alloy constituting the low expansion side is By selection, it is possible to create a bimetal that is bent in the opposite direction up to the temperature at which the alloy constituting the high expansion side rapidly expands, and then reversed around the above temperature.
Even in this case, the effects of the embodiments described above can be applied as they are.

以上述べたように本発明バイメタルは、所定の設定温度
で急激な変位を示すもので、直接に接点駆動機構に用い
ても溶着現象等を起こすことなく好ましい結果を奏する
As described above, the bimetal of the present invention exhibits rapid displacement at a predetermined set temperature, and even when used directly in a contact drive mechanism, it produces favorable results without causing any welding phenomenon.

また本発明バイメタル゛は、加工性が優れているため所
望の形状に容易に加工できる。
Furthermore, the bimetal of the present invention has excellent workability and can be easily processed into a desired shape.

更に本発明バイメタルの急激な変位は高温度域で使用で
きる。
Furthermore, the rapid displacement of the bimetal of the present invention allows it to be used in a high temperature range.

更に本発明バイメタルは、安価な材料で構成されており
、従って家電製品の回路ブレーカや各種工業用機器のサ
ーマルプロテクター等の安全装置用として極めて経済的
に使用で゛きる。
Furthermore, the bimetal of the present invention is made of inexpensive materials, and therefore can be used extremely economically for safety devices such as circuit breakers for home appliances and thermal protectors for various industrial equipment.

なお、例えば電気抵抗低減等の特性改善のために中間層
あるいは表面層としてニッケル、銅等の合金板を合わせ
板として使用することは適宜容易になし得ることで本発
明の範囲に属する。
Note that it is within the scope of the present invention to use an alloy plate of nickel, copper, or the like as an intermediate layer or surface layer as a laminated plate in order to improve characteristics such as reducing electrical resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明に係るバイメタルと比較例のバイメタルのわ
ん曲特性を示す図である。
The figure is a diagram showing the curvature characteristics of a bimetal according to the present invention and a bimetal of a comparative example.

Claims (1)

【特許請求の範囲】 1 高膨張側は、重量%でマンガン15〜30%、残部
が実質的に鉄でなる合金で構成し、低膨張側は前記合金
の熱膨張係数が急激に増大する温度付近で実質的に一定
である熱膨張係数を有し、かつこの熱膨張係数は前記合
金の増大後の熱膨張係数より小である合金で構成したこ
とを特徴とするバイメタル。 2 低膨張側を構成する合金は、高膨張側を構成する合
金の熱膨張係数が急激に増大する温度付近迄は高膨張側
を構成する合金と実質的に同等の熱膨張係数を有する特
許請求の範囲第1項記載のバイメタル。 3 低膨張側を構成する合金は、オーステナイト系ステ
ンレス鋼である特許請求の範囲第1項乃至第2項のいづ
れかに記載のバイメタル。
[Claims] 1. The high expansion side is composed of an alloy consisting of 15 to 30% manganese by weight and the remainder is substantially iron, and the low expansion side is the temperature at which the coefficient of thermal expansion of the alloy rapidly increases. 1. A bimetal comprising an alloy having a coefficient of thermal expansion which is substantially constant in the vicinity, and which coefficient of thermal expansion is smaller than an increased coefficient of thermal expansion of said alloy. 2. A patent claim in which the alloy constituting the low expansion side has a coefficient of thermal expansion substantially equivalent to that of the alloy constituting the high expansion side up to a temperature near which the coefficient of thermal expansion of the alloy constituting the high expansion side increases rapidly. The bimetal described in item 1. 3. The bimetal according to any one of claims 1 to 2, wherein the alloy constituting the low expansion side is austenitic stainless steel.
JP2149677A 1977-02-23 1977-03-02 bimetal Expired JPS5952399B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2149677A JPS5952399B2 (en) 1977-03-02 1977-03-02 bimetal
US05/880,301 US4207381A (en) 1977-02-23 1978-02-22 Bimetal and method for manufacturing the same
DE2807854A DE2807854C3 (en) 1977-02-23 1978-02-23 Bimetal element and process for its manufacture
US06/056,689 US4290828A (en) 1977-02-23 1979-07-11 Method for manufacturing bimetal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2149677A JPS5952399B2 (en) 1977-03-02 1977-03-02 bimetal

Publications (2)

Publication Number Publication Date
JPS53107377A JPS53107377A (en) 1978-09-19
JPS5952399B2 true JPS5952399B2 (en) 1984-12-19

Family

ID=12056567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2149677A Expired JPS5952399B2 (en) 1977-02-23 1977-03-02 bimetal

Country Status (1)

Country Link
JP (1) JPS5952399B2 (en)

Also Published As

Publication number Publication date
JPS53107377A (en) 1978-09-19

Similar Documents

Publication Publication Date Title
CA1176488A (en) Nickel/titanium copper shape memory alloys
RU2201990C2 (en) Alloy iron-cobalt
US4290828A (en) Method for manufacturing bimetal
CA1323511C (en) Iron-based shape-memory alloy excellent in shape-memory property, corrosion resistance and high-temperature oxidation resistance
JP2801222B2 (en) Ferrite-martensitic stainless steel alloy
JP3169978B2 (en) Precipitation hardening high strength non-magnetic stainless steel
JPH0321622B2 (en)
JPH0321623B2 (en)
JP2007211350A (en) Ferromagnetic shape-memory alloy used for magnetic field-sensitive actuator or sensor utilizing magnetism
EP1281784B1 (en) Electric resistance material
JPS626738B2 (en)
CA1041065A (en) Thermometric bimetal of high strength at high temperature
JPS5920440A (en) Shape memory copper alloy
JP2968430B2 (en) High strength low thermal expansion alloy
JPS5952399B2 (en) bimetal
JPS63130738A (en) Free-cutting copper alloy
NO154019B (en) EXPOSURE HARDENABLE COPPER ALLOY.
US4131457A (en) High-strength, high-expansion manganese alloy
JPS6363617B2 (en)
JP3964360B2 (en) Ferromagnetic shape memory alloys for magnetic field responsive actuators or magnetic sensors
JPS63128142A (en) Free-cutting copper alloy
JP2941312B2 (en) High strength low thermal expansion alloy
JP3271329B2 (en) Shape memory alloy
JP2530692B2 (en) Circuit protection element
JPH044391B2 (en)