JPS5951689B2 - Manufacturing method of insulated wire - Google Patents

Manufacturing method of insulated wire

Info

Publication number
JPS5951689B2
JPS5951689B2 JP11081077A JP11081077A JPS5951689B2 JP S5951689 B2 JPS5951689 B2 JP S5951689B2 JP 11081077 A JP11081077 A JP 11081077A JP 11081077 A JP11081077 A JP 11081077A JP S5951689 B2 JPS5951689 B2 JP S5951689B2
Authority
JP
Japan
Prior art keywords
ethylene
insulated wire
manufacturing
present
propylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11081077A
Other languages
Japanese (ja)
Other versions
JPS5443587A (en
Inventor
忠男 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichi Nippon Cables Ltd
Original Assignee
Dainichi Nippon Cables Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichi Nippon Cables Ltd filed Critical Dainichi Nippon Cables Ltd
Priority to JP11081077A priority Critical patent/JPS5951689B2/en
Publication of JPS5443587A publication Critical patent/JPS5443587A/en
Publication of JPS5951689B2 publication Critical patent/JPS5951689B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Description

【発明の詳細な説明】 本発明は機械的特性、電気的特性において、長期にわた
つて極めて秀れた安定性を有する絶縁電線を製造する方
法に関するもので、特に加硫エチレンプロピレン系ゴム
絶縁層上に加硫エチレン−アクリル系エラストマーを施
してなる絶縁電線の製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an insulated wire having extremely excellent long-term stability in terms of mechanical properties and electrical properties, and particularly relates to a method for producing an insulated wire having extremely excellent long-term stability in terms of mechanical properties and electrical properties. The present invention relates to a method of manufacturing an insulated wire having a vulcanized ethylene-acrylic elastomer applied thereon.

近時、配電系統の軽量化、小形化が一層進められている
が、それに伴つで絶縁電線も可及的薄肉絶縁により機械
的、電気的特性の面で長期の安定性を有するものが望ま
れている。
In recent years, power distribution systems have become more lightweight and compact, and along with this, it is desirable for insulated wires to have as thin a wall insulation as possible to ensure long-term stability in terms of mechanical and electrical properties. It is rare.

斯界における上記の要求に応えるために行われた本発明
者らの研。究によれば、エチレンプロピレン系ゴム絶縁
層上に未加硫のエチレン−アクリル系エラストマーを特
定厚さで押出により被覆し、次いで加硫すると予想外に
も極めて長期安定性の秀れた絶縁電線を製造うるとの新
知見を得た。本発明は上述の新知見に基づいて完成され
た絶縁電線の製造方法を提供するもので、導体上に被覆
された加硫又は未加硫のエチレンプロピレン系ゴム絶縁
層上に未加硫のエチレン−アクリル系エラストマーを0
.3〜0.7mmの厚さで押出被覆し、次いで加硫する
ことを特徴とするものである。
Research conducted by the present inventors in order to meet the above-mentioned demands in this field. According to research, when an unvulcanized ethylene-acrylic elastomer is coated on an ethylene-propylene rubber insulation layer by extrusion to a specific thickness and then vulcanized, an insulated wire with unexpectedly excellent long-term stability can be produced. We obtained new knowledge that it can be manufactured. The present invention provides a completed method for manufacturing an insulated wire based on the above-mentioned new findings, and includes a method for manufacturing an insulated wire, in which unvulcanized ethylene -0 acrylic elastomer
.. It is characterized by extrusion coating to a thickness of 3 to 0.7 mm and then vulcanization.

本発明の上記目的を達成させるためには、エチレンプロ
ピレン系ゴム絶縁層を下層とし、かつエチレン−アクリ
ル系エラストマーの被覆層を上層とする特定のゴム種か
らなる絶縁被覆層の組合せ、並びに上記上層の被覆層は
押出加工によりJ0.3〜0.7mmの特定の厚さで被
覆することが特に肝要であつて、本発明者らが行つた広
範囲の研究による限り、上記の諸条件を満足する場合の
みはじめて後述する極めて顕著な長期安定性を有する絶
縁電線が、しかも薄肉絶縁のものが製造できる。本発明
において下層の絶縁材として用いるエチレンプロピレン
系絶縁ゴムとしてはエチレン・プロピレン・ジエン三元
共重合体(EPDM)やエチレン・プロピレン共重合体
(EPM)が用いられ、上層の被覆材として用いるエチ
レン−アクリル系エラストマーとしては、エチレン−メ
チルアクリレートおよびカルボキシル基含有第3モノマ
ーからなる3元共重合体が用いられる。上記上層の被覆
層は厚さ0.3mmより薄く施されると、得られる絶縁
電線のの機械的特性の面で性能が低下することになり、
他方厚さ0.7mmより厚く被覆されると機械的及び電
気的特性の両面で性能が顕著に乏しくなる。
In order to achieve the above object of the present invention, a combination of insulating coating layers made of a specific rubber type, including an ethylene propylene rubber insulating layer as a lower layer and an ethylene-acrylic elastomer coating layer as an upper layer, and the above-mentioned upper layer It is particularly important that the coating layer is coated with a specific thickness of J0.3 to 0.7 mm by extrusion processing, and as far as the extensive research conducted by the present inventors is concerned, the above conditions are satisfied. Only in this case can an insulated wire with very remarkable long-term stability, which will be described later, be produced with thin insulation. In the present invention, ethylene-propylene-diene terpolymer (EPDM) and ethylene-propylene copolymer (EPM) are used as the ethylene-propylene-based insulating rubber used as the lower layer insulation material, and ethylene propylene-based insulation rubber used as the upper layer coating material. - As the acrylic elastomer, a terpolymer consisting of ethylene-methyl acrylate and a carboxyl group-containing third monomer is used. If the upper coating layer is applied thinner than 0.3 mm, the mechanical properties of the resulting insulated wire will deteriorate.
On the other hand, if the coating is thicker than 0.7 mm, the performance will be significantly poorer in terms of both mechanical and electrical properties.

しかして、上記上層の被覆層の厚さは0.3mm〜0.
7mmであり、好ましくは0.3mm〜0.5mmであ
る。本発明においては下層のエチレン・プロピレン系ゴ
ム絶縁層は予め加硫してあつてもよく、また未加硫状態
のま・その上に上層被覆材料のエチレン−アクリル系エ
ラストマーを押出被覆し、あるいは下層絶縁材と上層被
覆材とを同時に押出被覆し、上下両層を同時に加硫して
もよい。
Therefore, the thickness of the upper coating layer is 0.3 mm to 0.3 mm.
7 mm, preferably 0.3 mm to 0.5 mm. In the present invention, the lower ethylene/propylene rubber insulating layer may be vulcanized in advance, or the ethylene/acrylic elastomer of the upper layer coating material may be extrusion coated on it while it is in an unvulcanized state, or The lower insulating material and the upper covering material may be extrusion coated at the same time, and both the upper and lower layers may be vulcanized at the same time.

下層のエチレン・プロピレン系ゴム絶縁層の好ましい厚
さは1.0用型〜6.0用型で、殊に1.0用型〜4.
0用型にすると機械特性の面からより一層秀れた性能の
ものが得られる。本発明においては、上記各上下層の絶
縁被覆材料には充填フイラ一、カーボンブラツタ、老化
防止材等を適宜配合してもよい。
The preferred thickness of the lower ethylene/propylene rubber insulating layer is 1.0 to 6.0, particularly 1.0 to 4.0.
If it is made into a zero-use type, even better performance can be obtained in terms of mechanical properties. In the present invention, fillers, carbon bracing, anti-aging materials, etc. may be appropriately added to the insulation coating materials of the upper and lower layers.

ここで、本発明による絶縁電線の製造方法の一例を説明
する。
Here, an example of a method for manufacturing an insulated wire according to the present invention will be explained.

即ち、導体断面積14mitの導体上にエチレンプロピ
レン絶縁体を厚さ3mmで押出被覆し、更にエチレンー
アタリル系エラストマー(デユポン社製VAMAC・・
・・・・100、滑剤・・・・・・3部、老化防止剤・
・・・・・2部、メチレンジアミン・・・・・・1.2
5部、ジフエニルグアニジン・・・・・・2部、タルク
・・・・・・100部、力ーボンブラツク・・・・・・
5部、可塑剤・・・・・・10部)を厚さ0.5mmで
押出被覆する。
That is, a conductor with a conductor cross-sectional area of 14 mit was coated with an ethylene propylene insulator to a thickness of 3 mm by extrusion, and an ethylene-aryl elastomer (VAMAC manufactured by Dupont...
...100, lubricant ...3 parts, anti-aging agent.
...2 parts, methylene diamine ...1.2
5 parts, diphenylguanidine...2 parts, talc...100 parts, power bomb black...
5 parts, plasticizer...10 parts) to a thickness of 0.5 mm.

次いで温度200℃で蒸気加硫を施して加硫して第1図
に拡大図示するごとき絶縁電線を得た。図におおて1は
導体、2はエチレンプロピレンゴム絶縁層、3はエチレ
ン−アクリル系エラストマー被覆層をそれぞれ示す。次
に本発明により得られる絶縁電線と従来のこの種絶縁電
線との性能比較を以下の実験例1により説明する。実験
例 1. 実験試料として加硫エチレン・プロピレンゴム絶縁電線
ケーブル(試料−1)、加硫エチレン・プロピレンゴム
絶縁エピクロロヒドリンゴム被覆ケーブル(試料−2)
、加硫エチレン・プロピレン絶縁エチレン−アクリレー
ト系エラストマー被覆ケーブル(試料−3)、を製造(
上記ケーブルは全て導体断面積14mit、600V用
で、上層の被覆層の厚さは0.5mmである。
Next, steam vulcanization was performed at a temperature of 200° C. to obtain an insulated wire as shown in an enlarged view in FIG. In the figure, 1 is a conductor, 2 is an ethylene propylene rubber insulating layer, and 3 is an ethylene-acrylic elastomer coating layer. Next, a performance comparison between the insulated wire obtained by the present invention and a conventional insulated wire of this type will be explained using Experimental Example 1 below. Experimental example 1. Experimental samples include vulcanized ethylene/propylene rubber insulated wire cable (sample-1) and vulcanized ethylene/propylene rubber insulated epichlorohydrin rubber coated cable (sample-2)
, manufactured vulcanized ethylene/propylene insulated ethylene/acrylate elastomer coated cable (Sample-3) (
All of the above cables have a conductor cross-sectional area of 14 mit, are for 600 V, and have an upper coating layer thickness of 0.5 mm.

)した。上記の試料について下記条件で性能試験をおこ
なつたところ、その結果は第1表に示すとおりであつた
。上記第1表において引張強さは160℃のギヤー式老
化試験機内に両端をアラルダイトで封じた電線試料を吊
し、第1表記載の時間加熱したのち取出して電線試料の
絶縁被覆層よりゴム試験片を作成し、JISC3OO4
l9頁により引張試験した。
)did. A performance test was conducted on the above sample under the following conditions, and the results were as shown in Table 1. In Table 1 above, the tensile strength is determined by suspending a wire sample with both ends sealed with araldite in a gear type aging tester at 160°C, heating it for the time listed in Table 1, taking it out, and testing the rubber from the insulation coating layer of the wire sample. Create a piece and JISC3OO4
A tensile test was carried out according to page 19.

また交流破壊電圧は75cm長の電線をU字形に曲げ、
ギヤ式老化試験機内において第1表記載の時間、160
℃で加熱したのち取出した試料を5kg/10秒のステ
ツプアツププ法で交流60C/Sの破壊電圧を測定した
。上記第1表に示すとおり、本発明により得られる絶縁
電線は従来の絶縁電線と較べて秀れた長期間の電気的、
機械的安定性を呈する。
In addition, the AC breakdown voltage is determined by bending a 75cm long wire into a U shape.
The time listed in Table 1 in the gear type aging tester, 160
After heating at .degree. C., the sample was taken out and its breakdown voltage at 60 C/S AC was measured using the step-up method at 5 kg/10 seconds. As shown in Table 1 above, the insulated wire obtained by the present invention has excellent long-term electrical performance and
Exhibits mechanical stability.

実験例 2. 実験試料として加硫エチレン・プロピレンゴム絶縁エビ
タロロヒドリンゴム被覆電線(試料一3:導体断面積2
2m71、600V用で、エピタロロヒドリンゴム被覆
厚さ0.5mm)と、加硫エチレン・プロピレン絶縁エ
チレン−アクリル系エラストマー被覆電線(試料−6:
導体断面積22md、600V用でエチレン−アクリル
系エラストマー被覆層の厚さ0.5mm)を製造し、こ
れらの試料について次のような環境下で3ケ月間使用し
た。
Experimental example 2. As an experimental sample, a vulcanized ethylene/propylene rubber insulated Evitalolohydrin rubber coated electric wire (Sample 1 3: Conductor cross-sectional area 2
2m71, for 600V, epitalohydrin rubber coating thickness 0.5mm) and vulcanized ethylene/propylene insulated ethylene-acrylic elastomer coated electric wire (Sample-6:
Conductor cross-sectional area: 22 md, 600 V, ethylene-acrylic elastomer coating layer thickness: 0.5 mm) were manufactured, and these samples were used for 3 months under the following environment.

すなわちケーブルは周囲雰囲気温度140℃〜150℃
で高温度下、しかも時々油の飛散を受け、かつ絶えず屈
曲・振動・摩擦を受ける。かかる苛酷な条件で使用され
た劣化程度を判定すると第2表のとおりであつた。上記
実験により明らかなとおり、本発明により,得られる絶
縁電線は従来のこの種電線に較べて機械的・電気的・化
学的に劣化が極めて少ないことが判る。
In other words, the cable has an ambient temperature of 140°C to 150°C.
It is exposed to high temperatures, is occasionally splashed with oil, and is constantly subjected to bending, vibration, and friction. Table 2 shows the degree of deterioration when used under such severe conditions. As is clear from the above experiments, the insulated wire obtained according to the present invention shows extremely less deterioration mechanically, electrically, and chemically than conventional wires of this type.

本発明は上述したとおりの絶縁電線の製造方法であり、
簡単に電気的・機械的・化学的に長期間2安定した絶縁
電線を提供することができる。
The present invention is a method for manufacturing an insulated wire as described above,
It is possible to easily provide an insulated wire that is electrically, mechanically, and chemically stable for a long period of time.

また、本発明により得られる絶縁電線は熱に対して劣化
することがなく、例えば電気炉周辺等で100℃〜16
0℃の高温雰囲気で長時間配設することが可能である。
更に油に浸漬しても絶縁電層が膨潤せず、機械的・電気
的機能が低下することもない。また上層の被覆層として
難燃材料を使用することによつて電線自体の難燃化を図
ることができる。
In addition, the insulated wire obtained by the present invention does not deteriorate due to heat, for example when heated at temperatures of 100°C to 16°C near an electric furnace.
It is possible to install the device in a high temperature atmosphere of 0°C for a long time.
Furthermore, even when immersed in oil, the insulating layer does not swell, and its mechanical and electrical functions do not deteriorate. Further, by using a flame retardant material as the upper coating layer, the electric wire itself can be made flame retardant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明により得られる絶縁電線の一例を示す横
断面図である。 図において1は導体、2はエチレンプロピレンゴム絶縁
層、3はエチレン−アクリル系エラストマー被覆層であ
る。
FIG. 1 is a cross-sectional view showing an example of an insulated wire obtained by the present invention. In the figure, 1 is a conductor, 2 is an ethylene propylene rubber insulating layer, and 3 is an ethylene-acrylic elastomer coating layer.

Claims (1)

【特許請求の範囲】[Claims] 導体上に被覆された加硫又は未加硫のエチレン・プロピ
レン系ゴム絶縁層上に未加硫のエチレン−アクリル系エ
ラストマーを0.3〜0.7mmの厚さで押出被覆し、
次いで加硫することを特徴とする絶縁電線の製造方法。
Extrusion coating an unvulcanized ethylene-acrylic elastomer to a thickness of 0.3 to 0.7 mm on the vulcanized or unvulcanized ethylene-propylene rubber insulating layer coated on the conductor,
A method for manufacturing an insulated wire, which comprises then vulcanizing.
JP11081077A 1977-09-13 1977-09-13 Manufacturing method of insulated wire Expired JPS5951689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11081077A JPS5951689B2 (en) 1977-09-13 1977-09-13 Manufacturing method of insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11081077A JPS5951689B2 (en) 1977-09-13 1977-09-13 Manufacturing method of insulated wire

Publications (2)

Publication Number Publication Date
JPS5443587A JPS5443587A (en) 1979-04-06
JPS5951689B2 true JPS5951689B2 (en) 1984-12-15

Family

ID=14545224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11081077A Expired JPS5951689B2 (en) 1977-09-13 1977-09-13 Manufacturing method of insulated wire

Country Status (1)

Country Link
JP (1) JPS5951689B2 (en)

Also Published As

Publication number Publication date
JPS5443587A (en) 1979-04-06

Similar Documents

Publication Publication Date Title
US3269862A (en) Crosslinked polyvinylidene fluoride over a crosslinked polyolefin
US3259684A (en) Shielded resin insulated electric cable
US10680420B2 (en) Joint for electric cables with thermoplastic insulation and method for manufacturing the same
KR100470588B1 (en) Cold Shrinkable Protection Element for Cable Joint
US3792192A (en) Electrical cable
JPS5986110A (en) Crosslinked polyethylene insulated cable
EP0088450B1 (en) Insulating joint for rubber or plastic insulated power cable
US3646248A (en) Electric cable
JP6060281B2 (en) Method in the manufacture of an insulated high voltage DC termination or joint
GB2050041A (en) Fire resistant cable
JPS5951689B2 (en) Manufacturing method of insulated wire
US4319073A (en) Push-on end termination for shielded power cable conductors of sector-shaped conductor cross section
JP3029203B2 (en) Connections and ends of cross-linked polyethylene power cables
JPH103823A (en) Direct current power cable insulated by cross-linked polyethylene
JPH0243048Y2 (en)
JP2005223966A (en) Rubber molding part and insulated wire
JPH03843Y2 (en)
Lewis Heat Resistance Characteristics of Primary Wire Insulations
JPH0625482A (en) Semiconductor resin composition and power cable produced using the same
JPH0425642B2 (en)
JPS6271115A (en) Manufacturing crosslinked polyolefin-insulated power cable
Dima et al. Effect of thermal overload on the voltage breakdown strength of service-aged URD cables
JPS63274007A (en) Polyolefin cable
JPH08289453A (en) Rubber mold stress cone
JPS6356650B2 (en)