JPS5951584A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS5951584A
JPS5951584A JP16180982A JP16180982A JPS5951584A JP S5951584 A JPS5951584 A JP S5951584A JP 16180982 A JP16180982 A JP 16180982A JP 16180982 A JP16180982 A JP 16180982A JP S5951584 A JPS5951584 A JP S5951584A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
semiconductor layer
type
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16180982A
Other languages
Japanese (ja)
Inventor
Masamichi Sakamoto
坂本 政道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP16180982A priority Critical patent/JPS5951584A/en
Publication of JPS5951584A publication Critical patent/JPS5951584A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To take a stable oscillation attitude in cooperation with a gain waveguide mechanism by stripe structure by forming substantially fixed refractive index difference regarding the lateral direction. CONSTITUTION:The epitaxial growth of first-fifth semiconductor layers 11-15 can be formed by continuous work through a vapor growth method by a thermal decomposition method using substances, such as trimethyl aluminum, trimethyl potassium and arsine as reaction gases or a liquid growth method or other growth methods-that is, by once epitaxial growth treatment. Consequently, the fourth semiconductor layer 14 is constituted. The forbidden band width of Ga1-yAlyAs is selected so that it is made larger than that of the active layer 12 in the manner not to absorb beams generated from the active layer 12 in the value of (y) of Ga1-yAlyAs, which is the quantity of Al.

Description

【発明の詳細な説明】 産業−ヒの利用う)野 本発明は半導体レーデ−に係わる。[Detailed description of the invention] Industry - Utilization of The present invention relates to semiconductor radar.

背景技術とその問題点 半導体レーザーにおいて、′Rボなll’l、密度の光
信号をiiIる連続光1辰をおこなわせるために、各種
ストライブ構造を採っC動作電流を集中さ一已、活性層
における実質的発振領域の幅を狭めるようにしたものが
ある。ごのストライブ構造のものとし“C1例えは、電
極接触部をストライブ状となす、いわゆる電極ストライ
ブ形を始めとして1.プレナース1−ライブ形、プロl
ン照射によるストライブ形などが挙げられるが、ごれり
は、横ノJ向の広がりを中に電流の流れる領域を制限し
ζ狭めるに過きないt)の(ある。ずなわら、この横方
向に関し−Cは、注入キャリアに上ゲ(生じる誘導放出
利得によ−1゜Cのめ発振姿態が決まるものであ−、′
乙横方向に関し−ζキャリアと光の閉し込めを行っζい
るものではない。
BACKGROUND TECHNOLOGY AND PROBLEMS In semiconductor lasers, various stripe structures are used to concentrate the C operating current in order to generate a continuous beam of light with high density optical signals. There are some devices in which the width of the effective oscillation region in the active layer is narrowed. Examples of "C1" include the so-called electrode stripe type in which the electrode contact part is striped, 1. Pre-nurse 1-live type, and Prol.
For example, the stripe type caused by irradiation with irradiation can be mentioned. In the lateral direction, the oscillation state is determined by -1°C due to the stimulated emission gain generated by the injected carriers.
Regarding the transverse direction, the carrier and the light are not confined.

これに対し“ζ、横方向に作りつりの屈折率の差を形成
する半導体層を選択的に設りて/+ji il1層にお
ける発光領域を画定するようにした牢’、jpI体し・
−サーが、特開昭55−408790号公(・トにおい
て提1バされた。この半導体レーザーは、第1図に′ボ
ー4ように、例えはN型のlnP基扱(1)上にN型の
TnPの第1のクランF’ r@+21がエピタキシャ
ル成長され、続いてこれの十にI n G a A s
 Pの活性層がエピタキシャル成長され、史に結い”で
これの」二にP型のInPの第2のクラット層(4)が
エピタキシャル成長され、更にこれの上にI n G 
a A s Pの高屈折率層(5)がエピタキシャル成
長される。これらM(1)〜(5)は連続した1回のエ
ピタキシャル成長処理で行われるが、次に、ごごで−は
エピタキシャル成長をやめ′ζ、禁止帯幅が小さく高屈
折率の層(5)の表面に選択的に例えば5i02より成
るマスク層が形成され、これをエツチングマクスとして
高屈折率層(5)が所要の幅Wをもっ゛ζエツチング除
去される。その後上述のSio2マスクを除去し、史に
、この高屈折率層(5)が除去された部分を埋込み且つ
高屈折率層(5)を埋没させるように、クラッド層(4
)に連なり同様のクラッド1Mを構成するl〕型のIn
Pの層(6)と、更にこれの上にオーミック接触用の■
)型のInGa八sPへI膏(7)が順次成長される第
21l−II 1=:lのコービタキシャル成長処理が
行われる。オーミック接触用の層(7)と草根(1)に
は夫々電極(8)及び(9)がオーミックに被着される
On the other hand, "ζ" is a cell in which a semiconductor layer is selectively provided to form a difference in refractive index in the lateral direction to define a light emitting region in the layer.
-Ser was proposed in Japanese Patent Application Laid-Open No. 55-408790 (1987).This semiconductor laser is based on the N-type lnP base treatment (1), as shown in Fig. 1. A first clan of N-type TnP F' r@+21 is epitaxially grown, followed by ten of this I n Ga A s
An active layer of P is epitaxially grown, and then a second crat layer (4) of P-type InP is epitaxially grown, and on top of this a second crat layer (4) of P-type InP is grown epitaxially.
A high refractive index layer (5) of aAsP is grown epitaxially. These M(1) to (5) are performed in one continuous epitaxial growth process, but next, the epitaxial growth is stopped and the layer (5) with a small forbidden band width and high refractive index is formed. A mask layer made of, for example, 5i02 is selectively formed on the surface, and using this as an etching mask, the high refractive index layer (5) is removed by etching to a required width W. After that, the above-mentioned Sio2 mask is removed, and the cladding layer (4
) and forming a similar cladding 1M.
A layer of P (6), and on top of this a layer of ■ for ohmic contact.
A 21st l-II 1=:l corbitaxial growth process is performed in which the I layer (7) is sequentially grown on the )-type InGa 8sP. Electrodes (8) and (9) are ohmically applied to the ohmic contact layer (7) and the roots (1), respectively.

このような構成による半導体レーデ−は、クラッド層内
に埋設されたd]1屈折率層によっ′で電流狭窄が行わ
れると共に、活性IPf t31で発生した光をここで
吸収させることで、実効的に屈折率差を作り屈JJi率
差による導波機構の機能をイトlしめるようにし゛(横
力向の発振姿態を安定に制御するものである。
In a semiconductor radar with such a configuration, the current confinement is performed at ' by the d]1 refractive index layer buried in the cladding layer, and the light generated in the active IPf t31 is absorbed here, so that the effective This is to create a refractive index difference in order to improve the function of the waveguide mechanism based on the refractive JJi index difference (this is to stably control the oscillation mode in the transverse force direction).

とごろか、このような構成による半導体レーザーは、ク
ラッド層内に高屈折率1mが埋設された構成を採るので
、・贋体を一連のエピタキシャル成長処理によって製造
することができず、−上述したように、2回のj−ビタ
キシャル成長処理に分割する必要が生じ、その製造作業
は繁雑となる。更に、第1回のエピタキシャル成長処理
と第2回のエピタキシ、トル成長処理との間の取1&い
におい゛C,÷1シ導体層表面が酸化されたりIfi染
されたりする危険が大きく、特性劣化や、不良品の発生
イシを101める。
However, since a semiconductor laser with such a configuration has a high refractive index layer of 1 m embedded in the cladding layer, it is impossible to manufacture a fake by a series of epitaxial growth processes, and as mentioned above, In addition, it becomes necessary to divide the process into two J-bitaxial growth processes, making the manufacturing process complicated. Furthermore, there is a great risk that the surface of the conductor layer will be oxidized or stained with Ifi due to the difference between the first epitaxial growth treatment and the second epitaxial growth treatment and the second epitaxial growth treatment. The occurrence of defective products is 101 times more likely.

発明のし」的 本発明は、上述したよ・うに、いわば刊j4←〃波機横
と、屈IJi率差)〃波機(hとを具備し、桶方向の発
lhe姿態の安定な制御をはかるよ−)にした構成を採
り、しかも全体を1回の連続エピタキシャル成長処理番
、二よって製造ごきるようにし、叙上の諸欠点を回避し
た半導体レーザーを(に供するものである。
As described above, the present invention is equipped with a wave machine (h), so to speak, and stable control of the attitude of the wave in the direction of the bucket. The purpose of the present invention is to provide a semiconductor laser which avoids the above-mentioned drawbacks by employing a structure in which the semiconductor laser is manufactured using a single continuous epitaxial growth process.

発明の概要 本発明は、順次に隣接する第1の」−j1¥体層と、第
2の半導体層と、第3の半導体層と、第4の半導体IP
iとを有し、第3の半導体層と同導電型の第1の部分と
、これとは逆導電型の第2の部分とが少なくとも第4の
半導体層に設(〕られ、第2の部分と9f〜2の半導体
層との距離は第2の半導体層から発1辰される光が第2
部分に達する程度とされ、第2の半導体層の禁1ト帯幅
は第1及び第3の半導体層のそれより小で、第1の部分
の禁止帯幅は第2(7);l’導体層のそれより人で、
第2の部分の!4.1t:’!ti11’it1は第2
の214導体層のそれと同じ、又は小にする。
SUMMARY OF THE INVENTION The present invention provides a first semiconductor layer, a second semiconductor layer, a third semiconductor layer, and a fourth semiconductor IP layer that are sequentially adjacent to each other.
i, a first portion of the same conductivity type as the third semiconductor layer, and a second portion of the opposite conductivity type are provided in at least the fourth semiconductor layer; The distance between the part and the semiconductor layer 9f~2 is such that the light emitted from the second semiconductor layer is
The forbidden band width of the second semiconductor layer is smaller than that of the first and third semiconductor layers, and the forbidden band width of the first part is 2(7);l'. It is more human than that of the conductor layer,
The second part! 4.1t:'! ti11'it1 is the second
The same or smaller than that of 214 conductor layers.

実施例 本発明は、例えば第2図にネオように、第1の導電型の
基体0]1)、例えば、l)型の(: a A s基(
lvを設し〕、これの十にこれと同導電型のハノフブ層
兼第1の半導体層、例えはP型のGa、4八I□A s
 Ifi (11)をエピタキシャル成14させ、史に
これの十にこれと同/#電型、或いは異る導電型の/L
+、性)−1となる第2の半導体層、例えば■)型のG
a1−xA IX八へ IM (12)をエピタキシャ
ル成緻させ、ごれ0)J−に第2の導電型の第2のクラ
ン1層となる第3の半導体層、例えばN型のGa、−2
^12八s 層(13)を:Lビタキシャル成長さ・已
、更にこれの上にこれと同m電型のコントし1−ル層と
しての第4の半導体層、例えばN型のG a 1−y^
1yAs1間(14)をエピタキシャル成長さ・已、史
にこれθ月−にごれと同導電型を自し、電極をオーミッ
クに被着させるに供する第5の半導体層、例えはN型の
面濃度のGaAs層(15)を二しビタキシャル成長さ
せる。ごれり第1へ・第5の半導体層(11)〜(15
)のエビクキシ、トル成隨は、例えはトリメチルアルミ
ニウム、1−リメチルガリウム、アルシンを反応カスと
するにハ分子’+’4法による気相成長法、或いは消和
成長法、そのほかの成長法にJる連続作業によっ”ζ、
ずなわIう1回のエピタキシャル成長処理によっ゛C形
成し得る。
Embodiments The present invention can be applied to a substrate of the first conductivity type 0]1), for example, a l) type (: a A s group () as shown in FIG.
lv], and on top of this, a Hanofub layer and first semiconductor layer of the same conductivity type, for example, P-type Ga, 48 I□A s.
Ifi (11) was epitaxially grown 14, and in history, ten cases of /L of the same /# conductivity type or a different conductivity type were formed.
+, gender) -1 second semiconductor layer, for example ■) type G
a1-xA to IX8 IM (12) is epitaxially deposited, and a third semiconductor layer, for example, N-type Ga, -2, is formed on J- to become the second clan 1 layer of the second conductivity type.
^128S layer (13): L bitaxially grown, and further on top of this, a fourth semiconductor layer as a control layer of the same m type, e.g., N type Ga1. -y^
1yAs1 (14) was epitaxially grown, and the fifth semiconductor layer, for example N-type surface concentration, had the same conductivity type as the θ-contamination and was used for ohmic deposition of the electrode. A second GaAs layer (15) is grown bitaxially. To the first and fifth semiconductor layers (11) to (15)
) can be grown using the vapor phase growth method using trimethylaluminum, 1-limethylgallium, or arsine as the reaction residue, or the slaked growth method, or other growth methods. Through continuous work,
ZnI can be formed by one more epitaxial growth process.

、二ごに、第4の半導体+fi(14)を構成するGa
1−、yへ1.八Sのyの(直、すなわち八Iの量は、
活噌Q、IN(I2)から光41−する光を吸収するこ
とがないように、その禁1ト帯幅が活性層(12)のそ
れより大となるように選ばれる。
, secondly, Ga constituting the fourth semiconductor + fi (14)
1-, 1 to y. The amount of y of 8S (direct, that is, the amount of 8I is
The forbidden band width of the active layer (12) is selected to be larger than that of the active layer (12) so as not to absorb light emitted from the active layer (12).

そして、特に本発明においては、第5の半導体層(15
)上から、第1導電型、例えばP型の不純物のZnを拡
+1&法、イオン注入法等によって選択的に導入して第
2図におい゛ζζ紙色直交する方向に延びるストライプ
状部分を、第2導電型の第1の部分(16)として残し
ζそのFiq側にこの第2導電型を打ち消し、第1導電
型を里する第2の部分(+7)を形成する。この第2の
部分(17)の深さIf、第2図に実#*ご示すように
、第4の岸導体層(14)の第3の半導体層(13)と
の界fh1近傍の深さとするごとI)できるし、第2図
中破線al 、或いは+2でボ゛→ように、第4の半導
1木層(14)中、或いは第3の半導体層(13)に至
る深さとするごとがCきるが、?イ)2のs′1yt−
(本(餌、1〕71′ね!’i l+’i t!l I
n(12)に至ることがなく、この第2の部分(17)
と第2の半導体層(12)との距舖は、この化活性[4
(12)から発振する光が領域(16)に達゛3−る深
さ例えばこれの波長程度の距離とする。
In particular, in the present invention, the fifth semiconductor layer (15
) From above, Zn as an impurity of the first conductivity type, for example, P type, is selectively introduced by the expansion method, ion implantation method, etc. to form a striped portion extending in a direction perpendicular to the color of the paper in FIG. The second conductivity type is left as the first part (16) of the second conductivity type, and the second conductivity type is canceled on the Fiq side of the second conductivity type, thereby forming a second part (+7) that eliminates the first conductivity type. The depth If of this second portion (17) is the depth near the boundary fh1 between the fourth shore conductor layer (14) and the third semiconductor layer (13), as shown in Fig. 2. As shown by the broken line al in FIG. Everything I do is C-cut, but? b) 2's'1yt-
(Book (bait, 1) 71'!'i l+'i t!l I
This second part (17) without reaching n(12)
and the second semiconductor layer (12) or this activation activity [4
The depth at which the light oscillated from (12) reaches region (16) is, for example, a distance approximately equal to the wavelength of this region.

また、ご乙に前述したように、第2の半導体層(12)
の禁止帯’l’!dは、第1及び第30゛1屯導体層(
11)及び(]+3のそれ、Lり小さいff、1.を成
を有し、これら第1及びf:(S 3の半メ〃体j督(
11)及び(13)と第2の半導体層(12) とによ
って−・テし71・か合を形成し′ζ第1及びNS3の
半導体層(11)及び(13)が、第2の半導体層(1
2)、“うなわ15活性層に対重るクラソ]′層として
のれ1を能を有゛4るようになず。
In addition, as mentioned above, the second semiconductor layer (12)
Prohibited zone 'l'! d is the first and 30th conductor layer (
11) and that of (] + 3, having L smaller ff, 1., these first and f: (S 3 half-body j director (
11) and (13) and the second semiconductor layer (12) form a groove, and the first and NS3 semiconductor layers (11) and (13) form the second semiconductor layer (12). Layer (1
2) The layer 1 does not have the ability to function as a ``claso layer overlying the active layer 15''.

そしζ、少なくとも第4の半導体層(14)に不純物例
えはZnが選択的に導入され°ζ形成される第2の部分
(17)においては、7.n4W人によ−2てその禁1
1−帯幅を狭めて活性IN(12)からの光が吸収され
るようにする。このZnの導入h1は、I−述した。1
、うに半導体層(14)のN型を11ら哨し°(I) 
jjνに反転させる犀でよい。尚、この場合、Zn導入
部の゛V導体Xは+[1f濃度のN型崩となしよバこと
が望ましい。これは、N型1f」llJll度は、禁止
帯幅を拡げる方向に働き、この導電型を反転させるよう
にZnを導入したとごろではより禁止(:!++’ii
を狭める方向に1つ1(ごとによる。
Then, in the second portion (17) where an impurity, for example Zn, is selectively introduced into at least the fourth semiconductor layer (14), 7. n4W person-2 and its prohibition 1
1- Narrow the bandwidth so that light from the active IN (12) is absorbed. This Zn introduction h1 was described in I-. 1
, the N-type of the sea urchin semiconductor layer (14) is checked from 11° (I)
It may be a rhinoceros that is inverted to jjv. In this case, it is preferable that the V conductor X in the Zn introduction part be an N-type conductor with a +[1f concentration. This is because the N type 1f''llJll degree works in the direction of widening the forbidden band width, and when Zn is introduced to reverse this conductivity type, it becomes more prohibited (:!++'ii
1 in the direction of narrowing (depending on each).

半導体層(+5)、、J−には、例えは絶縁層(18)
が被着形成され、これに電極窓開cノがなされてこれの
第1の部分(16)を有する部分上に一方の1!極(1
τ))がオーミックに接続被着され、基体tlO)の裏
面に他方のYi極(20)がオーミックに接続被着され
る。
For example, the semiconductor layer (+5), J- is an insulating layer (18).
is deposited and an electrode aperture is formed thereon, and one 1! is formed on the part having the first part (16). pole (1
τ)) is ohmically connected and deposited, and the other Yi pole (20) is ohmically connected and deposited on the back surface of the substrate tlO).

J二連の半導体レーデ−によれば、ストライプ状の第1
の部分(16)の両側にこれと異る導電型の第2の部分
(17)が存在していることによって電流隼中の効果を
イ1し、利得導波型の機構を有すると共に、It; (
Il 1m (12)で発振した光が、この部分(17
)のイj在に、1、る吸収効果によって活性層(12)
の横方向に関しζ、実質的に第2の部分(17) ”’
Fに相当する部分に作りつけの屈υ「率差を形成するり
1果をi!1゛ζ、横ツノ向に関して屈折率差導波機構
の機能をももたしめる。
According to the J double semiconductor radar, the striped first
The presence of second parts (17) of a different conductivity type on both sides of the part (16) reduces the effect of current flow, has a gain waveguide type mechanism, and ; (
The light oscillated at Il 1m (12) is transmitted to this part (17
), due to the absorption effect of 1, the active layer (12)
ζ with respect to the lateral direction of substantially the second part (17) ``'
A built-in refractive index difference is formed in the portion corresponding to F, and the result is i!1゛ζ, which also functions as a refractive index difference waveguide mechanism in the lateral horn direction.

第2図の例においては、作りつりの屈IJi ’t<4
差を生せしめる第2の部分(I7)を不純物の拡散等に
よる選択的導入によって形成した場合であるが成る場合
は、不純物の選1)(的導入によっ゛ζ第1の111分
(16)を形成Jるようにすることもできる。この場合
の一例を第3図にポす。第3図において第2し1と対応
Jる部分には同一符号をイー1して由?JJ−説明を省
略するが、この例においζは、第4及び第5の半導体層
(14)及び(15)を第1導電型としCIJS4長さ
せこれにストライプ状に第2導電型のN型の不純物を選
択的に拡11に、法等によってt、!i性層(12)に
至ることのない深さに導入して第1の部分(16)を形
成し、この導入を行わなかっノこ部分を第2の部分(1
7)とする。この場合、第2の部分(17) 1. し
たがって少なくともエビクSトシャル成長に際し゛この
第4′のIN(14)の組成シ、11−述した第2の部
分としての機能を奏し+2する組成とし、また、第1の
部分(16)においζは上iホしたと同様に光吸収効果
の殆んどない1−とする。
In the example shown in Figure 2, the artificial angle IJi 't<4
In the case where the second portion (I7) that causes the difference is formed by selectively introducing impurities by diffusion, etc., the first 111th part (16 ) can also be formed.An example of this case is shown in Fig. 3.In Fig. 3, the part corresponding to 2nd and 1 is given the same code as E1 and written as JJ-. Although the explanation will be omitted, in this example, ζ is the fourth and fifth semiconductor layers (14) and (15) of the first conductivity type, CIJS4 length, and a striped N-type impurity of the second conductivity type. is selectively expanded 11 and introduced by a method or the like to a depth that does not reach the t,!i layer (12) to form the first part (16), and the saw part where this introduction is not performed. to the second part (1
7). In this case, the second part (17) 1. Therefore, at least during evictential growth, the composition of this 4' IN (14) should be such that it functions as the second part described in 11-2 and has a composition that increases by +2. ζ is assumed to be 1-, which has almost no light absorption effect, as described above.

発明の効果 上述したように本発明構成によれば、横方向に関して実
質的に作りつけの屈折率差を形成するよ・)にしたこと
によってストライブ構造による利得導波機構と相俟まっ
゛ζ安定した発振姿態をとらずことができる。
Effects of the Invention As described above, according to the configuration of the present invention, by forming a substantially built-in refractive index difference in the lateral direction, the gain waveguide mechanism using the stripe structure works well with the structure of the present invention. It is possible to do this without taking a stable oscillation state.

そして、特に本発明においては、この作りつけの屈折率
差を形成する光吸収層とし°Cの第2の部分が埋込まれ
た構造とされずに表向からの選択的不純物導入による領
域、あるいはこの領域によって規制された領域によって
形成したので各4’ 、’、’;1体層(11)〜(1
5)は、一連の、すなわち1回のエピタキシャル成長処
理で形成され、その途中で伯の作業が挿入されることが
ない。したがって製造作業が能率化され4L産性の向上
がはかられると共に、一時に、酸化され易い八lを含む
化合物半導体におい゛(そのエピタキシャル成長間に他
の工程が入ることはこの半導体層の表面を酸化さ−Uる
などのz1¥性十好ましくない状態をもたらすが、本発
明構成によるときは、このような不都合がないので、特
性にすぐれた半導体レーザーを歩’slり良< ifる
ことができるものである。
In particular, in the present invention, as a light absorption layer that forms this built-in refractive index difference, the second part of °C is not made into a buried structure but is formed by selectively introducing impurities from the surface. Alternatively, since it is formed by a region regulated by this region, each 4',','; 1 body layer (11) to (1
5) is formed in a series of epitaxial growth processes, that is, in one epitaxial growth process, and no operations are inserted in the middle of the process. Therefore, manufacturing operations are streamlined and 4L productivity is improved, and at the same time, in compound semiconductors containing 8L, which is easily oxidized, the surface of this semiconductor layer is However, the structure of the present invention does not have such disadvantages, so it is possible to outperform semiconductor lasers with excellent characteristics. It is possible.

そして、また、特に本発明におい′Cはこの光吸収層と
しての第2の部分(17) 、或いは電流集中のための
第1の部分(16)を形成する各不純物導入領域は、第
2図及び第3図で不されるよ・)に活性層(12)には
達することのない深さにえらぽれるので、これを導入す
るごとに伴う結晶学的歪ないしは欠陥が発振領域に影響
を及ば−4ごとを回避でき、特性にすぐれ、安定した半
導体レーザーをIFるごとができるものである。
In addition, particularly in the present invention, each impurity-introduced region forming the second portion (17) as the light absorption layer or the first portion (16) for current concentration is shown in FIG. (as shown in Figure 3), the active layer (12) is selected at a depth that does not reach the active layer (12), so crystallographic distortions or defects that accompany the introduction of this layer may affect the oscillation region. If this is the case, it is possible to avoid the occurrence of -4, and it is possible to perform an IF of a semiconductor laser that has excellent characteristics and is stable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の半導体レーザーの路線的拡大1v[面図
、第2図及び第3図は夫々本発明による半導体レーザー
の例の路線的拡大1tJi面図である。 00)は半導体基板、(11)へ115)は第1〜第5
の半導体層、(16)及び(17)は第1及び第2の同
  松隈秀盛
FIG. 1 is an enlarged line 1v [plane view] of a conventional semiconductor laser, and FIGS. 2 and 3 are enlarged line 1tJi plane views of an example of the semiconductor laser according to the present invention. 00) is the semiconductor substrate, (11) to 115) are the first to fifth
, (16) and (17) are the first and second semiconductor layers.

Claims (1)

【特許請求の範囲】[Claims] 順次に隣接する第1の半導体層と、第2の半導体層と、
第3の半導体J−と、第4の半導体1−とを自し、」−
記第3の半導体層と同導電型の第1の部分と、これとは
逆導電型の第2の部分とがすくなくとも上記第4の半導
体層に設けられ、上記第2の部分と上記第2の半導体層
との距離は上記第2の半導体層から発振される光が上記
第2の部分に達する程度とされ、上記第2の半導体層の
禁止帯幅は、上記第1及び第3の半導体層の禁止帯幅よ
り小さく、上記第1の部分の禁止帯1υ1は上記第2の
半導体層の禁止帯幅より人で、上記第2の部分の禁1(
二帯11’i4は第2の半導体rf4の禁止帯幅と同じ
又はこれより小さい?1す導体レーザー。
a first semiconductor layer and a second semiconductor layer that are sequentially adjacent to each other;
a third semiconductor J- and a fourth semiconductor 1-;
At least a first portion of the same conductivity type as the third semiconductor layer and a second portion of the opposite conductivity type are provided in the fourth semiconductor layer, and the second portion and the second portion are provided in the fourth semiconductor layer. The distance to the semiconductor layer is such that light oscillated from the second semiconductor layer reaches the second portion, and the forbidden band width of the second semiconductor layer is the distance between the first and third semiconductor layers. The forbidden band 1υ1 of the first part is smaller than the forbidden band width of the second semiconductor layer, and the forbidden band 1υ1 of the second part is smaller than the forbidden band width of the second semiconductor layer.
Is the band 11'i4 the same as or smaller than the forbidden band width of the second semiconductor rf4? 1 conductor laser.
JP16180982A 1982-09-17 1982-09-17 Semiconductor laser Pending JPS5951584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16180982A JPS5951584A (en) 1982-09-17 1982-09-17 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16180982A JPS5951584A (en) 1982-09-17 1982-09-17 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS5951584A true JPS5951584A (en) 1984-03-26

Family

ID=15742319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16180982A Pending JPS5951584A (en) 1982-09-17 1982-09-17 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS5951584A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174384A (en) * 1984-09-19 1986-04-16 Sony Corp Semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174384A (en) * 1984-09-19 1986-04-16 Sony Corp Semiconductor laser

Similar Documents

Publication Publication Date Title
US4734385A (en) Semiconductor laser element suitable for production by a MO-CVD method
US4347486A (en) Single filament semiconductor laser with large emitting area
US5013684A (en) Buried disordering sources in semiconductor structures employing photo induced evaporation enhancement during in situ epitaxial growth
JP2558744B2 (en) Semiconductor laser device and manufacturing method thereof
JPS6180882A (en) Semiconductor laser device
JPH02129986A (en) Semiconductor laser device and manufacture thereof
JPH01300516A (en) Light-supported mocvd method and semiconductor array laser
JPS5951584A (en) Semiconductor laser
US4686679A (en) Window VSIS semiconductor laser
JPS63178574A (en) Manufacture of semiconductor laser device
GB2062949A (en) Single filament semiconductor laser with large emitting area
JPS63124484A (en) Semiconductor laser element
JPH01227485A (en) Semiconductor laser device
JPH0548215A (en) Semiconductor laser diode and its manufacture
JPH03253089A (en) Semiconductor diode laser and manufacture thereof
JPS62173788A (en) Semiconductor laser
JPS60164383A (en) Manufacture of semiconductor laser
JPH09307187A (en) Secondary harmonic component generating semiconductor laser
JPH0715001A (en) Optical integrated circuit
KR100239498B1 (en) Method for manufacturing semiconductor laser diode
JPH027489A (en) Semiconductor laser
JPS62101094A (en) Semiconductor laser
JPH0685379A (en) Semiconductor laser element and manufacture thereof
JPH01293686A (en) Manufacture of semiconductor laser element
JPH02222590A (en) Manufacture of semiconductor laser