JPS5951237B2 - DC brushless motor - Google Patents

DC brushless motor

Info

Publication number
JPS5951237B2
JPS5951237B2 JP51138847A JP13884776A JPS5951237B2 JP S5951237 B2 JPS5951237 B2 JP S5951237B2 JP 51138847 A JP51138847 A JP 51138847A JP 13884776 A JP13884776 A JP 13884776A JP S5951237 B2 JPS5951237 B2 JP S5951237B2
Authority
JP
Japan
Prior art keywords
stator winding
capacitor
rotor
current
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51138847A
Other languages
Japanese (ja)
Other versions
JPS5362116A (en
Inventor
善隆 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP51138847A priority Critical patent/JPS5951237B2/en
Publication of JPS5362116A publication Critical patent/JPS5362116A/en
Publication of JPS5951237B2 publication Critical patent/JPS5951237B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】 本発明は永久磁石回転子又は相当の有磁極回転子を有し
、回転子位置検出信号で制御される半導体スイッチング
素子で個定子巻線を励磁制御して回転子との電磁力で回
転駆動する直流ブラシレスモータに関するもので、特に
その効率の向上を計ることを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention has a permanent magnet rotor or equivalent magnetic pole rotor, and controls the excitation of individual stator windings using a semiconductor switching element controlled by a rotor position detection signal. This invention relates to DC brushless motors that are rotationally driven by electromagnetic force, and is aimed specifically at improving their efficiency.

通常半導体スイッチング素子をトランジスタ化したブラ
シレスモータの原理図は第1図に示されている。
A principle diagram of a brushless motor in which semiconductor switching elements are normally converted into transistors is shown in FIG.

図においてEは直流電源、Wa、Wb、Wcは固定子線
、Qa、Qb、Qcは半導体スイッチング素子としての
トランジスタでそのコレクタには前記固定子巻線Wa、
Wb、Wcとサージ吸収回路Ba、Sb、Scが並列に
接続されている。
In the figure, E is a DC power supply, Wa, Wb, Wc are stator wires, Qa, Qb, Qc are transistors as semiconductor switching elements, and the collectors thereof include the stator winding Wa,
Wb, Wc and surge absorption circuits Ba, Sb, Sc are connected in parallel.

Dは光、磁界、透磁率、静電容量等を媒介として回転子
の位置を検出する回転子位置検出回路で第2図に示す如
きモードの電圧をその出力として順次トランジスタQa
、Qb、Qcのベースに印加される。そしてこの印加に
より前記トランジスクQa、Qb、Qcは順次ON、O
FFし、それに応じて固定子巻線Va、Wb、Wcは励
磁制御されて巻線電流と回転子間の電磁力で常に一方向
のトルクを発生し回転’子が回転駆動される。而して各
固定子巻線Wa、Wb、WcはトランジスタQa、Qb
、Qcによりスイッチング制御されるため、例えばトラ
ンジスタQaがOFFした時に固定子巻線Waには大き
な過渡電圧が発生する。
D is a rotor position detection circuit that detects the position of the rotor using light, magnetic field, magnetic permeability, capacitance, etc., and the voltage in the mode shown in FIG.
, Qb, and Qc. With this application, the transistors Qa, Qb, and Qc are turned on and off in sequence.
The stator windings Va, Wb, and Wc are energized and controlled accordingly, and a unidirectional torque is always generated by the winding current and the electromagnetic force between the rotor, and the rotor is rotationally driven. Each stator winding Wa, Wb, Wc is connected to a transistor Qa, Qb.
, Qc, a large transient voltage is generated in the stator winding Wa, for example, when the transistor Qa is turned off.

そこでトランジスタの破壊防止、固定子巻線の絶縁破壊
の防止及び電波障害防止のために各固定子巻線Wa、W
b、Wcには前述のようにサージ吸収回路Ba、Sb、
Scが夫夫設けられている。このサージ吸収回路は一般
に第3図イの如く定電圧ダイオノードZDをトランジス
タQaのエミッタ・コレクタ間に挿入しサージエネルギ
ーをツェナーダイオード内で消費させるもの、また口の
如くコンデンサCaを固定子巻線Waの両端に接続して
サージエネルギーはコンデンサと巻線内で振動エネルギ
ーと5なりWa又はCa内の抵抗分として消失するもの
、更にハの如<抵抗RaとコンデンサCaの並列回路に
ダイオードDaを直列に介挿したこれを固定子巻線Wa
に並列に接続し、ダイオードDaを通じてサージエネル
ギーを供給し、このエネルギーを一旦コンデンサCaに
貯えた後抵抗Raで徐徐に放電せしめるもの等があるけ
れどもいずれもサージエネルギーは全て熱損失となつて
しまう。ここにおいてサージエネルギーの量に着目して
考察すると、固定子巻線1個のインダクタンスをL、ト
ランジスタが0FFする直前の電流をIとするとトラン
ジスタが0FFした時に巻線内に貯えられているエネル
ギーはLI2/ 2(ジユール)である。
Therefore, in order to prevent transistor breakdown, dielectric breakdown of stator windings, and radio interference, each stator winding Wa, W
b, Wc are equipped with surge absorption circuits Ba, Sb,
Sc is provided for husband and wife. This surge absorption circuit generally has a constant voltage diode node ZD inserted between the emitter and collector of the transistor Qa as shown in Fig. 3A, and the surge energy is consumed within the Zener diode, and a capacitor Ca is connected to the stator winding Wa. When the surge energy is connected to both ends of the capacitor and the winding, it becomes vibrational energy and is dissipated as a resistance component in Wa or Ca. This inserted into the stator winding Wa
There are some devices that supply surge energy through a diode Da, store this energy in a capacitor Ca, and then gradually discharge it through a resistor Ra, but in both cases, all of the surge energy becomes heat loss. Considering the amount of surge energy here, if the inductance of one stator winding is L, and the current just before the transistor turns OFF is I, the energy stored in the winding when the transistor turns OFF is It is LI2/2 (Juyur).

そしてモータの極数をP、相数をm、電流がI(A)の
時の回転数をN(Rpm)とすると、一秒当りのスイツ
チング回数はとなりサージ電力PLは で゛ある。
If the number of poles of the motor is P, the number of phases is m, and the number of rotations when the current is I (A) is N (Rpm), then the number of switching operations per second is, and the surge power PL is.

電源電圧の低いモータでは相対的に電流が大きなものと
なり、しかも固定子巻線の導通時の電流は導通初期と導
通末期とでは同じ大きさではなく導通末期の電流が大き
く、モータに流れる平均電流の2〜3倍となる場合があ
る。
In a motor with a low power supply voltage, the current is relatively large.Moreover, the current when the stator winding conducts is not the same at the beginning of conduction and at the end of conduction, but the current at the end of conduction is large, and the average current flowing through the motor It may be 2 to 3 times as large.

この様にサージ電力は電流の二乗に比例しかつサージを
発生する時の電流がモータの平均入力電流よりも大きい
こと等のためサージ電力がモータの入力電力の数%以上
に及ぶことがある。
In this way, surge power is proportional to the square of the current, and because the current when the surge is generated is larger than the average input current of the motor, the surge power can reach several percent or more of the motor's input power.

本発明は上記の点に鑑みてなされたもので以下第4図に
ついてその一実施例を説明する。
The present invention has been made in view of the above points, and one embodiment thereof will be described below with reference to FIG.

Eは電源、Ma,Wb,Wcは固定子巻線、Qa,Qb
,Qcはスイツチング用トランジスタ、Dは回転子位置
検出回路、Sa,Sb,Scはサージ吸収回路である。
E is the power supply, Ma, Wb, Wc are the stator windings, Qa, Qb
, Qc are switching transistors, D is a rotor position detection circuit, and Sa, Sb, and Sc are surge absorption circuits.

前期サージ吸収回路Sc,Sb,Scはいずれも同様に
構成されるので、Saにつきその構成を説明する。固定
子巻線Waの両端間に、トランジスタQaが0FFした
時に、固定子巻線Waに発生するサージ電圧で充電され
るコンデンサC,と、その充電電流を流す極性のダイオ
ードD,との直列回路を設ける。またコンデンサC,の
両端間にコンデンサC。及び抵抗R,からなる遅延回路
DEが設けられ、またダイオードD,の両端間には、コ
ンデンサC,の充電電荷を固定子巻線Waに放電させる
トランジスタQ,のエミツタ・コレクタが接続され、こ
のトランジスタのエミツタ・ベースがコンデンサC。の
両端に接続される。上記の構成においてスイツチング用
トランジスタQaが0FFした時固定子巻線Waの過渡
電圧のためコレクタ電位は急激に上昇しこの電位はダイ
オードD,を通してコンデンサC,を充電する。その後
R,C。の時定数で決められる微小時間後コンデンサC
。の両端の電圧がトランジスタQ,のカツトオフ電圧よ
りも上回りベース電流が流れると前記トランジスタQ,
は導通を開始し、コンデンサC,、トランジスタQ,及
び個定子巻線Waの閉回路内で電流が流れ、コンデンサ
C,に貯えられていた電力は再び個定子巻線Waに返還
される。第5図はトランジスタQaのコレクタ電圧V。
lダイオードD,のカソード電圧VDIの波形を横軸に
回転角をとつて表わしたものである。カソード電圧VD
”の波形を実線で示し、コレクタ電圧Vclの波形を破
線で示す。図中時点T,はトランジスタQaが0Nする
時点、T2はこのトランジスタが0FFする時点、T,
はトランジスタQ,が0Nする時点、T,はトランジス
タQaが再び0Nする時点を示す。コレクタ電圧V。”
に着目すると、期間(T。−T,)はトランジスタQa
が0Nしたときであり、このトランジスタの飽和電圧約
IVを示す。時点T。のトランジスタQa(7)0FF
時にサージ電圧が発生して、コレクタ電圧Vc”はパル
ス状波形となる。Jこの時点T。から再びこのトランジ
スタQaが0Nする時点T,までは、トランジスタQa
が0FFしているため、コレクタ電圧V。”は固定子巻
線Waに発生する起電圧波形となる。ダイオードD1の
カソード電圧VD”については、期間(T。
Since the first-stage surge absorption circuits Sc, Sb, and Sc all have the same configuration, the configuration of Sa will be explained. A series circuit consisting of a capacitor C that is charged by the surge voltage generated in the stator winding Wa when the transistor Qa is turned off, and a polarity diode D that allows the charging current to flow between both ends of the stator winding Wa. will be established. Also, a capacitor C is placed between both ends of the capacitor C. and a resistor R, and the emitter-collector of a transistor Q, which discharges the charge of a capacitor C to a stator winding Wa, is connected between both ends of a diode D. The emitter and base of the transistor are capacitor C. connected to both ends of the In the above configuration, when the switching transistor Qa is turned off, the collector potential rises rapidly due to the transient voltage of the stator winding Wa, and this potential charges the capacitor C through the diode D. Then R,C. After a minute time determined by the time constant of the capacitor C
. When the voltage across the transistor Q exceeds the cut-off voltage of the transistor Q, and the base current flows, the transistor Q,
starts conducting, current flows in the closed circuit of capacitor C, transistor Q, and individual stator winding Wa, and the power stored in capacitor C is returned to individual stator winding Wa. FIG. 5 shows the collector voltage V of the transistor Qa.
The waveform of the cathode voltage VDI of the l diode D is expressed with the rotation angle taken on the horizontal axis. Cathode voltage VD
” waveform is shown by a solid line, and the waveform of the collector voltage Vcl is shown by a broken line. In the figure, time T is the time when the transistor Qa turns ON, T2 is the time when this transistor turns OFF, T,
T indicates the time when transistor Q is turned ON, and T is the time when transistor Qa is turned ON again. Collector voltage V. ”
Focusing on , the period (T.-T,) is the transistor Qa
is 0N, indicating the saturation voltage of this transistor about IV. Time T. Transistor Qa(7)0FF
When a surge voltage occurs, the collector voltage Vc'' takes on a pulse-like waveform.
is 0FF, so the collector voltage V. " is the electromotive voltage waveform generated in the stator winding Wa. Regarding the cathode voltage VD of the diode D1," the period (T.

−T,)でトランジスタQ,が0FFしており、ダイオ
ードD,が逆バイアス状態にあり、カソード電圧VDI
はほぼ電源電圧VRに等しい。時点T。でサージ電圧の
ために、ダイオードD,が順方向バイアスとなり、この
ダイオードを介してコン”デンサC,が充電される。そ
の後遅延回路DEの抵抗R,とコンデンサC。の時定数
で決まる時間(T,一T。)後、即ち時点T。でトラン
ジスタQ,が導通し、このトランジスタを介してコンデ
ンサC,の充電電荷が固定子巻線Waに放電する。時点
T。から時点2πに至る間はコレクタ電圧V。lの波形
とほぼ等しくなる。この場合にコーレクタ電圧V。lは
、時点T3においてはコンデンサC1の放電電流のため
、固定子巻線Waの起電圧波形よりも僅かに大きくなる
。時点T3から流れ始めた放電電流は、トランジスタQ
a(7)0Nによる固定子巻線Waの励磁電流と逆方向
にこの固定子巻線Waに流れ、又この時の回転子磁極も
逆になつているので、回転子の回転方向と同方向即ち正
規回転方向のトルクを発生する。尚サージ吸収回路Sb
,Scについても同様である。
-T,), the transistor Q, is turned off, the diode D, is in a reverse bias state, and the cathode voltage VDI
is approximately equal to the power supply voltage VR. Time T. Due to the surge voltage at , the diode D becomes forward biased, and the capacitor C is charged via this diode. After that, the time constant determined by the resistor R of the delay circuit DE and the time constant of the capacitor C, T, - T.), that is, at time T., the transistor Q becomes conductive, and the charge in the capacitor C is discharged to the stator winding Wa through this transistor.From time T. to time 2π. is almost equal to the waveform of the collector voltage V.l. In this case, the collector voltage V.l becomes slightly larger than the electromotive force waveform of the stator winding Wa at time T3 due to the discharge current of the capacitor C1. .The discharge current that started flowing from time T3 flows through the transistor Q.
The excitation current flows in the stator winding Wa in the opposite direction to the excitation current in the stator winding Wa due to a(7)0N, and since the rotor magnetic poles at this time are also reversed, the current flows in the same direction as the rotation direction of the rotor. That is, torque in the normal rotation direction is generated. In addition, surge absorption circuit Sb
, Sc.

本発明は上述の如く、永久磁石回転子又は相当の有磁極
回転子を有し、回転子位置検出信号で制御される半導体
スイツチング素子により固定子巻線を励磁制御して固定
子巻線電流と回転子間の電磁力により回転力を得る直流
ブラシレスモータにおいて、前記半導体スイツチング素
子が0FFした時に固定子巻線の発生するサージ電圧で
コンデンサを充電し、前記スイツチング素子の0FF時
に前記コンデンサに貯えられた電荷を固定子巻線内に放
電し、この電流により回転子のトルクを正規回転方向へ
発生せしめるようにしたものであるから、サージエネル
ギーの一部をモータ出力に変換して効率の良いブラシレ
スモータが提供出来る。
As described above, the present invention has a permanent magnet rotor or a corresponding magnetic pole rotor, and controls the excitation of the stator winding using a semiconductor switching element controlled by a rotor position detection signal to generate a stator winding current. In a DC brushless motor that obtains rotational force by electromagnetic force between rotors, a capacitor is charged with a surge voltage generated in a stator winding when the semiconductor switching element is turned OFF, and the surge voltage is stored in the capacitor when the switching element is turned OFF. This electric charge is discharged into the stator winding, and this current is used to generate rotor torque in the normal rotational direction, so a part of the surge energy is converted into motor output, resulting in an efficient brushless motor. Motors can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は直流ブラシレスモータの原理図、第2図は回転
子位置検出回路の出力図、第3図イ,口及びハは従来の
サージ吸収回路の異なる実施例を示す要部電気回路図、
第4図は本発明によるブラシレスモータの電気回路図、
第5図は第4図におけるサージ吸収回路の動作特性図で
ある。 E・・・・・・直流電源、Qa,Qb,Qc・・・・・
・スイツチング用トランジスタ、Wa,Wb,Wc・・
・・・・固定子巻線、D・・・・・・回転子位置検出回
路、Sa,Sb,Sc・・・・・・サージ吸収回路、R
1・・・・・・抵抗、D1・・・・・・ダイオード、Q
1・・・・・・トランジスタ、Cl,C2・・・・・・
コンデンサ。
FIG. 1 is a principle diagram of a DC brushless motor, FIG. 2 is an output diagram of a rotor position detection circuit, and FIG.
FIG. 4 is an electric circuit diagram of a brushless motor according to the present invention;
FIG. 5 is an operational characteristic diagram of the surge absorption circuit in FIG. 4. E...DC power supply, Qa, Qb, Qc...
・Switching transistors, Wa, Wb, Wc...
...Stator winding, D...Rotor position detection circuit, Sa, Sb, Sc...Surge absorption circuit, R
1...Resistor, D1...Diode, Q
1...Transistor, Cl, C2...
capacitor.

Claims (1)

【特許請求の範囲】[Claims] 1 永久磁石回転子又は相当の有磁極回転子を有し、回
転子位置検出信号で制御される半導体スイッチング素子
により固定子巻線を励磁制御して固定子巻線電流と回転
子間の電磁力により回転力を得る直流ブラシレスモータ
において、前記固定子巻線の両端間に、前記励磁用半導
体スイッチング素子がOFFした時に前記固定子巻線に
発生するサージ電圧で充電されるコンデンサと、その充
電電流を流す極性のダイオードとの直列回路を設けると
共に前記コンデンサの両端間には遅延回路を、又前記ダ
イオードの両端間には、前記遅延回路の遅延時間後に、
前記コンデンサの充電電荷を前記固定子巻線に放電させ
る放電用半導体スイッチング素子を夫夫設けてなり、前
記励磁用半導体スイッチング素子のOFF期間内に、前
記充電電荷を前記固定子巻線に放電してこの電流により
回転子のトルクを正規回転方向に発生せしめることを特
徴とする直流ブラシレスモータ。
1 Having a permanent magnet rotor or equivalent magnetic pole rotor, the stator winding is excited and controlled by a semiconductor switching element controlled by a rotor position detection signal, and the stator winding current and the electromagnetic force between the rotor are controlled. In a DC brushless motor that obtains rotational force, a capacitor is provided between both ends of the stator winding, and is charged with a surge voltage generated in the stator winding when the excitation semiconductor switching element is turned off, and its charging current A series circuit is provided with a diode having a polarity that allows the current to flow, and a delay circuit is provided between both ends of the capacitor, and after the delay time of the delay circuit is provided between both ends of the diode,
A discharging semiconductor switching element is provided for discharging the charged charge of the capacitor to the stator winding, and the discharging semiconductor switching element discharges the charged charge to the stator winding during an OFF period of the excitation semiconductor switching element. A DC brushless motor characterized in that a lever current generates torque in a rotor in the normal rotation direction.
JP51138847A 1976-11-15 1976-11-15 DC brushless motor Expired JPS5951237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51138847A JPS5951237B2 (en) 1976-11-15 1976-11-15 DC brushless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51138847A JPS5951237B2 (en) 1976-11-15 1976-11-15 DC brushless motor

Publications (2)

Publication Number Publication Date
JPS5362116A JPS5362116A (en) 1978-06-03
JPS5951237B2 true JPS5951237B2 (en) 1984-12-12

Family

ID=15231561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51138847A Expired JPS5951237B2 (en) 1976-11-15 1976-11-15 DC brushless motor

Country Status (1)

Country Link
JP (1) JPS5951237B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119153U (en) * 1984-07-09 1986-02-04 富士重工業株式会社 Hydraulic shock absorber for vehicles
JPS6165931A (en) * 1984-09-07 1986-04-04 Hino Motors Ltd Shock absorber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119153U (en) * 1984-07-09 1986-02-04 富士重工業株式会社 Hydraulic shock absorber for vehicles
JPS6165931A (en) * 1984-09-07 1986-04-04 Hino Motors Ltd Shock absorber

Also Published As

Publication number Publication date
JPS5362116A (en) 1978-06-03

Similar Documents

Publication Publication Date Title
US4535275A (en) Brushless D-C motor system with improved commutation circuit
US4379984A (en) Brushless DC motor driven by complementary type transistors
JPS6158461A (en) Brushless dc motor
US3663878A (en) Direct current motor commutation system responsive to c.e.m.f.
JPS59149780A (en) Drive device for motor
US5278482A (en) Three-phase reluctance type motor
DK159409B (en) PROCEDURE FOR PROVIDING COMBUTION CIRCUIT SIGNALS FOR BRUSH FREE CURRENT MOTOR AND COMMUTRATING CIRCUIT FOR BRUSH FREE CURRENT MOTOR
US9602037B2 (en) Motor drive device and motor drive system
JPS5951237B2 (en) DC brushless motor
JP2651887B2 (en) Stepping motor drive circuit
JP4269376B2 (en) Drive control device and drive control method for brushless motor
JPH05199793A (en) Driver for variable reluctance motor
JP2000032794A (en) Power supply circuit
JPH10257792A (en) Sensorless driving circuit of single-phase brushless motor
JP3244853B2 (en) DC brushless motor drive controller
JPH09166610A (en) Detection apparatus for rotation abnormality of motor
JP2000102283A (en) Single-phase brushless motor and pole-place discrimination circuit thereof
JP3468040B2 (en) Motor control circuit with overload protection function
JP3119299B2 (en) Control circuit of DC motor with current limiter
JPS63121491A (en) Coil burning preventive device for brushless motor
JP3429534B2 (en) Motor drive circuit
JP3755066B2 (en) Switching circuit and DC brushless motor driving circuit using the circuit
WO2020234686A1 (en) Motor and motor control apparatus
JPS58133195A (en) Driving circuit for brushless dc motor
JPH10271875A (en) Driving circuit for brushless motor